当前位置:文档之家› 05-磁共振扩散峰度成像技术研究进展_戴艳芳

05-磁共振扩散峰度成像技术研究进展_戴艳芳

05-磁共振扩散峰度成像技术研究进展_戴艳芳
05-磁共振扩散峰度成像技术研究进展_戴艳芳

磁共振扩散峰度成像技术研究进展

戴艳芳 综述,卢 洁,李坤成 审校

(首都医科大学宣武医院医学影像学部放射科 北京 100053)

【摘 要】 磁共振扩散峰度成像(DKI)作为非高斯扩散成像技术,在探测组织细微结构损伤方面优于传统扩散成像技术(包括DWI和DTI),并已被初步应用于临床研究,对脑肿瘤的评价、退行性疾病、脱髓鞘疾病和脑血管疾病等方面均取得了初步成果,具有广阔的临床应用前景。本文对DKI成像原理和在临床应用的优势与不足进行综述。

【关键词】 扩散峰度成像;峰度;磁共振成像

中图分类号:R445.2 文献标识码:A 文章编号:1006-9011(2015)05-0913-03

Advances in diffusion kurtosis imaging

DAI Yan-fang,LU Jie,LI Kun-cheng

Department of Radiology,Xuanwu Hospital,Capital Medical University,Beijing100053,P.R.China

【Abstract】 As a non-Gaussian diffusion weighted imaging(DWI)technique,diffusional kurtosis imaging(DKI)is betterthan conventional DWI and diffusion tensor imaging(DTI)in providing information about changes in tissue microstructure.DKI has shown promising results in clinical applications,such as in the evaluation of brain tumors,degenerative diseases,demyelinating diseases,and cerebrovascular diseases.This review discusses the underlying theory of DKI as well as theadvantages and disadvantages in the clinical application.

【Key words】 Diffusion kurtosis imaging;Kurtosis;Magnetic resonance imaging

磁共振扩散峰度成像(diffusion kurtosis imaging,DKI)作为扩散张量成像(diffusion tensor imaging,DTI)的拓展,采用非高斯分布模型,较传统DTI而言该模型更符合高b值下组织内水分子实际扩散分布情况,不仅可以获得DTI相关指标(如平均扩散系数、各向异性分数等),还可以同时获得DKI特有指标(如峰度、平均峰度等),为临床研究提供了更丰富信息[1~3]。另外,DKI对组织微观结构的改变更加敏感,因此能为组织微观结构变化及某些疾病早期的组织细微损伤探测提供更为先进、准确的评价。近年来,DKI在临床研究中已有初步应用,并取得了一定成果,本文对DKI成像原理和在临床应用的优势与不足进行综述。

1 DKI成像技术原理

1.1 DKI技术理论原理

扩散加权成像(diffusion weighted imaging,DWI)和DTI成像技术已广泛应用于临床,最常使用的指标如表观扩散系数(apparent diffusion coefficient,ADC)、各向异性分数(fractional anisotropy,FA)等已普遍用以诊断和评估中枢神经系统相关疾病。但是,FA和ADC具有一定局限性,因为传统扩散成像技术基于高斯假设模型进行计算,然而,神经元组织是复杂的微观环境,水分子扩散信号的衰减受诸多因

作者简介:戴艳芳(1982-),女,北京人,在职硕士研究生,主管技师,主要从事磁共振成像技术工作

通信作者:李坤成 教授 E-mail:cjr.likuncheng@vip.163.com素影响,特别是高b值下水分子并不遵循高斯分布,因此,理想高斯模型并不能真实地反映组织的结构信息,新的非高斯模型扩散成像技术,如Q空间成像(q-space imaging,QSI)和DKI,在理论层面较传统扩散成像技术更具优势。

DKI利用峰度量化非高斯模型下水分子任意分布的概率,不需要完整测量扩散位移分布概率,因此其成像时间和对梯度硬件的要求都低于QSI。DKI采用了非线性位移分布的数学表达式,反映水分子扩散的非高斯特性,与DTI不同,要求特定扩散方向的扩散加权信号大小符合如下b值函

数[1,4]:S(b)=S(0)exp(-bD+1

b2 D2 K)。

其中D是扩散系数,K是扩散峰度。因为附加自由度参数,故至少需要3个不同的b值,且其中必须含有b=0。类似于传统扩散张量,扩散峰度张量使用取向峰度的全部表征[1,4],此扩散峰度张量具有15个独立的自由度,要求必须至少15个独立的扩散方向反映组织的各向异性扩散特性,包括方向依赖性,上述函数最终有22个自由度,其中6个用于扩散张量,15个用于峰度张量,1个与S(0)相关。完整DKI数据包含构建扩散张量所需的全部信息,因此,非线性扩散函数可以同时获得传统扩散指标ADC和表观峰度系数(apparent kurtosis coefficient,AKC)。AKC值可量化偏离高斯模型的偏差量,反映生物组织的非高斯特性,这些参数也可以使用张量形式表达[5,6]。

1.2 DKI相关参数

医学影像学杂志2015年第25卷第5期 J Med Imaging Vol.25No.5 2015

虽然DKI采集至少使用3个不同b值和15个扩散(梯度)方向,但为了提高稳定性和精度,实际应用中通常使用更多b值和梯度方向,这必然会带来扫描时间延长。大多数情况下,b值采集使用6个相等间隔b值(equally spaced b-val-ues,ESB)(典型b值采样范围从0到2500s/mm2)[7,8],也有研究采用4个ESB(0~2400s/mm2)甚至41个ESB[9]。DKI的b值设定需要适度增加并超出传统DWI,但不同于QSI,对于DKI最大b值应慎重选择,因为DKI公式只适用于b<3500s/mm2获得的正常脑组织的扩散数据[1]。此外,使用不同b值组合将产生不同峰度值,因此DKI的b值组合和最大b值应根据临床情况进行选择。

