分式方程与实际问题-
- 格式:ppt
- 大小:397.50 KB
- 文档页数:8
分式方程与实际问题的技巧分式方程在实际问题中的应用非常广泛,例如在物理学、化学、工程学等领域中都有广泛的应用。
解决分式方程的问题需要一定的技巧和方法,本文将从以下几个方面介绍分式方程与实际问题的技巧。
一、理解分式方程的基本概念分式方程是指含有分式的方程,即等号两边至少有一个项是分式。
分式方程的一般形式为:A/B = C/D,其中A、B、C、D 均为整式,且B≠0。
二、分式方程的解法1. 消去分母法消去分母法是将分式方程转化为整式方程求解的方法。
具体步骤如下:(1)将分式方程转化为整式方程;(2)解整式方程;(3)检验所得解是否为原分式方程的解。
2. 换元法换元法是将原分式方程中的未知数用另一个变量表示,从而将原分式方程转化为一个新的整式方程求解的方法。
具体步骤如下:(1)设一个新的变量u,使得原分式方程可以表示为关于u的整式方程;(2)解关于u的整式方程;(3)将所得解代入原分式方程,求出原未知数的值。
3. 分离变量法分离变量法是将原分式方程中的未知数与常数分离,从而将原分式方程转化为一个关于未知数的一元一次方程求解的方法。
具体步骤如下:(1)将原分式方程中的未知数与常数分离;(2)对分离后的一元一次方程进行求解;(3)将所得解代入原分式方程,求出原未知数的值。
三、实际问题中的分式方程技巧1. 确定未知数和已知条件在解决实际问题时,首先要明确题目中的未知数和已知条件。
未知数通常是需要求解的量,而已知条件则是题目给出的关于未知数的信息。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c,其中a、b、c为已知常数,v、t为未知数。
2. 建立分式方程模型根据题目中的已知条件,建立相应的分式方程模型。
例如,某物体的速度v与其时间t的关系可以表示为v = at^2 + bt + c/t,其中a、b、c为已知常数,v、t为未知数。
3. 选择合适的解法求解分式方程根据所建立的分式方程模型,选择合适的解法求解分式方程。
分式方程的应用知识点分式方程主要涉及到有关比例、百分比和利率的应用问题。
在实际生活中,分式方程可以帮助我们解决各种与比例相关的问题,例如货币兑换、混合液体的配制、百分比的计算等。
以下是一些分式方程应用的知识点:1.货币兑换问题在国际贸易中,经常需要将一种货币兑换成另一种货币。
如果已知兑换比例和要兑换的数量,我们可以使用分式方程来计算兑换后的货币数量。
例如,如果1美元兑换为5人民币,那么用x美元可以换成多少人民币可以表示为:5/1=y/x,其中y表示兑换后的人民币数量。
2.比例问题比例问题是分式方程应用的常见场景,比如:种植的草地数量与所需耕地数量之间的关系、两个不同容器中液体的比例、不同材料的配比等。
比例可以表示为a/b=c/d,其中a、b、c、d分别表示不同元素或数量之间的关系。
3.百分比问题百分比是分式方程应用中的另一个重要知识点。
百分比表示一个数相对于另一个数的比例。
通常用百分号表示,例如60%表示60/100。
在解决百分比问题时,我们常常需要找到未知数的百分数或一部分,并通过解分式方程来计算。
例如,如果商品价格上涨了20%,现在的价格是120元,那么原来的价格可以表示为x,方程为:x*(1+20/100)=120。
4.利率问题5.代数表达式的分式有时候我们还需要将代数表达式视为分式,并在求解方程时运用分式的性质。
例如,对于表达式(a+b)/c,我们可以通过分数的加法和乘法性质来合并分式、约分,从而求解方程。
6.比例和个体数量问题综上所述,分式方程主要应用于与比例、百分比和利率相关的问题。
熟练掌握这些知识点,可以帮助我们解决各种实际生活中的应用问题。
用分式方程解决实际问题
假设我们要解决以下问题,甲乙两人合作做某件工作,如果甲独立做需要5个小时,乙独立做需要6个小时。
问他们合作做需要多长时间?
