平摆线
- 格式:ppt
- 大小:561.50 KB
- 文档页数:28
参数方程与摆线物理学中的物体运动方程,在数学上就是参数方程。
参数方程对于解决实际问题具有重要意义。
本专题将介绍参数方程的基本概念,给出参数方程的一个重要实例——摆线。
摆线是一类十分重要的曲线,可以分为平摆线、圆摆线、渐开线三大类。
我们常见的大部分曲线都可以看成是摆线的特例,如星形线、心脏线、阿基米德螺线、玫瑰线等等。
摆线也是很有用的一类曲线,如最速降线就是平摆线;工厂中常用的齿轮通常是渐开线或圆摆线;公共汽车的两折门利用了星形线的原理。
再如像收割机、翻土机等许多农业机械和工厂中的车床等,大都采用的是摆线原理。
而且,摆线在天文中也有重要应用,行星相对地球的轨迹、月亮相对太阳的轨迹都可以看作是摆线。
本专题主要内容是参数方程与摆线,摆线可以利用向量方法通过参数方程表示出。
因此本专题可以看成是“解析几何初步”“平面向量”“三角函数”等内容的综合应用和进一步深化。
本专题首先介绍了曲线的一般表示方法,阐述了坐标系的类型和曲线方程的表现形式。
这些内容是“解析几何初步”等内容的补充和完善,也是摆线内容的必备基础。
通过对本专题的学习,学生将掌握参数方程的基本概念,了解曲线的表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力。
通过对天体轨道方程的学习和对摆线应用的了解,学生将体会到数学在实际中的应用价值,提高应用意识和实践能力。
通过对摆线的探索,学生将树立辨证统一的观点,提高数学抽象能力,发展创新精神。
内容与要求1. 参数方程(1)坐标与曲线方程(2)曲线的一般方程——隐式方程;——参数方程;——参数化与隐式化简介。
(3)特殊的参数方程(4)参数方程的参数变换①回顾直角坐标系的概念, 回顾(显式)曲线方程实例,比如抛物线y=x2等。
②给出曲线的显式、隐式和参数方程的定义,说明显式方程是隐式方程的特例,并通过实例(如圆等),指出隐式方程和参数方程才是曲线的一般方程,介绍隐式方程和参数方程各自的优缺点,说明参数化与隐式化的作用。
《2.4.1 摆线的参数方程》教学案3教学目标1.了解平摆线和渐开线的生成过程,并能推导出它们的参数方程. 2.了解平摆线和渐开线在实际中的作用.教学过程知识梳理 一、平摆线 1.平摆线(旋轮线)一个圆在平面上沿着一条直线无滑动地滚动时,我们把圆周上一定点的运动轨迹叫作______(或旋轮线),如图.2.平摆线(旋轮线)的参数方程半径为r 的圆的平摆线的参数方程为⎩⎪⎨⎪⎧x = ,y = (-∞<α<+∞).3.平摆线的性质当圆滚动半周时,过定点M 的半径转过的角度是π,点M 到达最高点____,再滚动半周,点M 到达______,这时圆周和x 轴又相切于点M ,得到平摆线的一拱.圆滚动一周时,平摆线出现一个周期.平摆线上点的纵坐标最大值是____,最小值是____,即平摆线的拱高为____.【做一做1】已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).那么圆的平摆线方程中与参数φ=π2对应的点A 与点B ⎝⎛⎭⎫32π,2之间的距离为( ). A .π2-1 B . 2 C .10 D .32π-11.圆的平摆线的参数方程中的参数的几何意义剖析:根据圆的平摆线的定义和建立参数方程的过程,可以知道其中的字母r 是指圆的半径,参数α是过圆周上点M 的半径与过圆与x 轴切点的半径的夹角.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.答案: 一、1.平摆线2.r (α-sin α) r (1-cos α) 3.(πr,2r ) (2πr,0) 2r 0 2r【做一做1】C 根据圆的参数方程可知,圆的半径为3,那么它的平摆线的参数方程为⎩⎪⎨⎪⎧x =3 φ-sin φ ,y =3 1-cos φ (φ为参数),把φ=π2代入参数方程中可得⎩⎪⎨⎪⎧x =3⎝⎛⎭⎫π2-1,y =3即A ⎝⎛⎭⎫3⎝⎛⎭⎫π2-1,3.∴|AB |=⎣⎡⎦⎤3⎝⎛⎭⎫π2-1-32π2+ 3-2 2=10.二、1.相切 渐开线 基圆2.r (cos φ+φsin φ) r (sin φ-φcos φ)【做一做2-1】⎩⎪⎨⎪⎧x =4 cos φ+φsin φ ,y =4 sin φ-φcos φ (φ为参数) r =4,∴⎩⎪⎨⎪⎧x =4 cos φ+φsin φ ,y =4 sin φ-φcos φ (φ为参数). 