类似DTI成像参数如平均扩散系数(mean diffusivity,MD)、轴向扩散张量(axial diffusivity,D∥)和垂直扩散张量(radial diffusivity,D⊥),DKI的峰度参数分别定义为平均扩散峰度(mean kurtosis,MK)、轴向峰度(axial kurtosis,K∥)和径向峰度(radial kurtosis,K⊥),分别表示所有可能扩散方向上的平均峰度、扩散张量本征向量的方向扩散最大特征值峰度和所有垂直于扩散特征向量方向的峰度平均值。由于峰度张量具有15个自由度,理论上DKI可以提供更多的参数指标。由于参考对角化的扩散张量的峰度张量分量都可以视为旋转不变量,实际上DKI能够提供更有意义的指标。峰度张量上定义为“特征值”的参数在扩散测量上也是重要指标。对于水分子各向同性扩散组织(如灰质),只有DKI的两个参数(MD和MK)可以测量[1]。

2 DKI在临床研究应用的优势与不足

2.1 DKI的优势

DKI相比以往传统的扩散成像技术,临床应用中最突出的优势是对组织细微结构改变更敏感,提供更丰富的扩散参数[10],能够检测出传统DTI可能遗漏的脑损伤后反应性星形胶质细胞增生[11]。Lazar等[12]使用DKI对自闭症患者与正常对照进行研究发现,DKI指标相比以往传统指标的灵敏度和特异性均有所提高。对于急性脑梗死DKI的MK、K∥、K⊥图能呈现出与梗死组织病理改变相对应的不均匀高信号[13~15],而传统DTI的MD、D∥、D⊥图在梗死区域常表现为均匀低信号,说明DKI能更准确反映组织微观结构改变及脑梗死区域内水分子扩散受限的不均质性,反映脑梗死扩散的复杂程度[13]。DKI在多发性硬化患者正常表现白质(normal-appearing white matter,NAWM)和灰质(normal-appearing gray matter,NAGM)区域检测出异常[16],高b值DKI图像敏感度更高,可对灰质结构变化进行评估[8]。

与传统DTI相比DKI的扩散参数不仅更敏感,有时甚至是能够检验出差异的唯一指标。Van Cauter等[17]研究发现使用3.0TMR成像扫描仪进行脑胶质瘤DKI成像,高级别与低级别胶质瘤的MK、K∥、K⊥参数均存在显著差异,并且仅有峰度参数的差异具有统计学意义,FA和MD的差异均不具统计学意义。Wang等[9]认为,与传统扩散指标FA、MD、D∥、D⊥相比,黑质MK是诊断帕金森病的最佳指标(灵敏度=0.92,特异性=0.87)。Hori等认为MK和均方根位移(root mean square displacement,RMSD)值是早期颈椎病脊髓微观改变和破坏的高度敏感指标[18],并且MK是能够反映脊髓灰质损伤的唯一指标[19]。近年来有研究发现,DKI显示注意力缺陷多动症患者的额叶白质发育停滞[20],特别是额叶、顶叶、岛叶、胼胝体、右侧内囊和外囊更显著[21],其灰质也缺乏正常对照组的随着年龄增加灰质结构的细微变化,而且只有峰度信息可以检测到这种差异[20]。2.2 DKI的不足与解决办法

目前DKI在临床应用的最大制约因素是扫描时间较长,使用3.0TMR成像采集覆盖全脑的空间分辨率3mm×3mm×3mm的DKI数据约需7min[1]。为减少扫描时间,确保精度的前提下需要减少b值使用量[1,22]。研究[23]提出通过最小化DKI参数的Cramér-Rao下限,能同时优化梯度方向分布和b值,从而实现缩短扫描时间,但是其理论过于复杂,而且优化这些参数需要更改脉冲序列,因此临床操作较难,无法广泛推广使用。Jensen等[1]根据经验建议临床应用只选用3个b值,在不修改脉冲序列前提下缩短采集时间,但需要牺牲一定的图像精度和准确度。由于低b值下水分子分布主要为高斯分布,且DWI信号衰减主要源于ADC的第一阶项,因此使用较低b值采集的数据可确保ADC精确度;随着b值增加,特别是b值>2 000s/mm2,扩散特性中非高斯因素影响显著,由于AKC值表示水分子背离高斯模型运动的偏差度,所以采用2 000~3 000s/mm2(适用于DKI的最大b值[1])之间的高b值,DWI数据会增加AKC的鲁棒性[24]。因此研究[24]提出对b值采集模式进行优化,仅使用部分b值数据计算结果接近于使用所有b值计算结果,特别是采集的b值位于高、低两端时,能够较大提高DKI预估的准确性,推荐临床使用非等距的3个b值(分别为0、1 000、2500s/mm2)进行DKI采集,相较于传统的等距采样模式(ESB),优化的采样结构所需b值较少,可以显著减少扫描时间。此外,DKI要求使用较高的b值,而高b值在传统DTI中并不使用,从而有可能会带来定位失准,因此对高b值数据的研究还有待进一步深入。

3 小结与展望

DKI采用非高斯的扩散分析方法,对于处理水分子在白质内复杂的扩散分布提供更好的理论基础,可以得到传统DTI不能获得的信息,并可与DTI信息互补,而且其对梯度硬件及软件方面没有过高要求,但其扫描时间较长,从而制约临床应用[25,26]。采用较少b值、使用插值及改善b值采样模式等方法等能有效缩短扫描时间,为其临床应用提供可能。作为一项新的扩散成像技术,DKI将在中枢神经系统及肾、前列腺等体部脏器有广阔的应用前景。

参考文献:

[1]Jensen JH,Helpern JA.MRI quantification of non-Gaussianwater diffusion by kurtosis analysis[J].NMR Biomed,

2010,23(7):698-710.

