保守力
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
保守力的性质假设作用力F为保守力,则它满足以下三个等价的充分必要条件:1、F的旋度是零:∇×F=02、对于任意简单闭合路径C,所做的机械功W是零:W=F∙d rc=03、作用力F是某位势Φ的梯度:F=−∇Φ数学证明1⇒2:设定C为任意简单闭合路径。
思考边界为C的任意曲面S。
斯托克斯定理阐明∇×F S ∙d a=F∙d rc假设F的旋度等于零,方程左边为零,则机械功W是零。
所以,第二个条件是正确的。
2⇒3:假设,对于任意简单闭合路径C,所做的机械功W是零,则保守力所做于粒子的机械功,独立于路径的选择。
设定函数Φx=−F∙d rxo其中,o和x分别是特定的原点和空间内任意一点。
根据微积分基本定理,F x=−∇Φx所以,第三个条件是正确的。
3⇒1:假设第三个条件是正确的。
思考下述方程:∇×F=−∇×∇Φ=−ð2Φðyðz−ð2Φðzðyx−ð2Φðzðx−ð2Φðxðzy−ð2Φðxðy−ð2Φðyðxz=0所以,第一个条件是正确的。
总结,这三个条件是等价的。
由于符合第二个条件就等于通过保守力的闭合路径考试。
所以,只要满足上述三个条件的任何一条件,施加于粒子的作用力就是保守力。
浅议物理学中的保守力和势能【摘要】保守力和势能在物理学中扮演着重要的角色。
保守力是指不依赖路径的力,其所做的功与路径无关。
势能则是对保守力的一种描述,是可用于确定力学系统状态的函数。
保守力和势能之间存在着密切的关系,一般通过势能函数来确定。
根据保守力和势能的关系,我们可以推导出机械能守恒定律,即在只受保守力的情况下,力学系统的机械能保持不变。
保守力和非保守力的区别在于是否可以用势能来描述。
保守力和势能的重要性体现在它们对力学系统的描述和分析中起到了关键作用,而在物理学中也有着广泛的应用。
为了更深入地理解和探索保守力和势能,未来的研究方向可能会集中在更复杂系统下的运用和拓展。
【关键词】保守力、势能、物理学、性质、关系、确定、守恒定律、区别、重要性、应用、未来研究方向。
1. 引言1.1 保守力的基本概念保守力是物理学中一个非常重要的概念,它在描述物体运动和相互作用过程中起着至关重要的作用。
保守力是一种在物体运动中所做的功与路径无关的力,即对于沿着任意闭合路径作功的保守力,总是零。
这意味着保守力对物体的位移所做的功只依赖于起点和终点,而与具体路径无关。
保守力的基本概念包括以下几个要点:1. 保守力与势能的关系:保守力可以用势能来描述和计算。
势能是对物体在某个力场中位置所储存的能量,而保守力则是通过势能的梯度来定义和推导的。
具体来说,对于一个保守力F,其对应的势能函数为U,满足F = -∇U。
这里的负号表示力是势能的负梯度方向,即力的方向指向势能减小的方向。
2. 势能的引入:为了便于描述和计算保守力对物体的作用,我们引入了势能这一概念。
势能可以是位置的函数,也可以是速度和其他物理量的函数。
通过引入势能,我们可以将关于保守力的问题转化为寻找势能函数和利用势能函数进行计算的问题。
保守力的基本概念包括了与势能的关系和势能的引入。
这些概念在物理学中有着广泛的应用和重要性,对于解决各种运动和相互作用问题都起着至关重要的作用。
二保守力势能元功:h mg S cos G A ∆=∆= d αbamgh mghh mg h mg A −=∆=∆=∑∑Δh)()d (d b a h h b ah h mg zmg r G A kmg G ba−=−=⋅=−=∫∫或: 重力的功:在重力场中物体沿任一闭合路径运动一周时,重力作功为零。
)(a b mgh mgh −−=功只与物体的始末位置(x a ,x b )有关。