首先,我们可以设甲、乙合作做这件工作需要x个小时。
根据工作的性质,我们知道甲、乙合作做一小时的工作量分别是1/5和
1/6。
因此,他们合作做一小时的工作量就是1/5 + 1/6,即5/30 + 6/30,等于11/30。
根据工作量与时间的关系,工作量等于工作量与时间的乘积。
因此,甲、乙合作做x个小时的工作量就是x 11/30。
而这个工作量又等于1,因为他们最终完成了整个工作。
因此,我们可以得到方程式,x 11/30 = 1。
通过解这个分式方程,我们可以得到x的值,从而知道甲、乙合作做这件工作需要的时间。
通过这个例子,我们可以看到分式方程是解决实际问题的有力
工具。
在实际应用中,我们可以根据具体情况建立分式方程,然后通过代数运算来解决问题。
这种方法在解决配比、速度、工作效率等实际问题时非常有效。
希望这个例子可以帮助你更好地理解如何用分式方程解决实际问题。
分式方程实际问题步骤分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
分式方程是数学中描述两个或多个变量之间关系的方程,其中至少有一个变量出现在分母中。
解决分式方程的实际问题通常需要遵循一系列步骤,以确保问题的准确性和完整性。
以下是解决分式方程实际问题的常见步骤:1.理解问题:首先,需要仔细阅读问题,理解其背景和要求。
明确问题中涉及的变量、已知条件和未知数,以及它们之间的关系。
2.建立数学模型:根据问题的描述,将实际问题转化为数学模型。
这通常涉及将问题中的文字描述转换为数学表达式或方程。
在这个过程中,分式方程是描述问题的重要工具。
3.去分母:在分式方程中,分母的存在可能导致方程难以解决。
因此,去分母是解决分式方程的重要步骤。
通过找到所有分母的最小公倍数,并将方程两边都乘以这个最小公倍数,可以消除分母。
4.解方程:在去分母后,方程变为一个更简单的形式,可以更容易地求解。
可以使用代数方法(如移项、合并同类项、因式分解等)来解方程。
5.检验解的合理性:在找到方程的解之后,需要回到实际问题中,检查这些解是否符合实际情况和逻辑。
有时候,某些解可能不符合实际情况或导致矛盾,因此需要进行筛选或调整。
6.得出结论:最后,根据解的合理性和实际问题的需求,得出结论并解释结果。
这可能包括提供数值答案、绘制图表或进行进一步的推理和分析。
这些步骤是解决分式方程实际问题的常见方法,但并非一成不变。
根据具体问题的性质和要求,可能需要进行适当的调整和修改。
重要的是保持逻辑清晰和推理准确,以确保最终的解决方案能够满足实际问题的需求。
总结来说,分式方程实际问题步骤是指解决涉及分式方程的实际问题的步骤和方法。
这些步骤包括理解问题、建立数学模型、去分母、解方程、检验解的合理性和得出结论等。
通过遵循这些步骤,可以更准确地解决实际问题并得出可靠的结论。
课题:16.3.分式方程与实际问题(二)学习目标:1.能分析出实际问题中的等量关系,列出方程;2.熟悉列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;3.培养学生应用意识。
重点:将实际问题中的等量关系用分式方程表示并且求得结论。
难点:寻求实际问题中的等量关系,正确列出分式方程。
学习过程:一。
课前准备1.列分式方程解应用题的方法与步骤为:二.师生探究(行程问题)【例2】从2004年5月起某列车平均提速v千米/小时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?思路点拨:明确这里的字母V、S表示已知量,可以根据行驶时间不变直接设提速前列车的平均速度是X千米/小时,列出方程补充例题:A,B两地相距100千米,两辆汽车从A地开往B地,让大汽车比小汽车早出发5小时,结果小汽车和大汽车同时到达B地.已知两车的速度之比是5:2,求两辆汽车各自的速度. 三.知识运用(只列分式方程,不求解)1.已知甲车行驶45千米的时间与乙车行驶30千米的时间相同,如果甲车每小时比乙车快3千米,问两车的速度各为多少?2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车和小汽车同时出发,结果小汽车比大汽车早到3小时.已知大、小汽车速度的比为2:5,求两辆汽车的速度.3.一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,想容器中注满水的全过程共用时间t分。