[2]Wu EX,Cheung MM.MR diffusion kurtosis imaging for neu-

医学影像学杂志2015年第25卷第5期 J Med Imaging Vol.25No.5 2015

ral tissue characterization[J].NMR Biomed,2010,23(7):836-848.

[3]Veraart J,Poot DH,Van Hecke W,et al.More accurate es-timation of diffusion tensor parameters using diffusion Kurto-

sis imaging[J].Magn Reson Med,2011,65(1):138-145.[4]Jensen JH,Helpern JA,Ramani A,et al.Diffusional kurto-sis imaging:the quantification of non-gaussian water diffusion

by means of magnetic resonance imaging[J].Magn Reson

Med,2005,53(6):1432-1440.

[5]Hui ES,Cheung MM,Qi L,et al.Towards better MR char-acterization of neural tissues using directional diffusion kurto-

sis analysis[J].Neuroimage,2008,42(1):122-134.

[6]Lazar M,Jensen JH,Xuan L,et al.Estimation of the orien-tation distribution function from diffusional kurtosis imaging

[J].Magn Reson Med,2008,60(4):774-781.

[7]Raab P,Hattingen E,Franz K,et al.Cerebral gliomas:dif-fusional kurtosis imaging analysis of microstructural differ-

ences[J].Radiology,2010,254(3):876-881.

[8]Helpern JA,Adisetiyo V,Falangola MF,et al.Preliminaryevidence of altered gray and white matter microstructural de-

velopment in the frontal lobe of adolescents with attention-

deficit hyperactivity disorder:a diffusional kurtosis imaging

study[J].J Magn Reson Imaging,2011,33(1):17-23.[9]Wang JJ,Lin WY,Lu CS,et al.Parkinson disease:diagnos-tic utility of diffusion kurtosis imaging[J].Radiology,2011,261(1):210-217.

[10]Blockx I,De Groof G,Verhoye M,et al.Microstructuralchanges observed with DKI in a transgenic Huntington rat

model:evidence for abnormal neurodevelopment[J].Neuro-

image,2012,59(2):957-967.

[11]Zhuo J,Xu S,Proctor JL,et al.Diffusion kurtosis as anin vi-voimaging marker for reactive astrogliosis in traumatic braininjury[J].Neuroimage,2012,59(1):467-477.

[12]Lazar M,Miles LM,Babb JS,et al.Axonal deficits in youngadults with High Functioning Autism and their impact on pro-

cessing speed[J].Neuroimage Clin,2014,4(1):417-425.[13]张顺,姚义好,张水霞,等.脑梗死不同时期的MR扩散峰度成像表现[J].中华放射学杂志,2014,6(48):443-447.

[14]Jensen JH,Falangola MF,Hu C,et al.Preliminary observa-tions of increased diffusional kurtosis in human brain following

recent cerebral infarction[J].NMR Biomed,2011,24(5):452-457.[15]Hui ES,Fieremans E,Jensen JH,et al.Stroke assessmentwith diffusional kurtosis imaging[J].Stroke,2012,43(11):2968-2973.

[16]Calabrese M,Rinaldi F,Seppi D,et al.Cortical diffusion-tensor imaging abnormalities in multiple sclerosis:a 3-yearlongitudinal study[J].Radiology,2011,261(3):891-898.[17]Van Cauter S,Veraart J,Sijbers J,et al.Gliomas:Diffusionkurtosis MR imaging in grading[J].Radiology,2012,263

(2):492-501.

[18]Hori M,Fukunaga I,Masutani Y,et al.New diffusion met-rics for spondylotic myelopathy at an early clinical stage[J].Eur Radiol,2012,22(8):1797-1802.

[19]Hori M,Tsutsumi S,Yasumoto Y,et al.Cervical spondylo-sis:Evaluation of microstructural changes in spinal cord white

matter and gray matter by diffusional kurtosis imaging[J].

Magn Reson Imaging,2014,32(5):428-432.

[20]Helpern JA,Adisetiyo V,Falangola MF,et al.Preliminaryevidence of altered gray and white matter microstructural de-

velopment in the frontal lobe of adolescents with attention-

deficit hyperactivity disorder:a diffusional kurtosis imaging

study[J].J Magn Reson Imaging,2011,33(1):17-23.

[21]Adisetiyo V,Tabesh A,Di Martino A,et al.Attention-defi-cit/hyperactivity disorder without comorbidity is associated

with distinct atypical patterns of cerebral microstructural de-

velopment[J].Hum Brain Mapp,2014,35(5):2148-2162.[22]Peled S,Whalen S,Jolesz FA,Golby AJ.High b-value ap-parent diffusion-weighted images from CURVE-ball DTI[J].J Magn Reson Imaging,2009,30(1):243-248.

[23]Poot DH,den Dekker AJ,Achten E,et al.Optimal experi-mental design for diffusion kurtosis imaging[J].IEEE Trans

Med Imaging,2010,29(3):819-829.

[24]Yan X,Zhou M,Ying L,et al.Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an

application to stroke patient data[J].Comput Med Imaging

Graph,2013,37(4):272-280.