弹性力的功:F=-a ba)(变力kx F −=222121ba x x x x kx kx xkx x F A baba−=−==∫∫d d )( 222121a b kx kx −−=质点由a →bbM 万有引力的功:在M 的引力场中:rF r F A d cos d d α=⋅=)11(d 020ba r r ba r r Mm G dr r MmG A A ba−−=−==∫∫r rMmG d 20−=将质点由a →b ,引力作功为:)[(b r Mm G 10−−=)](ar Mm G 10−−小结:1.地球附近重力的功2.弹簧弹性力的功3.平方反比力的功这些力作功的特点:其功的大小只与物体的始末位置有关,而与所经历的路程无关。
这种力称为保守力。
做功的大小只与物体与所经历的路程有关的力称为非保守力。
一对保守力作功保守力的特点:∫⋅=bl a r F A )(d 1∫⋅=bl a rF )(d 2 ∫⋅=Lr F A d 2.绕任一闭合路经,保守力做功的结果为零。
即保守力属于系统内相互作用的物体间的一对力。
2l ∫⋅=b l a r F )(d 1 ∫⋅+a l b rF )(d 2 0=∫⋅−b l a rF )(d 2∫⋅=bl a r F )(d 1 1.保守力做功的大小只与物体的始末大学物理学。
保守力及其性质曹瑞廷随着“应试教育”向素质教育模式的转轨,高考也由知识立意向能力立意转化,中学物理教学的要求已经变得越来越高了。
中学物理的教学过程中,让学生掌握获取知识的方法、拓宽思维的深度和广度,是教学中的一个重要任务。
特别是高三复习中,教师应对每个知识点的来龙去脉,对每个知识点的发生、发展过程,预以足够的重视,做到以新型的行为交往模式,使学生摆脱机械的知识接受器的学习模式,开启思维的通道,把前后知识联系起来,找到某些知识点的共同点,达到复习、巩固、提高能力的目的。
在中学物理中,力可以按效果或性质来分类,在高三复习中,我们可以引导学生研究重力、电场力、万有引力、分子力、弹簧的弹力、核力等,从中可以发现这些力有一个共同的特点,即力所做的功仅仅依赖于受力质点的始末位置,与质点经过的路径无关。
我们把具有这种性质的力称为保守力。
而像摩擦力等则不具有上述特点,称为非保守力。
一、保守力做功与路径无关,只跟起点和终点的位置有关的证明1、重力的功h1的A点自由下落到高度为h2的B点,再水平移到C点。
物体在水平移动过程中,重力对物体并不做功,所以在整个过程中,重力对物体所做的功,就等于物体由A点自由下落到B点的过程中重力所做的功。
W G=mgh1-mgh2如果让这个物体沿着斜面AC滑下,从原来高度为h1的A点滑到高度为h2的C点,物体沿斜面滑下的距离是S,重力所做的功是:W G=mgsinθS=mg△h=mgh1-mgh2我们看到,物体由起点A到终点C,不论沿折线ABC,还是沿着斜面AC,重力所做的功仍然是:W G=mgh1-mgh2这就是说,重力对物体所做的功只跟起点和终点的位置有关,而跟物体运动的路径无关。
2、静电场力的功B、C三点,其中A的电势为U A,B、C两点的电势分别为U B、U C且U B=U C。
设将电量为q的正电荷从A点移到B点,再移到C点,在整个过程中电场力做功为:W=W AB+W BC=qEd+0=q(U A-U B)=qU A-qU B=qU A-qU C如果让这个电荷沿斜线AC移动,电场力做功为W=qEScosθ=qEd=qU A-qU C可以证明,不论电荷q是正是负,不论沿斜线AC移动,还是沿着折线ABC移动,电场力做的功总是相等的。
保守力旋度为零证明
本文将探讨保守力旋度为零的证明。
首先,我们需要了解什么是保守力和旋度。
保守力是指在一个力场中,沿着任意封闭路径进行的功为0,例如重力场和电场。
旋度则是描述一个向量场在某一点处的旋转程度,也可以理解为该点处的环量密度。
证明保守力旋度为零的方法有多种,其中一种常见的方法是应用斯托克斯定理。
斯托克斯定理指出,对于一个向量场,它的环量等于该场在环的边界上的通量。
具体而言,对于一个区域Ω内的向量场F,有:
∮_CF·ds=_S(×F)·dS
其中C是Ω的边界曲线,S是C所围成的面积,×F为F的旋度。
如果F是保守力,那么×F=0,因为对于保守力,它的环量在任意封闭路径上都为0。
因此,根据斯托克斯定理,保守力的旋度为0。
另外一种证明方法是应用势函数。
如果一个向量场F是保守力,那么它可以表示为F=φ,其中φ是一个标量函数,称为势函数。