【做一做2-2】5π2-4π+82 当φ=π2时,⎩⎪⎨⎪⎧x =cos π2+π2sin π2=π2,y =sin π2-π2cos π2=1,∴A ⎝⎛⎭⎫π2,1.当φ=π时,⎩⎪⎨⎪⎧x =cos π+πsin π=-1,y =sin π-πcos π=π,∴B (-1,π).∴|AB |=⎝⎛⎭⎫π2+12+ 1-π 2=54π2-π+2=5π2-4π+82.题型一 求平摆线的参数方程【例1】已知一个圆的平摆线过一定点(2,0),请写出该圆的半径最大时该平摆线的参数方程.分析:根据圆的平摆线的参数方程⎩⎪⎨⎪⎧x =r φ-sin φ ,y =r 1-cos φ (φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的平摆线的参数方程即可.反思:要熟知平摆线的参数方程及每个字母的含义. 题型二 求渐开线的参数方程【例2】求半径为10的基圆的渐开线的参数方程. 分析:代入参数方程公式即可.反思:求渐开线的参数方程,只需知道半径即可. 题型三 平摆线、渐开线的参数方程的应用【例3】求平摆线⎩⎪⎨⎪⎧x =t -sin t ,y =1-cos t (0≤t <2π)与直线y =1的交点的直角坐标.分析:利用参数方程求出t 的三角函数值,从而求出点的坐标. 反思:解此类题,应明确相应参数的意义. 答案:【例1】解:令y =0,可得r (1-cos φ)=0,由于r >0, 即得cos φ=1,所以φ=2k π(k ∈Z ). 代入x =r (φ-sin φ),得x =r (2k π-sin 2k π). 又因为x =2,所以r (2k π-sin 2k π)=2, 即得r =1k π(k ∈N +).易知,当k =1时,r 取最大值为1π.代入即可得圆的平摆线的参数方程为⎩⎪⎨⎪⎧x =1πφ-sin φ ,y =1π 1-cos φ(φ为参数).【例2】解:∵r =10,∴参数方程为⎩⎪⎨⎪⎧x =10 cos φ+φsin φ ,y =10 sin φ-φcos φ (φ为参数).【例3】解:由题意知,y =1-cos t =1,∴cos t =0, ∴sin t =1.∴t =2k π+π2(k ∈Z ), 又∵0≤t <2π,∴t =π2.∴x =π2-1.∴交点的直角坐标为⎝⎛⎭⎫π2-1,1.1半径为2的圆的渐开线方程是( ). A .=2cos sin =2sin cos x y ϕϕϕϕϕϕ+⎧⎨-⎩(),()(φ为参数)B .=2cos ,=2sin x y ϕϕ⎧⎨⎩(φ为参数)C .=2sin ,=2cos x y ϕϕϕϕ⎧⎨-⎩(φ为参数)D .()()2sin cos ,2cos sin x y ϕϕϕϕϕϕ=-⎧⎪⎨=+⎪⎩(φ为参数)2半径为4的圆的平摆线参数方程为( ).A .⎩⎪⎨⎪⎧x =4cos φ,y =4sin φ(φ为参数)B .⎩⎪⎨⎪⎧x =-4cos φ,y =-4sin φ(φ为参数)C .⎩⎪⎨⎪⎧x =4 φ-sin φ ,y =4 1-cos φ (φ为参数)D .⎩⎪⎨⎪⎧x =4 1-sin φ ,y =4 φ-cos φ(φ为参数)3面积为36π的圆的平摆线参数方程为__________. 4已知圆C 的参数方程是=16cos ,=26sin x y αα+⎧⎨-+⎩(α为参数),直线l 对应的普通方程是x -y-62=0.(1)如果把圆心平移到原点O ,请判断平移后圆和直线的位置关系?(2)写出平移后圆的平摆线方程. (3)求平摆线和x 轴的交点. 答案: 1.A2.C 把r =4代入平摆线参数方程即可.3.⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数) S =36π,∴r =6. ∴平摆线参数方程为⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数).4.解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆相切.(2)由于圆的半径是6,所以平摆线的参数方程是⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数).(3)令y =0,得6-6cos φ=0⇒cos φ=1,所以φ=2k π(k ∈Z ).则x =12k π(k ∈Z ),即圆的平摆线和x 轴的交点为(12k π,0)(k ∈Z ).。