第六章 季节模型
- 格式:ppt
- 大小:1.32 MB
- 文档页数:87
数据预处理季节模型-概述说明以及解释1.引言1.1 概述概述:数据预处理是数据分析过程中的一个关键步骤,它包括了数据清洗、数据转换、数据集成和数据规约等步骤。
数据预处理的目的是为了提高数据的质量和可用性,从而更好地支持后续的数据分析和建模工作。
在现实生活中,我们经常会遇到各种各样的数据质量问题,比如缺失值、异常值、错误数据等。
这些问题会对后续的数据分析和建模带来很大的影响,甚至可能导致结果的失真或者误导。
因此,在进行数据分析之前,我们需要对原始数据进行预处理,以解决这些数据质量问题。
另外,季节模型是一种常用的时间序列分析方法,它能够帮助我们了解数据中的季节性变化。
在很多实际应用中,数据的变化往往会呈现出一定的周期性,比如销售额、股票价格等,这些都会受到季节因素的影响。
通过季节模型,我们可以更好地理解和预测这种周期性变化,并且可以用于制定相应的策略和决策。
本文将重点介绍数据预处理和季节模型的原理和方法,并通过实例分析和应用说明,展示其在实际场景中的应用效果。
同时,我们还将讨论一些常见的问题和挑战,并提出可能的解决方案。
最后,我们会对数据预处理和季节模型的发展趋势进行展望,提出一些未来的研究方向和应用前景。
通过本文的阅读,读者将能够更好地理解和应用数据预处理和季节模型相关的知识,为自己的工作和研究提供有力的支持和指导。
1.2 文章结构文章结构部分的内容应该包含关于本篇长文的整体结构和组织安排的介绍。
具体来说,可以包括以下内容:文章结构部分的内容:本篇长文旨在介绍数据预处理和季节模型,并讨论它们在数据分析和预测中的应用。
为了清晰地传达观点和逻辑,本文将按照以下结构展开:第一部分:引言- 在这部分中,我们首先对整篇文章的内容进行概述,介绍数据预处理和季节模型的背景和意义。
- 接着,我们将详细阐述本文的结构和各个部分的内容,为读者提供一个全面的概览。
第二部分:正文- 在这部分中,我们将详细介绍数据预处理的概念、方法和技术。
《时间序列分析》课程教学大纲一、课程基本信息二、课程教学目标本课程的目的是使学生掌握时间序列分析的基本理论和方法,让学生借助计算机的存储功能和计算功能来抽象掉其深奥的数学理论和复杂的运算,通过建模练习来掌握时间序列分析的基本思路和方法。
第一,通过这门课程的学习,培养学生对分析方法的理解,使学生初步掌握分析随机数据序列的基本思路和方法。
第二,通过这门课程的学习,使得学生能够运用时间序列分析知识和理论去分析、解决实际问题。
第三,通过这门课程的学习,提高学生利用时间序列的基本思想来处理实际问题,为后续学习打下方法论基础。
三、教学学时分配《时间序列分析》课程理论教学学时分配表《时间序列分析》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章时间序列分析简介(学时4)(一)教学要求通过本章内容的学习,了解时间序列的定义,理解时间序列的常用分析方法,掌握随机过程、平稳随机过程、非平稳随机过程、自相关基本概念。
(二)教学重点与难点教学重点:时间序列的相关概念。
教学难点:随机过程、系统自相关性。
(三)教学内容第一节引言第二节时间序列的定义(拟采用慕课或翻转课堂)第三节时间序列分析方法1.描述性时序分析2.统计时序分析第四节时间序列分析软件第五节上机指导1.创建时间序列数据集2.时间序列数据集的处理本章习题要点:1、基本概念和特征;2、软件基本操作。
第二章时间序列的预处理(学时6)(拟采用慕课或翻转课堂)(一)教学要求通过本章内容的学习,了解平稳时间序列的定义,理解平稳性和随机性检验的原理,掌握平稳性和随机性检验的方法。
(二)教学重点与难点教学重点:平稳时间序列的定义及统计性质。
教学难点:时间序列的相关统计量。
(三)教学内容第一节平稳性检验1.特征统计量2.平稳时间序列的定义3.平稳时间序列的统计性质4.平稳时间序列的意义5.平稳性的检验第二节纯随机性检验1.纯随机序列的定义2.白噪声序列的性质3.纯随机性的检验第二节上机指导1.绘制时序图2.平稳性与纯随机性检验本章习题要点:1、绘制给定时间序列的相关图;2、计算给定时间序列的相关统计量;3、检验序列的平稳性及纯随机性。
实验一季节模型实验目的:掌握季节调整的方法。
实验内容:对时间序列进行季节调整。
知识准备:经济时间序列的变化受许多因素的影响,概括地讲,可以将影响时间序列变化的因素分为四种,即长期趋势(T,随着时间的变化,按照某种规律稳步地增长、下降或保持在某一水平上)、季节变动因素(S,在一个年度内依一定周期规则性变化)、周期变动因素(C,以若干年为周期的波动变化)和不规则变动因素(I,许多不可控的偶然因素共同作用的结果)。
传统时间序列分析应是设法消除不规则变动,指拟合确定性趋势,因而形成了长期趋势分析、季节变动分析和循环波动测定等一系列确定型时间序列分析方法。
季节变动是一种较为普遍的现象,其按照一定的周期循环进行,而且每个周期变化强度大体一致。
研究季节变动的目的在于了解季节变动的规律,并进行季节预测。