这个函数的梯度即为该向量场。
因此,F的旋度可以用势函数表示为: ×F=×(φ)=0
因此,保守力的旋度为零。
综上所述,保守力的旋度为零的证明可以通过斯托克斯定理或势函数来进行。
这个定理在物理学和数学中都有广泛的应用,例如在电磁学和流体力学中。
- 1 -。
保守⼒与⾮保守⼒⼀、万有引⼒、重⼒、弹性⼒作功的特点1 万有引⼒作功如上图所⽰,有两个质量为m m ' 和的质点,其中质点m ' 固定不动。
取m ' 的位置为坐标原点,A 、B 两点对m ' 的距离分别为m r r B A , 和经任⼀路径由点A 运动到点B ,万有引⼒作的功为)11(A B r r m m G W -'= (3-10)上式表明,当质点的质量m m ' 和均给定时,万有引⼒作的功只取决于质点m 的起始和终了的位置,⽽与所经过的路径⽆关。
这是万有引⼒作功的⼀个重要特点。
扩充内容:计算万有引⼒作的功设在某⼀时刻质点m 距质点m '的距离为r ,其位⽮为r ,这时质点m 受到质点m '的万有引⼒为r 2e F r m m G '-=r e 为沿位⽮r 的单位⽮量,当m 沿路径移动位移元r d 时,万有引⼒作的功为r e r F d d d r 2?'-=?=r m m G W从图可以看出r d cos d cos d d r r ===?θθr r e r e于是,上式为r r m m G W d d 2'-=所以,质点m 从点A 沿任⼀路径到达点B 的过程中,万有引⼒作的功为'-==B A r r B A r r m m G W W 2d 1d即2 重⼒作功如右图所⽰,⼀个质量为m 的质点,在重⼒作⽤下从点A 沿ACB 路径⾄点B ,点A 和点B 距地⾯的⾼度分别为21 y y 和,计算重⼒作功为()12mgy mgy W --= (3-11)上式表明,重⼒作功只与质点的起始和终了位置有关,⽽与所经过的路径⽆关,这是重⼒作功的⼀个重要特点。
扩充内容:计算重⼒作的功因为质点运动的路径为⼀曲线,所以重⼒和质点运动⽅向之间的夹⾓是不断变化的。
我们把路径ACB 分成许多位移元,在位移元r d 中,重⼒P 所作的功为r P d d ?=W若质点在平⾯内运动,按图所选坐标,并取地⾯上某⼀点为坐标原点O ,有j i r y x d d d +=且j P mg -=。
如何证明静电场力是保守力静电场力是一种保守力,这意味着无论沿着任何闭合路径进行线积分,其结果都会等于零。
这个性质可以用来解释静电场中的一些重要现象。
我们需要了解什么是保守力。
在物理学中,保守力是指该力所做的功只取决于起点和终点,而与路径无关。
换句话说,如果我们在同一起点和终点之间沿不同路径移动,所做的功是一样的。
这与非保守力不同,非保守力的功与路径有关。
对于静电场力来说,它是由电荷之间的相互作用引起的。
根据库伦定律,两个电荷之间的静电力与它们之间的距离成反比,与电荷的大小成正比。
这意味着当我们沿着一条闭合路径进行线积分时,静电场力的大小和方向会随着路径的变化而变化。
由于静电场力是保守力,线积分的结果总是等于零。
这是因为静电场力是由一个势能函数所导出的。
在静电场中,我们可以定义一个电势能函数,它表示单位正电荷在静电场中的势能。
根据这个定义,沿着任何闭合路径进行的线积分就等于起点和终点之间电势能的差值。
无论我们选择哪条路径,只要起点和终点相同,线积分的结果都会是相同的。
这意味着静电场力不会产生任何环路的功,也就是说,它不会在回路上做功。
因此,静电场力对环路的总功为零。
这个性质在电场中有很多实际应用。
例如,在电容器中,我们可以利用静电场力来存储电荷。
电容器由两个带电板之间的介质组成,当我们在电容器上施加电压时,电荷会在两个板之间移动,但总功为零。
这意味着我们可以以零的能量损失来存储电荷。
静电场力是一种保守力,它沿着任何闭合路径的线积分等于零。
这个性质使得静电场力在电学中有很多重要应用,如电容器的工作原理。
这也说明了静电场力与路径无关,只与起点和终点有关。
