平摆线与圆的渐开线
- 格式:ppt
- 大小:8.86 MB
- 文档页数:23
4.4.4 平摆线与圆的渐开线1.平摆线(1)半径为r 的圆所产生的摆线的参数方程:⎩⎪⎨⎪⎧x =r (θ-sin θ),y =r (1-cos θ)(θ为参数).由上述参数方程所确定的曲线称为平摆线(或称旋轮线). (2)平摆线的几何特性:①由无数个呈周期性排列的拱组成; ②每个拱的高为2r ;③拱的底为2πr ,即在x 轴上每隔2πr 拱将重复一次.2.圆的渐开线(1)半径为r 的圆的渐开线的参数方程⎩⎪⎨⎪⎧x =r (cos θ+θsin θ),y =r (sin θ-θcos θ)(θ为参数).(2)渐开线的产生过程把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切而逐渐展开,那么铅笔画出的曲线就是圆的渐开线,相应的定圆叫做基圆.[例1] 已知一个圆的平摆线过一定点(2,0),请写出该圆的半径最大时刻平摆线的参数方程.[思路点拨] 将点(2,0)代入平摆线的参数方程中求出r 的表达式,根据表达式求出r 的最大值,再确定对应的平摆线的参数方程.[精解详析] 令y =0,可得r (1-cos φ)=0,由于r >0,即得cos φ=1,所以φ=2k π(k ∈Z ).[对应学生用书P26][对应学生用书P27]代入x =r (φ-sin φ),得x =r (2k π-sin 2k π). 又因为x =2,所以r (2k π-sin 2k π)=2,即得 r =1k π(k ∈Z ). 又r >0,所以r =1k π(k ∈N *).易知,当k =1时,r 取最大值为1π.代入即可得圆的平摆线的参数方程为⎩⎨⎧x =1π(φ-sin φ),y =1π(1-cos φ)(φ为参数).由圆的平摆线的参数方程的形式可知,只要确定了平摆线生成圆的半径,就能确定平摆线的参数方程.要确定圆的半径,通常的做法有:①根据圆的性质或参数方程(普通方程)确定其半径;②利用待定系数法,将平摆线上的已知点代入参数方程,从而确定半径.1.已知圆C :⎩⎪⎨⎪⎧x =1+6cos α,y =-2+6sin α(α为参数)和直线l :x -y -62=0.(1)如果把圆心平移到原点O ,请问平移后圆和直线满足什么关系? (2)写出平移后圆的平摆线方程; (3)求平摆线和x 轴的交点.解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆相切.(2)由于圆的半径是6,所以可得平摆线方程是⎩⎪⎨⎪⎧x =6φ-6sin φ,y =6-6cos φ(φ为参数). (3)令y =0,得6-6cos φ=0⇒cos φ=1. 所以φ=2k π(k ∈Z ).代入x =6φ-6sin φ,得x =12k π(k ∈Z ), 即圆的平摆线和x 轴的交点为(12k π,0)(k ∈Z ).2.已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数),那么圆的平摆线方程中,求参数φ=π2对应的点A 与点B ⎝⎛⎭⎫3π2,2之间的距离. 解:根据圆的参数方程,可知圆的半径为3,那么它的平摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数). 把φ=π2代入参数方程中可得⎩⎪⎨⎪⎧x =3⎝⎛⎭⎫π2-1,y =3,即A ⎝⎛⎭⎫3π2-3,3, ∴AB = ⎝⎛⎭⎫3π2-3-3π22+(3-2)2=10.[例2] 当θ=π4,π2时,求圆的渐开线⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ上的对应点A ,B ,并求出A ,B 的距离.[思路点拨] 把θ=π4,π2分别代入参数方程即可求出相应两点的坐标,从而求出两点间的距离.[精解详析] 把θ=π4,π2分别代入参数方程得⎩⎨⎧x =22⎝⎛⎭⎫1+π4,y =22⎝⎛⎭⎫1-π4,和⎩⎪⎨⎪⎧x =π2,y =1,即A ,B 两点的坐标分别为⎝⎛⎭⎫22⎝⎛⎭⎫1+π4,22⎝⎛⎭⎫1-π4,⎝⎛⎭⎫π2,1,∴AB =⎣⎡⎦⎤22⎝⎛⎭⎫1+π4-π22+⎣⎡⎦⎤22⎝⎛⎭⎫1-π4-12 =14(5-22)π2-42π+32-16 2.圆的渐开线的参数方程中,字母r 表示基圆的半径,字母θ是指绳子外端运动时绳子上的定点M 相对于圆心的张角;另外,渐开线的参数方程不宜化为普通方程.3.渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变),求得到的曲线的焦点坐标.解:根据圆的渐开线方程可知基圆的半径r =6,方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为⎝⎛⎭⎫12x 2+y 2=36,整理可得x 2144+y 236=1.它表示焦点在x 轴上的椭圆,其中c =a 2-b 2=144-36=63, 故焦点坐标为(63,0)和(-63,0).4.有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm ,求齿廓线所在的渐开线的参数方程.解:因为基圆的直径为22 mm ,所以基圆的半径为11 mm ,因此齿廓线所在的渐开线的参数方程为⎩⎪⎨⎪⎧x =11(cos φ+φsin φ),y =11(sin φ-φcos φ)(φ为参数).1.给出直径为6的圆,写出此圆的渐开线的参数方程.