分析季节变动的方法有很多,其中常用的方法有两类:一是不考虑长期趋势的影响;二是考虑长期趋势的影响,运用时间序列模型分解的方法来计算季节指数。
谓季节调整,就是将某一统计指标的时间序列中的季节性因素和偶然性因素剔除,从而使经过季节调整的时间序列能够较为准确地反映出社会经济运行基本态势。
本章主要介绍X11方法、Census X12方法和移动平均比率法等季节调整方法。
一、X11方法X11的全称是“X11”变量的第二类调查统计方法季节调整方案,通常简称为X11方案。
其基本思想是利用一系列处理技术将不可比因素如季节、节假日、各月(季)的星期数量等分离,大大提高数据的可比性,以便于对系统作出正确的分析和客观的评价;同时,通过分离,获得关于系统动态结构和规律的大量信息。
X11季节调整方法包括乘法模型和加法模型。
乘法模型将时间序列分解为上述四个因素变动的乘积;加法模型则将序列分解为上述四个因素的和无约束样本回归模型。
乘法模型:t t t t t I S C T Y ***=(1)加法模型:t t t t t I S C T Y +++=(2)对于一个时间序列,采用哪种模型分析取决于各成分之间的关系。
2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。
这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。
这类序列称为季节性序列。
比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。
在经济领域中,季节性序列更是随处可见。
如季度时间序列、月度时间序列、周度时间序列等。
处理季节性时间序列只用以上介绍的方法是不够的。
描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。
较早文献也称其为乘积季节模型(multiplicative seasonal model)。
设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。
首先用季节差分的方法消除周期性变化。
季节差分算子定义为,s = 1- Ls若季节性时间序列用y t表示,则一次季节差分表示为s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。
在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。
P (L s) s D y t = Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。
当u t非平稳且存在ARMA成分时,则可以把u t描述为p (L)du t = q (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。
由上式得u t = p-1(L)-d q (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。
p(L) P(L s) (d s D y t) = q(L) Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。
案例五、季节ARIMA模型建模与预测实验指导一、实验目的学会识别时间序列的季节变动,能看出其季节波动趋势。
学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。
掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。
二、基本概念季节变动:客观社会经济现彖受季节影响,在一年内有规律的季节更替现彖,其周期为一年四个季度或12个月份。
季节ARIMA模型是指将受季节影响的非平稳时间序列通过消除季节影响转化为平稳时间序列,然后将平稳时间序列建立ARMA模型。
ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。
三、实验内容及要求1、实验内容:(1)根据时序图的形状,采用相应的方法把周期性的非平稳序列平稳化;(2)对经过平稳化后的桂林市1999年到2006的季度旅游总收入序列运用经典B-J方法论建立合适的ARDIA(pdq)模型,并能够利用此模型进行未来旅游总收入的短期预测。
2、实验要求:(1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测:(3)熟练掌握相关Eviews操作。
四、实验指导1、模型识别(1)数据录入打开Eviews软件,选择"File”菜单中的"New--Workfile"选项,在"Workfilestructuretype”栏选择"Dated-regularfrequency”,在"Datespecification”栏中分别选择"Quarterly%季度数据),分别在起始年输入1999,终止年输入2006,点击ok,见图5-1,这样就建立了一个季度数据的工作文件。