[25]Menzel MI,Tan ET,Khare K,et al.Accelerated diffusionspectrum imaging in the human brain using compressed sens-

ing[J].Magn Reson Med,2011,66(5):1226-1233.

[26]单艺,卢洁,李坤成.扩散峰度成像在缺血性脑卒中的研究进展[J].中国医学影像技术,2013,29(12):2046-2048.

(收稿日期:2014-12-01 修回日期:2015-02-28)

(本文编辑:崔国明 钮宇培)

医学影像学杂志2015年第25卷第5期 J Med Imaging Vol.25No.5 2015

抑郁症及抑郁高血压共病患者脑部基于体素的磁共振扩散峰度成像研究_曾祥柱

?中枢神经影像学 Voxel-based analysis of diffusion kurtosis imaging  forpatients with dep ression and comorbidhypertension in dep ressionZENG Xiang-zhu1,YUAN Hui-shu1*,LIU Ying1,WANG Zheng1, ZHANG Han2,WANG Xi-lin2 (1.Department of Radiology,Peking University Third Hospital,Beijing100191,China;2.Department ofConsultation Liaison,Peking University Sixth Hospital,Beijing100191,China)[Abstract] Objective To investigate the differences of cerebral microstructure impairment between patients of depressionand comorbid depression and hypertension with diffusion kurtosis imaging(DKI).Methods Twenty patients with depres-sion(depression group),26comorbid hypertension in depression(comorbid group),26hypertension(hypertension group)and 23healthy control subjects(control group)were recruited.DKI examinations were performed using a 3.0Tscanner.Mean kurtosis(MK)maps were compared among 4groups.The relationship between MK and Hamilton depression scale(HAMD-17)were investigated using correlation analysis.Results Compared with control group,MK decreased in rightmiddle frontal gyrus,the right fusiform gyrus,right anterior cingulate gyrus,left middle cingulate gyrus,left posteriorcingulate gyrus,right insula,the right hippocampus,right occipital gyrus and left occipital gyrus,bilateral precuneus,bi-lateral putamen,bilateral inferior temporal gyrus and middle temporal gyrus significantly in comorbid group(P<0.05),MK reduced in more cerebaral areas,including the right superior frontal gyrus,the right fusiform gyrus,right anterior cin-gulate,the right of the cingulate gyrus,left posterior cingulate gyrus,bilateral hippocampus,parahippocampal gyrus bilat-erally,the left middle occipital gyrus,bilateral wedge anterior lobe,and right putamen,left lingual gyrus,bilateral middletemporal gyrus and inferior temporal gyrus and the left thalamus(P<0.05),there was no cerebaral areas where MK de-creased in hypertension group;compared with depression group,MK decreased in right inferior frontal gyrus,right fusi-form gyrus,right insula and right anterior cingutate in comorbid group(P<0.05).MK in right hippocampus(r=0.421,P<0.001)and the right middle frontal gyrus(r=0.400,P=0.001)were negatively correlated with HAMD-17scores.Conclusion Depression patients with or without hypertension has extensive white matter impairments of frontal-subcorti-cal-limbic regions.Hypertension may  have a synergistic effect on depression.[Key  words] Depression;Hypertension;Magnetic resonance imaging;Diffusion kurtosis imagingDOI:10.13929/j .1003-3289.2015.05.007[基金项目]科技部国家科技支撑计划(2009BAI77B0 )。[第一作者]曾祥柱(1977—),男,湖北荆州人,博士,主治医师。研究方向:中枢神经系统磁共振诊断及功能磁共振成像。E-mail:zeng _x_zh@126.com[通信作者]袁慧书,北京大学第三医院放射科,100191。E-mail:huishuy@sina.com[收稿日期]2014-08-18 [修回日期]2015-04- 03抑郁症及抑郁高血压共病患者脑部基于 体素的磁共振扩散峰度成像研究 曾祥柱1,袁慧书1*,刘 颖1,王 筝1,张 函2,王希林2  (1.北京大学第三医院放射科,北京 100191;2.北京大学第六医院联络会诊科,北京 100191 )[摘 要] 目的 探讨磁共振扩散峰度成像(DKI)在评价抑郁症及抑郁高血压共病患者脑部微观结构损害中的应用价值。方法 收集20例抑郁症患者(抑郁症组)、26例抑郁高血压共病患者(共病组)、26例高血压患者(高血压组)、23名健 ·866·中国医学影像技术2015年第31卷第5期 Chin J Med Imaging  Technol,2015,Vol 31,No 5

关于磁共振成像技术的学习心得体会-学习心得体会

关于磁共振成像技术的学习心得体会-学习 心得体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而

却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个栗子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE磁共振平台的MERGE序列较常规梯

磁共振成像技术参数及其对图像质量的影响

4.4磁共振成像技术参数及其对图像质量的影响 4.4.1层数 SE序列多回波多层面(MEMP)二维采集时,脉冲重复期间最多允许层数(NS)由TR和最大回波时间TE决定。 NS = TR / (TEma +K)(公式4-1) 公式4-1中:NS为最多允许层数; TR为重复时间;TEma 为最大回波时间;K 为额外时间,根据所用参数不同而变化,一般用SAT和Flow Comp时K值就大。另外特殊吸收率(SAR)也是层数的主要限制因素。 4.4.2层厚 层厚取决于射频的带宽和层面选择梯度场强。层厚越厚,激发的质子数量越多,信号越强,图像的信噪比越高。但层厚越厚,采样体积增大,容易造成组织结构重叠,而产生部分容积效应。层厚越薄,空间分辨力越高,而信噪比降低。扫描时要根据解剖部位及病变大小来决定扫描层厚。 4.4.3层面系数 层面系数的大小取决于层间距和层面厚度。 层面系数=层间距/层面厚度′100% 上式表明,层面系数与层间距成正比,而与层面厚度成反比。当层面厚度固定时,层间距越大,层面系数越大。当层间距固定时,层面厚度越厚,层面系数越小。层面系数小时,相邻层面之间会产生干扰,从而影响T1对比。 4.4.4层间距 层间距(GAP)即不成像层面。选用一定带宽的射频脉冲激励某一层面时,必然

