磁共振系统组成
- 格式:ppt
- 大小:5.43 MB
- 文档页数:52
MRI设备基本组成认知和操作MRI设备由主磁体系统、梯度系统、射频系统、计算机系统等组成,为确保MRI设备的正常运行,还需有磁屏蔽、射频屏蔽、超导及低温等其它辅助设备。
一、主磁体系统主磁体系统(又称静磁场系统),是磁共振成像装置的核心部件,也是磁共振成像系统最重要、制造和运行成本最高的部件。
主磁体的作用是产生一个均匀的、稳定的静态磁场,使处于磁场中的人体内氢原子核被磁化而形成磁化强度矢量,并以拉莫尔频率沿磁场方向进行自旋(进动)。
(一)主磁体的性能指标1.磁场强度2.磁场均匀性3.磁场稳定度4.有效孔径5.磁场的安全性(二)主磁体的种类与特点1.永磁体2.超导磁体(三)匀场主磁场的均匀性是MR的重要指标,无论何种磁体由于受设计和制造工艺限制,在其制造过程中都不可能使整个有效空间内的磁场完全均匀一致。
另外,磁体周围环境中的铁磁性物体(如钢梁等)也会进一步降低磁场的均匀性。
因此,磁体安装完毕后还要在现场对磁场进行物理调整,称为匀场。
静磁场是靠各种匀场补偿线圈和铁磁材料,经多次补偿、测量、修正而逐渐逼近理想均匀磁场。
由于精度要求极高而且校准工作极其繁琐,大多是在计算机辅助下,采取多次测量、多次计算、多次修正才能达到1250pxDSV(球体直径)5ppm的均匀度。
常用的匀场方法有有源匀场和无源匀场两种。
1.有源匀场2.无源匀场二、梯度磁场系统梯度磁场系统是为MR提供满足线性度要求、可快速开关的梯度磁场。
(一)梯度磁场的作用在磁共振成像时,必须要在成像区域内的静磁场上,动态地迭加三个相互正交的线性梯度磁场,如图6-12所示,使受检体在不同位置的磁场值有线性的梯度差异,实现成像体素的选层和空间位置编码的功能。
三个梯度场的任何一个均可用以完成这三项作用之一,但联合使用梯度场可获得任意轴面的图像。
此外,在梯度回波和其他一些快速成像序列中,梯度磁场的翻转还起着射频激发后自旋系统的相位重聚,产生梯度回波信号的作用;在成像系统没有独立的匀场线圈的磁体系统的情况下,梯度线圈可兼用于对磁场的非均匀性校正,因此,梯度系统也是MRI设备的核心系统。
磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging, MRI)是一种通过利用核磁共振现象来获得人体组织图像的医学检查技术。
它可以提供高分辨率、无创伤的全身解剖图像,对病理性变化早期的发现和定量分析具有重要意义。
那么,磁共振成像设备是如何工作的呢?下面将详细介绍MRI设备的工作原理。
首先,磁共振成像设备包括主磁场系统、梯度磁场系统和射频系统。
主磁场系统是整个设备的核心,产生一个极强的定向磁场,通常为1到3特斯拉。
这个磁场可以将人体内的核磁共振信号分离出来。
在主磁场的作用下,人体内的水分子和其他核自旋(比如氢原子核)会产生一个差异很小的能级分裂。
然后,梯度磁场系统起到定位的作用,通过改变磁场的强度和方向,可以选择性地激发和感应特定区域的核磁共振信号。
接下来,利用射频系统,通过传送一系列射频脉冲激发患者体内的核自旋。
这些射频脉冲将导致核自旋从基态向激发态跃迁,并在脉冲结束后,核自旋会回到基态并释放出能量。
这些释放的能量即为核磁共振信号。
为了获得高质量的MRI图像,必须对核磁共振信号进行针对性的频率分析和空间编码。
频率分析是指将复杂的核磁共振信号转换为频率分量,以获得不同的核磁共振频率信息。
而空间编码则是指通过改变梯度磁场的强度和方向,对核磁共振信号在空间上进行编码。
最后,通过一系列计算和图像重建算法,将获得的核磁共振信号转换为高质量的图像。
这些算法包括傅里叶变换、滤波、插值和二维重建等步骤,以达到优化图像质量的目的。
综上所述,磁共振成像设备的工作原理主要包括主磁场系统、梯度磁场系统和射频系统的协同作用。
通过产生一个高强度的定向磁场、改变梯度磁场的强度和方向、利用射频脉冲激发和感应核磁共振信号,并通过频率分析和空间编码,最终获得高质量的MRI图像。
这种非侵入性的成像技术在临床上的广泛应用将进一步提高医学诊断的精确性和准确性。