解:以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系.因为的直径为6,所以半径为3,所以圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数).2.求平摆线⎩⎪⎨⎪⎧x =2(t -sin t ),y =2(1-cos t )(0≤t ≤2π)与直线y =2的交点的直角坐标.解:当y =2时,有2(1-cos t )=2, ∴t =π2或t =3π2.当t =π2时,x =π-2;[对应学生用书P28]当t =3π2时,x =3π+2.∴平摆线与直线y =2的交点为 (π-2,2),(3π+2,2).3.已知一个圆的平摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积.解:由平摆线方程⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数)知圆的半径为4,故圆的面积为16π.4.已知圆的半径为1,其渐开线的标准参数方程对应的曲线上两点A ,B 的参数值分别为π3和π2,求A 与B 两点的距离. 解:圆的渐开线参数方程为⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数).当θ=π3时,得x =3+3π6,y =33-π6;当θ=π2时,得x =π2,y =1,所以A ⎝⎛⎭⎪⎫3+3π6,33-π6,B ⎝⎛⎭⎫π2,1,故AB =⎝ ⎛⎭⎪⎫3+3π6-π22+⎝ ⎛⎭⎪⎫33-π6-12 =16(13-63)π2-6π-363+72.5.已知平摆线的参数方程为⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数),求平摆线一个拱的宽度与高度.解:法一:由平摆线参数方程可知,产生平摆线的圆的半径r =2,又由平摆线的产生过程可知,平摆线一个拱的宽度等于圆的周长为2πr =4π,平摆线的拱高等于圆的直径为4.法二:由于平摆线的一个拱的宽度等于平摆线与x 轴两个相邻交点的距离,令y =0,即1-cos φ=0,解得φ=2k π(k ∈Z ),不妨分别取k =0,1,得φ1=0,φ2=2π,代入参数方程,得x 1=0,x 2=4π,所以平摆线与x 轴两个相邻交点的距离为4π,即平摆线一个拱的宽度等于4π; 又因为平摆线在每一拱的中点处达到最高点,不妨取(x 1,0),(x 2,0)的中点,此时φ=φ1+φ22=π,所以平摆线一个拱的高度为|y |=2(1-cos π)=4.6.已知一个参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α,如果把t 当成参数,它表示的图形是直线l (设斜率存在),如果把α当成参数(t >0),它表示半径为t 的圆.(1)请写出直线和圆的普通方程;(2)如果把圆心平移到(0,t ),求出圆对应的平摆线的参数方程.解:(1)如果把t 看成参数,可得直线的普通方程为:y -2=tan α(x -2),即y =x tan α-2tan α+2,如果把α看成参数且t >0时,它表示半径为t 的圆,其普通方程为(x -2)2+(y -2)2=t 2. (2)由于圆的圆心在(0,t ),圆的半径为t ,所以对应的平摆线的参数方程为⎩⎪⎨⎪⎧x =t (φ-sin φ),y =t (1-cos φ)(φ为参数). 7.有一个直径是2a 的轮子沿着直线轨道滚动,在轮辐上有一点M ,与轮子中心的距离是a ,求点M 与轮子中点连线的中点P 的轨迹方程.解:以M 落在轨道上的某一位置为原点,轨道所在直线为x 轴,建立直角坐标系, 则x M =a (φ-sin φ),y M =a (1-cos φ). 设轮子中心为C ,则x c =aφ,y c =a . 而P 是CM 中点,则P 的轨迹方程是⎩⎨⎧x P =12a (2φ-sin φ),y P=12a (2-cos φ).(φ为参数)8.如图,若点Q 在半径AP 上(或在半径AP 的延长线上),当车轮滚动时,点Q 的轨迹称为变幅平平摆线,取AQ =r 2或AQ =3r2,请推出Q 的轨迹的参数方程.解:设Q (x ,y )、P (x 0,y 0),若A (rθ,r ),则⎩⎪⎨⎪⎧x 0=r (θ-sin θ),y 0=r (1-cos θ).当AQ =r2时,有⎩⎪⎨⎪⎧x 0=2x -rθ,y 0=2y -r , 代入⎩⎪⎨⎪⎧x 0=r (θ-sin θ),y 0=r (1-cos θ).∴点Q 的轨迹的参数方程为⎩⎨⎧x =r (θ-12sin θ),y =r (1-12cos θ)(θ为参数).当AQ =3r2时,有⎩⎨⎧x 0=rθ+2x 3,y 0=r +2y3,代入⎩⎪⎨⎪⎧x 0=r (θ-sin θ),y 0=r (1-cos θ).∴点Q 的轨迹方程为⎩⎨⎧x =r ⎝⎛⎭⎫θ-32sin θ,y =r ⎝⎛⎭⎫1-32cos θ(θ为参数).对应学生用书P29]考情分析从考试内容上来看,极坐标与直角坐标、参数方程与普通方程的互化是考查的重点,着重考查直线与圆的极坐标方程或参数方程的应用,难度中等.真题体验1.(江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=02.(重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则AB =________.