影响邻近层面的信号,为了杜绝成像之间层面的干扰,通常采用如下解决办法:(1)增加层间距:一般要求层间距不小于层厚的20%。层间距过大,容易漏掉微小病变;层间距越大,图像信噪比越高。(2)如果扫描部位或病变较小,不能选择过大层间距或无层间距时,应采用间插切层采集法而不选择连续切层法,以克服相邻层间的相互干扰,提高信噪比。 4.4.5接收带宽 接收带宽是指MR系统采集MR信号时所接收的信号频率范围。减少接收带宽可以提高图像的信噪比,但可导致图像对比度下降。同时,减少扫描层数,扫描时间延长,并增加化学位移伪影。 MR激发脉冲使用的是射频波,其频率范围称为射频带宽或发射带宽。射频脉冲的持续时间越短,即脉冲的形状越窄,傅里叶变换后其频带带宽越宽。层面厚度与带宽成正比,即层厚越厚,带宽越宽。人体组织信号为不同频率信号的叠加,包括被激励的组织和噪声。射频带宽越宽,信号采集范围就越大,噪声也越大。4.4.6扫描野(FOV) 扫描野也称为观察野,它是指扫描时采集数据的范围,它取决于频率编码和相位编码梯度强度。采集矩阵不变时,FOV越小,则体积单元(体素)越小,空间分辨力越高,但信号强度减低,信噪比越低。 检查部位超出FOV时,会产生卷褶伪影。因此,选择FOV时要根据检查部位决定。 4.4.7相位编码和频率编码方向 在频率编码方向上的FOV缩小时不减少扫描时间。而在相位编码方向上的FOV缩小时,可以减少扫描时间。因此,在扫描方案的设置上,应该注意两个问题。·相位编码方向FOV应放在成像平面最小径线方向,不但能节省扫描时间,又可

磁共振成像技术模拟题13

磁共振成像技术模拟题13 单选题 1. 部分容积效应是由于 A.病变太大 B.矩阵太小 C.信噪比太低 D.扫描层厚太薄 E.扫描层厚太厚 答案:E [解答] 层厚增加,采样体积增大,容易造成组织结构重叠而产生部分容积效应。 2. 关于矩阵的描述,不正确的是 A.矩阵增大,像素变小 B.增加矩阵可提高信噪比 C.常用的矩阵为256×256 D.增加矩阵会增加扫描时间 E.矩阵分为采集矩阵和显示矩阵两种 答案:B 3. 关于流动补偿技术的叙述,不正确的是 A.降低信号强度 B.T1加权时不用 C.常用于FSE T2加权序列 D.用于MRA扫描(大血管存在的部位) E.可消除或减轻其慢流动时产生的伪影,增加信号强度

答案:A [解答] 流动补偿技术用特定梯度场补偿血流、脑脊液中流动的质子,可消除或减轻其慢流时产生的伪影,增加信号强度。 4. 关于回波链长的描述,不正确的是 A.在每个TR周期内出现的回波次数 B.常用于FSE序列和快速反转恢复序列 C.回波链长,即ETL D.回波链与扫描的层数成正比 E.回波链与成像时间成反比 答案:D [解答] 回波链越长,扫描时间越短,允许扫描的层数也减少。 5. 下列哪一种金属物不影响MRI扫描 A.心脏起搏器 B.体内存留弹片 C.大血管手术夹 D.固定骨折用铜板 E.固定椎体的镍钛合金板 答案:E [解答] 体内具有非铁磁性置入物的患者是可以接受MRI检查的。 6. 关于细胞毒素水肿的叙述,不正确的是 A.白质、灰质同时受累 B.T2WI之边缘信号较高 C.钠与水进入细胞内,造成细胞肿胀 D.细胞外间隙减少,常见于慢性脑梗死的周围