求两根水管各自的注水速度。
(要考虑大水管的进水速度是小水管进水速度的多少倍。
)4.小明和小亮进行百米比赛。
当小明到达终点时,小亮距离终点还有5米,如果小明比小亮每秒多跑0.35米,你知道小明百米跑的平均速度是多少吗?5.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?6、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
数学 学科导学案(第 次课)教师: 学生: 年级: 八 日期: 星期: 时段: 课 题 分式方程解法及根据题意列分式方程学情分析教学目标与 考点分析1、理解分式方程的意义,掌握可化为一元一次方程的分式方程的解法;2、了解增根的意义,明确解分式方程时验根的重要性;3、通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化 为整式方程,把未知问题转化为已知问题,从而渗透数学的转化思想;4、会根据题意列分式方程。
教学重点 可转化为一元一次方程的分式方程的解法、增根的含义以及会根据题意列分式方程;教学方法讲练结合法、归纳总结法学习内容与过程考点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。
例:下列方程中,哪些是分式方程,哪些不是分式方程?为什么? (1)2x +x -15 =10 (2)x - 1x =2 (3) 12x +1 -3=0 (4) 2x 3 + x -12=0 例:(1)下列各式中,分式方程是( ) A 、15- B 、2-=x x C 、32=-y D 、 1-=x x练习:1、下列关于x 的方程是分式方程的是 ( )A.23356x x ++-=B.137x x a -=-+C.x a b x a b a b -=-D.2(1)11x x -=- 2、判断下列各式哪个是分式方程.(1)21-=x (2)22=-x x (3)1214112-=+--x x x (4)05432=---x x 3、在方程2,033,022,32,025==-=-+==+πxx x x x x x 是分式方程的有( ) A 、2个 B 、3个 C 、4个 D 、5个考点二:分式方程的解法1. 解分式方程的其本思想把分式方程转化为整式方程,即分式方程――→去分母转化整式方程. 2.解分式方程的一般方法和步骤 ①去分母,转化为整式方程; ②解整式方程,得根; ③验根。
分式方程的实际应用分式方程在实际生活中有很多应用。
下面我将举例说明几种常见的实际应用。
1.比例问题比例问题是分式方程的一个典型应用。
例如,在购物时,我们常常会遇到“打折”或“降价”的情况。
假设一家商店原价出售一件商品,现在将商品以折扣价出售,打折比例为x。
那么,我们可以得到以下分式方程:折扣价=原价*(1-x)通过解这个分式方程,我们可以计算出打折后的价格。
这个方程可以帮助我们在购物时做出更明智的决策。
2.涉及速度的问题分式方程也可用于涉及速度的问题。
例如,在旅行中,当我们知道辆车每小时行驶v英里时,我们可以计算出x小时后车辆所行驶的总英里数,这可以表示为以下分式方程:总英里数=v*x这个方程可以帮助我们计算出车辆在任意时间内的行驶距离,从而帮助我们规划旅行路线或者估算到达目的地所需时间。
3.混合液体问题分式方程还可用于混合液体问题。
例如,假设我们有两种浓度不同的溶液,其中一种浓度为x,另一种浓度为y,我们想要得到一定浓度的混合液体,我们可以通过以下分式方程求解:所需浓度*所需体积=x*体积1+y*体积2通过解这个方程,我们可以计算出需要的溶液体积,以及每种溶液的体积比例,从而准确地配制出我们所需要的混合液体。
4.长方形的长和宽问题分式方程还可以用于解决长方形的长和宽问题。
例如,假设我们知道一个长方形的面积为A,我们希望找到一个长方形,使得其一边长为x,另一边长为y,那么我们可以用以下分式方程来表示这个问题:A=x*y通过解这个方程,我们可以计算出长方形的长和宽,从而绘制出所需要的长方形。
综上所述,分式方程在实际生活中有许多应用。
从求解比例问题、涉及速度的问题到混合液体问题和长方形的长和宽问题,分式方程都能够提供一种有效的工具来解决这些实际问题。
了解分式方程的实际应用可以帮助我们更好地理解和应用这个数学概念,并将其运用到日常生活中的各种情境中。