解析:ρcos θ=4化为直角坐标方程为x =4①⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3② ①②联立得A (4,8),B (4,-8),故AB =16. 答案:163.(广东高考)已知曲线C 的参数方程为⎩⎨⎧x = 2 cos t ,y =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为______________.解析:曲线C 是圆x 2+y 2=2,点(1,1)处的切线l 为x +y =2,其极坐标方程为ρcos θ+ρsin θ=2,化简得ρsin ⎝⎛⎭⎫θ+π4= 2. 答案:ρsin ⎝⎛⎭⎫θ+π4= 2 4.(湖南高考)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.解析:曲线C 1的直角坐标方程为2x +y =1,曲线C 2的直角坐标方程为x 2+y 2=a 2,C 1与x 轴的交点坐标为(22,0),此点也在曲线C 2上,代入解得a =22. 答案:225.(湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a>b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎫θ+π4=22m (m 为非零数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为______________________.解析:椭圆的方程x 2a 2+y 2b 2=1,设焦点坐标为(±c,0).由ρsin ⎝⎛⎭⎫θ+π4=22m ,可得ρsin θ+ρcos θ=m , 即直线l 的普通方程为x +y -m =0,经过焦点(±c,0),m =±c ,圆O 的方程为x 2+y 2=b 2,直线与圆相切,|m |2=b ,m 2=2b 2,c 2=2a 2-2c 2,c 2a 2=23,e =63.答案:636.(上海高考)如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.解析:在直线l 上任取点P (ρ,θ),在△OPM 中, 由正弦定理得OM sin ∠OPM =OPsin ∠OMP ,即2sin ⎝⎛⎭⎫π6-θ=ρsin 5π6, 化简得ρ=1sin ⎝⎛⎭⎫π6-θ,故f (θ)=1sin ⎝⎛⎭⎫π6-θ.答案:1sin ⎝⎛⎭⎫π6-θ 7.(辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.5.(湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a>b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝⎛⎭⎫θ+π4=22m (m 为非零数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________________.解析:椭圆的方程x 2a 2+y 2b 2=1,设焦点坐标为(±c,0).由ρsin ⎝⎛⎭⎫θ+π4=22m ,可得ρsin θ+ρcos θ=m , 即直线l 的普通方程为x +y -m =0,经过焦点(±c,0),m =±c ,圆O 的方程为x 2+y 2=b 2,直线与圆相切,|m |2=b ,m 2=2b 2,c 2=2a 2-2c 2,c 2a 2=23,e =63.答案:638.(福建高考)在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆心为(1,0),半径r =1, 以为圆心到直线的距离d =22<1, 所以直线与圆C 相交.对应学生用书P30]简单曲线的极坐标方程及应用1.线与圆的位置关系问题.2.极坐标与直角坐标的互化公式:ρ=x 2+y 2,tan θ=yx ,常用方法有代入法、平方法等,还会用到同乘以(或除以)ρ等技巧.[例1] (新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ .(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).[解] (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧ x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.[例2] (江苏高考)在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin(θ-π3)=-32与极轴的交点,求圆C 的极坐标方程. [解] 在ρsin(θ-π3)=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P (2,π4),所以圆C 的半径 PC = (2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.是代入法和三角公式法.但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意x ,y 的取值范围在消参前后应该是一致的.对于曲线的普通方程转化为参数方程,一定要看清以谁为参数,然后利用普通方程中x ,y 的关系求得参数方程.同样,转化前后要注意参数的范围.