05-磁共振扩散峰度成像技术研究进展_戴艳芳

磁共振扩散峰度成像技术研究进展 戴艳芳 综述,卢 洁,李坤成 审校 (首都医科大学宣武医院医学影像学部放射科 北京 100053) 【摘 要】 磁共振扩散峰度成像(DKI)作为非高斯扩散成像技术,在探测组织细微结构损伤方面优于传统扩散成像技术(包括DWI和DTI),并已被初步应用于临床研究,对脑肿瘤的评价、退行性疾病、脱髓鞘疾病和脑血管疾病等方面均取得了初步成果,具有广阔的临床应用前景。本文对DKI成像原理和在临床应用的优势与不足进行综述。 【关键词】 扩散峰度成像;峰度;磁共振成像 中图分类号:R445.2 文献标识码:A 文章编号:1006-9011(2015)05-0913-03 Advances in diffusion kurtosis imaging DAI Yan-fang,LU Jie,LI Kun-cheng Department of Radiology,Xuanwu Hospital,Capital Medical University,Beijing100053,P.R.China 【Abstract】 As a non-Gaussian diffusion weighted imaging(DWI)technique,diffusional kurtosis imaging(DKI)is betterthan conventional DWI and diffusion tensor imaging(DTI)in providing information about changes in tissue microstructure.DKI has shown promising results in clinical applications,such as in the evaluation of brain tumors,degenerative diseases,demyelinating diseases,and cerebrovascular diseases.This review discusses the underlying theory of DKI as well as theadvantages and disadvantages in the clinical application. 【Key words】 Diffusion kurtosis imaging;Kurtosis;Magnetic resonance imaging 磁共振扩散峰度成像(diffusion kurtosis imaging,DKI)作为扩散张量成像(diffusion tensor imaging,DTI)的拓展,采用非高斯分布模型,较传统DTI而言该模型更符合高b值下组织内水分子实际扩散分布情况,不仅可以获得DTI相关指标(如平均扩散系数、各向异性分数等),还可以同时获得DKI特有指标(如峰度、平均峰度等),为临床研究提供了更丰富信息[1~3]。另外,DKI对组织微观结构的改变更加敏感,因此能为组织微观结构变化及某些疾病早期的组织细微损伤探测提供更为先进、准确的评价。近年来,DKI在临床研究中已有初步应用,并取得了一定成果,本文对DKI成像原理和在临床应用的优势与不足进行综述。 1 DKI成像技术原理 1.1 DKI技术理论原理 扩散加权成像(diffusion weighted imaging,DWI)和DTI成像技术已广泛应用于临床,最常使用的指标如表观扩散系数(apparent diffusion coefficient,ADC)、各向异性分数(fractional anisotropy,FA)等已普遍用以诊断和评估中枢神经系统相关疾病。但是,FA和ADC具有一定局限性,因为传统扩散成像技术基于高斯假设模型进行计算,然而,神经元组织是复杂的微观环境,水分子扩散信号的衰减受诸多因 作者简介:戴艳芳(1982-),女,北京人,在职硕士研究生,主管技师,主要从事磁共振成像技术工作 通信作者:李坤成 教授 E-mail:cjr.likuncheng@vip.163.com素影响,特别是高b值下水分子并不遵循高斯分布,因此,理想高斯模型并不能真实地反映组织的结构信息,新的非高斯模型扩散成像技术,如Q空间成像(q-space imaging,QSI)和DKI,在理论层面较传统扩散成像技术更具优势。 DKI利用峰度量化非高斯模型下水分子任意分布的概率,不需要完整测量扩散位移分布概率,因此其成像时间和对梯度硬件的要求都低于QSI。DKI采用了非线性位移分布的数学表达式,反映水分子扩散的非高斯特性,与DTI不同,要求特定扩散方向的扩散加权信号大小符合如下b值函 数[1,4]:S(b)=S(0)exp(-bD+1 b b2 D2 K)。 其中D是扩散系数,K是扩散峰度。因为附加自由度参数,故至少需要3个不同的b值,且其中必须含有b=0。类似于传统扩散张量,扩散峰度张量使用取向峰度的全部表征[1,4],此扩散峰度张量具有15个独立的自由度,要求必须至少15个独立的扩散方向反映组织的各向异性扩散特性,包括方向依赖性,上述函数最终有22个自由度,其中6个用于扩散张量,15个用于峰度张量,1个与S(0)相关。完整DKI数据包含构建扩散张量所需的全部信息,因此,非线性扩散函数可以同时获得传统扩散指标ADC和表观峰度系数(apparent kurtosis coefficient,AKC)。AKC值可量化偏离高斯模型的偏差量,反映生物组织的非高斯特性,这些参数也可以使用张量形式表达[5,6]。 1.2 DKI相关参数 3 1 9 医学影像学杂志2015年第25卷第5期 J Med Imaging Vol.25No.5 2015

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

宫颈癌扩散峰度成像检查的可重现性研究

宫颈癌扩散峰度成像检查的可重现性研究 目的评估磁共振扩散峰度成像(DKI)应用于宫颈癌检查的可重现性。方法选取我院2016年6~12月的10例宫颈癌患者和10名健康志愿者,于相隔24 h~14 d进行2次轴位DKI扫描,测量峰度参数K以及扩散参数D,并用SPSS 19.0软件进行统计学分析。结果总受试者、志愿者和宫颈癌患者参数D的组内变异系数(ICC)分别为0.899、0.935和0.828,参数K的ICC分别为0.870、0.871和0.877。总受试者、志愿者和宫颈癌患者参数D的变异系数分别为17.23%、16.43%和16.51%,参数K的变异系数分别为17.85%、20.16%和12.28%。结论DKI 序列在检测宫颈组织水分子非高斯扩散方面具有较好的可重现性。 [Abstract]Objective To evaluate the reproducibility of magnetic resonance imaging (MRI)diffusional kurtosis imaging (DKI)in detecting of cervical carcinoma.Methods 10 patients and 10 healthy volunteers in our hospital from June to December in 2016 were selected and underwent duplicate MRI scans by using DKI with an interval of 24 hours to 14 days.The metric K and D were obtained from parametric maps and evaluated by statistical software SPSS 19.0.Results The D value of intra group variation coefficient (ICC)of the total subjects,volunteers,and cervical cancer patients were 0.899,0.935 and 0.828,respectively.The ICC of parameter K was 0.870,0.871 and 0.877,respectively.The coefficients of variation of the D in the total subjects,the volunteers and the patients with cervical cancer were 17.23%,16.43% and 16.51%,respectively.The coefficients of variation of parameter K were 17.85%,20.16% and 12.28%,respectively.Conclusion DK imaging sequence appears reproducible in detecting the non Gauss diffusion of water molecules in cervical carcinoma. [Key words]Diffusional kurtosis imaging;Magnetic resonance imaging;Cervical carcinoma;Reproducibility 宮颈癌是我国女性常见的恶性肿瘤,其诊断以及疗效评判多依赖于核磁共振成像(MRI)。MRI可提供病灶在治疗前后形态学上的变化过程,但是对于早期微小病灶,常规MRI并不能有效发现。有学者发现肿瘤放疗后其功能学变化早于形态学[1]。作为功能磁共振的一个序列,扩散加权成像DWI参数表观扩散系数(ADC)可用检测肿瘤早于形态学变化之前的功能学变化,以此评估治疗效果[2]。然而作为一个以假设水分子遵循高斯分布为前提的序列,DWI并不能完全能准确描述水分子在人体内的扩散状况。 扩散峰度成像(DKI)也是扩散功能成像系列的一员,2005年首次被提及[3],主要用于描述非高斯分布的水分子扩散。由于非高斯分布更符合水分子在人体内的实际扩散方式,因此DKI可提供更为精确的信息。目前DKI的研究主要集中于中枢神经系统,包括脑梗死、胶质瘤、多发性硬化、帕金森病、注意力集中缺陷等[4-8]。此外还有一些中枢神经系统外的疾病,如支气管畸形、肝细胞癌和前列腺癌[9-12]。但是关于DKI在宫颈癌中的应用,目前尚未见文献报道,因此本