磁共振成像(Magnetic Resonance Imaging, MRI)是一种通过核磁共振现象来获得人体组织图像的非侵入性检查技术。
企业申请报告飞利浦 磁共振成像仪1套型号 Ingenia3.0T MRI 影像设备功能磁共振成像系统大体结构基本上由四个系统组成:即磁体系统、梯度磁场系统、射频系统和计算机系统。
1.磁体系统磁体系统是磁共振成像系统最重要、成本最高的部件,是磁共振系统中最强大的磁场,平时我们评论磁共振设备的大小就是指静磁场的场强数值,单位用特斯拉(Tesla ,简称T )或高斯(Gauss )表示,1T=1万高斯。
临床上磁共振成像要求磁场强度在0.05~3T 范围内。
一般将≤0.3T 称为低场,0.3T ~1.0T 称为中场,>1.0T 称为高场。
磁场强度越高,信噪比越高,图像质量越好。
但磁场强度过高也带来一些不利的因素。
磁 体梯度线圈 射频 线圈 梯度 控制 梯度 驱动 接受 通道 发射 通道 脉冲程序 计算机 显示器 存储器为了获得不同场强的磁体,生产厂商制造出了不同类型的磁体,常见的磁体有永久磁体、常导磁体和超导磁体。
(1)永久磁体永久磁体是由永久磁铁(如铁氧体或铷铁)的磁砖拼砌而成。
它的结构主要有两种,即环型和轭型。
优点是:造价低,场强可以达到0.3T,能产生优质图像,需要功率极小,维护费用低,可装在一个相对小的房间里。
缺点是:磁场强度较低,磁场的均匀度和强度欠稳定,易受外界因素的影响(尤其是温度),不能满足临床波谱研究的需要。
(2)常导磁体常导磁体是根据电流产生磁场的原理设计的。
当电流通过圆形线圈时,在导线的周围会产生磁场。
常导磁体的线圈是由高导电性的金属导线或薄片绕制而成。
它的结构主要由各种线圈组成。
优点是:造价较低,不用时可以停电,在0.2T以下可以获得较好的临床图像。
缺点是:磁场的不稳定性因素主要是受供电电源电压波动的影响,均匀度差。
另外易受环境因素(如温度、线圈绕组的位置或尺寸)的影响.(3)超导磁体荷兰科学家昂尼斯(Kamerlingh Onnes)在1911年首先发现某些物质的电阻在超低温下急剧下降为零的超导性质,电阻的突然消失意味着物质已转变为某种新的状态,这些物质称为超导体。
磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用于医学诊断的非侵入性扫描技术,它利用磁共振原理,通过对人体组织的磁性物质的成像进行分析,得出病灶位置和病理变化的信息。
下面将详细介绍MRI设备的工作原理。
MRI设备主要由主磁场系统、梯度线圈系统、射频系统和计算机系统组成。
1. 主磁场系统主磁场系统是MRI设备的核心组成部分,它由一个超导磁体构成。
这个超导磁体能产生一个稳定的高强度磁场,通常是1.5T或3T。
这个磁场可以将人体内的水和脂肪等有机分子的原子核(如氢核、氧核等)原子核自旋取向,从而为后续成像提供必要的条件。
2. 梯度线圈系统梯度线圈系统由三个互相垂直的线圈组成,即横向、纵向和轴向梯度线圈。
这些线圈的作用是产生稳定强度和变化频率的梯度磁场,用于在空间上定位图像中不同的区域。
梯度线圈系统的变化频率决定了成像的分辨率,变化强度决定了成像的对比度。
3. 射频系统射频系统由发射线圈和接收线圈组成,它的作用是产生高频电磁场和接收返回的信号。
在成像过程中,射频系统会向人体内部提供一个高频脉冲电磁场,导致人体内的原子核自旋发生能级跃迁。
原子核回到基态时,会发送出一个特定的信号,通过接收线圈接收并传回计算机系统进行处理。
4. 计算机系统计算机系统是MRI设备的控制中心,它负责控制整个设备的运行、数据采集、图像重建和存储。
在成像过程中,计算机会通过梯度线圈和射频线圈产生的信号,对人体内部的原子核进行测量和记录。
然后利用这些数据,通过复杂的数学计算和图像处理算法,生成最终的MRI图像。
具体工作流程如下:1. 开始扫描前,患者需要去除身上的金属物品,因为磁场会对金属产生吸引力和磁化。
2. 患者躺在MRI设备的扫描床上,床会进入主磁场系统中央,电脑通过脚踏开关控制床的位置。
3. 当主磁场系统通电后,会产生一个均匀的磁场。
此时,射频系统会向人体内部发送射频脉冲,使原子核自旋发生能级跃迁。