我们可以通过以下步骤来证明这一点:1.定义静电场力:在电场中,一个带电粒子受到的力可以表示为F = qE,其中q是粒子的电荷量,E是粒子所在位置的电场强度。
2.计算线积分:对于任意一条闭合路径C,我们可以计算静电场力沿着这条路径的线积分。
线积分的定义是∫L F·dl,其中L是路径的长度,F·dl是力向量和路径上一小段向量的点积。
保守力学系统
保守力学系统指的是在它的运动中,总机械能(动能和势能的和)是守恒的。
即系统内部的力不会改变总机械能。
在保守力学系统中,力是由势能推导出来的,简单来说,势能就是恒定的力在质点运动过程中所形成的势。
例如,重力是一种保守力,因为由于重力势能始终存在,它不会转化为其他形式的能量,比如热能。
而摩擦力,由于随着物体的运动会消耗机械能,因此是一种非保守力。
保守力学系统是物理学中的一个重要概念,能够帮助我们理解很多物理现象,如弹性碰撞、回旋运动等。
保守力的概念
保守力是一个与企业或个人全面发展有关的概念。
1. 保守力是一种衡量一个组织或个人全面发展的健康水平的重要指标。
2. 保守力是一种把思想、能力、行动合理结合的思维体系。
3. 保守力是企业经营的有效动力,是维护企业安全的重要基石。
4. 保守性及运用保守性、谨慎性动态平衡以保障企业发展,使之保持
一个健康有序的状态。
5. 一个完整的保守体系应包括一个可行的保守战略,清晰的衡量衡量
标准,有效的保守控制,以及有效的风险识别机制。
6. 理性、坚定、严谨、奉献是保守力的基本要素。
7. 核心的保守力往往体现在一个安全的环境中,从而使得企业实现实
现真正的专业性,更高的绩效水平。
8. 保守是一种大胆的思想,及早注意到企业的风险和机遇,能够持之
以恒,驾驭风险把握机遇,有效促进企业发展,实现企业持久稳定发
展。
9. 保守力也是一种以内敛为基础的聪明经营,把握细节避免职业失误,在不损伤企业利益的前提下尽可能运用有限的资源,使企业节省成本、节约成本、及达到市场价值最大化。
10. 保守力还是一种灵活性,以宏观监控为基础,能够及时识别和应对
外部环境的变化,把握核心的发展机会,支撑企业取得永续发展。
以上就是关于保守力的内容,保守力是企业安全发展,也是维持良性
发展的重要保障,通过个人或企业对保守力的认识,可实现企业可持
续发展,穿云破雾。
惯性系:牛顿运动定律成立的参考系一般,地球和相对地球静止或匀速直线运动的物体,都可以视为惯性系。
非惯性系:牛顿运动定律不成立的参考系如有加速度的物体
动力学中的基本定律,即任何物体系统如无外力作功或外力作功之和为零,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。
外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。
这个定律的简化说法为:质点(或质点系)在势场中运动时,其功能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。
这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。
这只能在一些特殊的惯性参考系如地球参考系中才成立。
如果一个系统内只有保守力作功,而其他内力和外力都不作功,则运动过程中系统内质点间动能和势能可以相互转换,但他们的总和(即总机械能)保持不变,这就是质点系的机械能守恒定律。
保守力有分内力和外力的。
保守力是这样的力,它做功与具体路径无关,只与初始位置有关。
一般的场力都具有这个特点。
接着看它是外力还是内力就可以了。
内力则为保守内力
保守力
定义:力所作的功与路径无关,仅由质点的始末位置决定。
非保守力
定义:力所做的功不仅决定于受力质点的始末位置,而且和质点经过的路径有关;或:力沿闭和路径所做的功不等于零。
保守力与非保守力
1. 保守力
定义:力所作的功与路径无关,仅由质点的始末位置决定。
即:保守力沿闭和路径所做的功为零。
2. 非保守力
定义:力所做的功不仅决定于受力质点的始末位置,而且和质点经过的路径有关;或:力沿闭和路径所做的功不等于零。
例如:摩擦力。
力学中常见的保守力
a.重力:。