磁共振成像技术实验

目录 第一章NM20台式磁共振成像仪硬件概述....................... 错误!未定义书签。 第一节系统硬件框图 ......................................... 错误!未定义书签。 第二节部件接插口.............................................. 错误!未定义书签。 第三节部件连线 ................................................ 错误!未定义书签。 第四节系统开关机 0 第二章NMI20台式磁共振成像仪软件概述 ...................... 错误!未定义书签。 第一节软件界面............................................... 错误!未定义书签。 第二节软件菜单栏介绍....................................... 错误!未定义书签。 第三节软件工具栏介绍 ........................................ 错误!未定义书签。 第四节功能选项卡 ............................................ 错误!未定义书签。第三章部分可开设的实验项目 (2) 实验一机械匀场和电子匀场实验 (2) 实验二测量磁共振中心频率(拉莫尔频率) (9) 实验三旋转坐标系下的FID信号 (16) 实验四自动增益实验 (24) 实验五硬脉冲回波 (29) 实验六软脉冲FID实验 (38) 实验七软脉冲回波 (43) 实验八硬脉冲CPMG序列测量T2 (49) 实验九乙醇的化学位移测量 (54) 实验十自旋回波序列质子密度像 (59) 实验十一自旋回波权重像 (66) 实验十二一维梯度编码成像 (70)

压缩感知磁共振成像技术综述

https://www.doczj.com/doc/594466370.html, 压缩感知磁共振成像技术综述 王水花,张煜东 南京师范大学计算机科学与技术学院,江苏南京210023 【摘 要】目的:综述近年来压缩感知磁共振成像技术的研究进展。方法:磁共振成像是目前临床医学影像中最重 要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。 【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2 【文献标识码】A 【文章编号】1005-202X (2015)02-0158-05 Survey on Compressed Sensing Magnetic Resonance Imaging Technique WANG Shui-hua,ZHANG Yu-dong School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China Abstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan https://www.doczj.com/doc/594466370.html,pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications. Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction 前言 1971年,纽约州立大学的Paul https://www.doczj.com/doc/594466370.html,uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。MRI 利用核磁共振原理,由于能量在不同物 质结构中有不同的衰减[1],通过外加梯度磁场检测电 磁波,可知构成物体原子核的位置和种类,从而绘制物体内部影像[2-3]。 MRI 是目前少有的对人体无伤害的安全、快速、准确的临床诊断方法,具有多方位、多参数、多模态等优点,不仅可显示人体组织的解剖信息,而且可显示功能信息。MRI 在临床上有广泛的应用,如今每年至少有6000万病例利用MRI 技术进行检查。但MRI 扫描时间过长、成像较慢[4],造成以下几个问题[5]:(1)给病人造成额外的痛苦;(2)由于器官运动(例如呼吸、眨眼、吞咽等非自主运动)造成图像模糊,增加伪影;(3)无法满足动态实时成像与导航的需要;(4)限制功能成像的推广,如波谱成像、磁敏感加权成像等。 2006年Candes 等[6]在前人的基础上,系统性地 【收稿日期】2014-12-21 【基金项目】国家自然科学基金(610011024);南京师范大学高层次人才 科研启动基金(2013119XGQ0061,2014119XGQ0080) 【作者简介】王水花,女,助教,研究方向:生物图像处理。【通信作者】张煜东,男,博士,教授,研究方向:医学图像处理。 158--

核磁共振成像技术原理及国内外发展

核磁共振成像技术原理及国内外发展 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging?,简称MRI?),是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。 核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