[例3] 求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)以过点A (0,4)的直线的斜率k 为参数. [解] (1)把y =4sin θ代入方程,得到 4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ, ∴x =±2cos θ.由于参数θ的任意性,可取x =2cos θ,因此4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数).(2)设M (x ,y )是方程4x 2+y 2=16上异于A 的任意一点,则y -4x =k (x ≠0),将y =kx +4代入方程,得x [(4+k 2)x +8k ]=0.∴⎩⎪⎨⎪⎧x =-8k 4+k 2,y =-4k 2+164+k2(k ≠0),∵曲线上还有一点A (0,4),∴所求的参数方程为⎩⎪⎨⎪⎧x =-8k4+k 2,y =-4k 2+164+k2(k ≠0)和⎩⎪⎨⎪⎧x =0,y =4.即⎩⎪⎨⎪⎧x =-8k4+k 2,y =-4k 2+164+k2(k 为参数).[例4] 分别在下列两种情况下,把曲线的参数方程⎩⎨⎧x =12(e t +e -t )cos θ,y =12(e t-e-t)sin θ,化为普通方程,并指出方程表示什么曲线.(1)θ为参数,t 为非零常数; (2)t 为参数,θ(θ≠k π2,k ∈Z )为常数.[解] (1)∵t ≠0时,∴cos θ=x12(e t +e -t ),sin θ=y12(e t -e -t ),消去θ得x 214(e t +e -t )2+y 214(e t -e -t )2=1.∵(e t +e -t )2>(e t -e -t )2.∴方程表示的曲线是焦点在x 轴上的椭圆.(2)∵θ≠k π2(k ∈Z ),∴⎩⎨⎧e t +e -t=2x cos θ,e t-e-t =2y sin θ,平方后相减得4=4x 2cos 2θ-4y 2sin 2θ,即x 2cos 2θ-y 2sin 2θ=1. 方程表示的曲线是焦点在x 轴上的双曲线.过定点(x 0,y 0),倾斜角为θ的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos θ,y =y 0+t sin θ(t 为参数),其中|t |表示直线上任意一点到定点的距离,其应用十分广泛,解决问题要注意判断直线的参数式是否符合标准形式,否则t 无几何意义.[例5] (湖南高考改编)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t ,(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,(θ为参数,a >0)有一个公共点在x 轴上,求a 的值.[解] 曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x 轴的交点坐标为⎝⎛⎭⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32⎝⎛⎭⎫舍去-32. [例6] (江苏高考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.[解] 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),由x =t +1,得t =x -1,代入y=2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x ,解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.位置关系,这是综合应用考查的重点.解决此类问题时要注意数形结合思想的运用.[例7] (辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1 (t ∈R 为参数).求a ,b 的值.[解] (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4. 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab2+1.所以⎩⎨⎧b2=1,-ab2+1=2.解得a =-1,b =2.[例8] (新课标全国卷)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 1上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. [解] (1)由已知可得 A ⎝⎛⎭⎫2cos π3,2sin π3, B ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π2,2sin ⎝⎛⎭⎫π3+π2,C ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+π,2sin ⎝⎛⎭⎫π3+π,D ⎝⎛⎭⎫2cos ⎝⎛⎭⎫π3+3π2,2sin ⎝⎛⎭⎫π3+3π2, 即A (1,3),B (-3,1), C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则 S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。