MRI现状及未来发展

磁共振设备的现状及未来发展磁共振成像(MRI)是继CT、B超、核医学ECT、PET等医学影像学检查手段后又一新的断层成像方法,在脑、脊髓、骨关节、腹部、盆腔等病变的诊断中有极高的价值,它对医学诊断、治疗与随访等均具有划时代的意义。由于MRI具有多参数多功能成像.对软组织分辨能力强和对病变显示有很高的敏感性和特异性.特别是高场MRI。它有更高的信噪比以及更加先进的检查序列.为其在临床上开拓了更为广阔的应用领域。放射科MRI现状:目前我科磁共振只能做头部、鼻烟部、脊柱及膝关节等部位的检查,且具有图像分辨率、信噪比较差,成像时间长、噪声大等缺点。虽然能开展FLAIR 、脂肪抑制等技术,但图像质量差,不能满足临床诊断需求。同时该设备的呼吸门控技术、心电门控技术对腹部、胸部成像效果差,且不能开展脑功能成像、MR波谱成像、弥散加权成像(DWI和DTI)、灌注成像等新技术。现在我科MRI已不能适应临床科室的需要。目前超导MRI系统中以 1.5T、3.0TMRI机为主,其中以1.5TMRI更成熟、更稳定,现已在全国各大医院普及。1.5TMRI 的检查适应范围及在我院各科室中的应用前景: (1)颅脑和脊髓:清楚显示颅脑,后颅凹、五官、脊髓各种病变,确定肿瘤的位置和范围,短期内快速检出脑梗塞、亚急性脑出血或蛛网膜下腔出血,早期发现脱髓鞘病变。这对于我院神经内科、脑外科

疾病的诊断能提供重大帮助。对于脑外科而言,1.5TMRI术前能明确肿瘤的位置和范围。(2)胸部:对纵隔病变的诊断有独特的优点,能清楚显示纵隔肿瘤及其与血管间的关系,帮助诊断肺部疾病,更好地显示肺癌、肺门淋巴结和胸膜侵犯情况。并能对乳腺疾病具有较好效果。这将有助于胸外科、乳腺外科更好地开展手术,减少术后复发几率。(3)心血管:可确切地看到心脏和血管内部的结构,观察心肌梗死的范围和并发症。电影MRI可适用于瓣膜病变、缺血性心脏病和先天性心脏病的功能研究。心血管内科为我院重点科室,因此MRI对心血管疾病的诊断显得尤为重要。(4)腹部和盆腔:广泛地应用于腹部疾病的诊断和治疗效果的观察,对于肝、肾、膀胱、前列腺、子宫等脏器的疾病均有相当的诊断价值。以后能进一步为肝胆外科、消化内科及肿瘤科病人服务。 (5)软组织:具有高分辨率和对比度,优于CT,可观察软组织肿瘤存在与否、部位、大小、程度、与周围骨骼、血管、神经束之间的关系。 (6)骨关节:显示椎间盘、膝关节半月板的变性、撕裂、脱位、关节肌腱、韧带的撕裂、骨挫裂伤等优于CT与X光片。能为骨科医生提供丰富的影像资料,为进一步治疗提供帮助。 1.5TMRI最新成像技术1、脑功能成像①术前即可提供肿瘤和肿瘤样病变与皮质功能区的相互关系,补充或代替神经外科靠电刺激进行脑功能区定位的方法;②对执行不同任务的功能区了解和认识更深入直观; ③解释非肿瘤性病变所致临床症状与脑激活区域变化的相关性;

磁共振扩散加权成像对肝癌的诊断及鉴别诊断

磁共振扩散加权成像对肝癌的诊断及鉴别诊断目的探讨采用磁共振扩散加权成像鉴别诊断肝癌的效果。方法选取 2013年6月~2015年5月在我院接受检查的占位性病变患者85例,其中原发性 肝细胞癌28例,肝血管瘤30例,转移瘤15例,肝囊肿12例,均行磁共振扩散加权成像扫描,比较不同肝脏占位病变ADC值及不同b值下ADC值。结果不同肝脏占位病变ADC值随b值差的升高而降低,原发性肝癌ADC值明显低于肝血管瘤、转移瘤、肝囊肿,差异有统计学意义(P<0.05);b值差越大越接近实际DC值,且波动幅度较小。结论通过磁共振扩散加权成像量化分析ADC 值可提高肝癌的诊断及鉴别效果。 [Abstract] Objective To investigate the effect of magnetic resonance diffusion weighted imaging in the differential diagnosis of liver cancer. Methods The 85 patients with occupying lesions in our hospital from June 2013 to May2015 in our hospital were selected,including 28 cases of primary hepatocellular carcinoma,30 cases of hepatic hemangioma,15 cases of metastatic tumor,12 cases of hepatic cyst,They were scanned by diffusion weighted magnetic resonance imaging,the ADC value and ADC value of different liver lesions with different b values were compared. Results The ADC values of different liver lesions were decreased with the increase of b value,The ADC value of primary liver cancer was significantly lower than that of hepatic hemangioma,metastasis and hepatic cyst,the difference was statistically significant (P<0.05);The b value difference was more close to the actual value of DC,and the fluctuation was small. Conclusion Quantitative analysis of ADC value by MR diffusion weighted imaging can improve the diagnosis and differential diagnosis of hepatocellular carcinoma. [Key words] Magnetic resonance imaging;Diffusion weighted imaging;Differential diagnosis;Hepatocellular carcinoma 肝癌是常见的恶性肿瘤之一,恶性程度高,死亡率仅次于胃癌和食管癌[1]。其起病隐匿,确诊时多为中晚期而丧失最佳治疗时机,因此,及时鉴别、诊断肝癌意义重大。作为目前唯一能够无创性检测活体组织内水分子扩散过程的影像技术,磁共振扩散加权成像(diffusion weighted imaging,DWI)可通过微管扩散状态反映机体组织结构生理、病理特点[2-3]。DWI对中枢神经系统尤其是脑缺血的诊断价值已得到肯定,近年来,随着磁共振软技术的不断发展,DWI逐渐用于诊断体部恶性肿瘤性病变。本研究采用DWI诊断肝癌取得较好的效果,现报道如下。 1 资料与方法 1.1 一般资料 选取2013年6月~2015年5月在我院接受检查的占位性病变患者85例作

相关主题
文本预览
相关文档 最新文档