考研卷数学真题及答案解析
- 格式:docx
- 大小:37.36 KB
- 文档页数:3
2023年全国硕士研究生入学统一考试数学(二)(科目代码:302)(考试时间:上午8:30-11:30)考生注意事项1.答题前,考生须在试题册指定位置填写考生姓名和考生编号;在答题卡指定位置填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.选择题答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内,超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
3.填(书)写部分必须使用黑色签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B 铅笔填涂。
4.考试结束,将答题卡和试题册按规定交回。
2023年全国硕士研究生入学统一考试数学(二)试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的. (1)函数1ln(e )1y x x =+-的渐近线为( ) (A )e y x =+. (B )1e y x =+. (C )y x =.(D )1ey x =-.(2)0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪≤=⎨+->⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪+≤=⎨+->⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(3)设数列{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21n n y y +=,当n →∞时( ) (A )n x 是n y 的高阶无穷小 (B )n y 是n x 的高阶无穷小 (C )n x 是n y 的等价无穷小 (D )n x 是n y 的同阶但非等价无穷小(4)微分方程0y ay by '''++=的解在(,)-∞+∞有界,则,a b 的取值范围为( ) (A )0,0a b <> (B )0,0a b >>(C )0,0a b => (D )0,0a b =<(5)由确定,则( )(A )()f x 连续,()0f '不存在(B )()0f '存在,()f x '在0x =处不连续 (C )()f x '连续,()0f ''不存在 (D )()0f ''存在,()f x ''在0x =处连续 (6)若函数()121()ln f dx x x +∞+=⎰αα在若0=αα处取得最大值,则0α是( )(A )1ln ln 2-(B )lnln2- (C )1ln 2(D )ln2(7)设函数2()()x f x x a e =+.若()f x 无极值点,但有拐点,则a 的取值范围为( )(A )[0,1) (B )[1,)+∞ (C )[1,2) (D )[2,)+∞(8)已知A ,B 都为n 阶矩阵,E 为n 阶单位矩阵,*M 为矩阵M 的伴随矩阵,则*⎛⎫⎪⎝⎭A E OB 为( )(A )****⎛⎫- ⎪ ⎪⎝⎭A B B A OB A(B )****⎛⎫- ⎪ ⎪⎝⎭A B A B OB A (C )****⎛⎫- ⎪ ⎪⎝⎭B A B A OA B(D )****⎛⎫- ⎪ ⎪⎝⎭B A A B OA B(9)设二次型222123121323(,,)()()4()f x x x x x x x x x =+++--,则该二次型的规范形为( )(A )2212y y + (B )2212y y - (C )2221234y y y +-(D )222123y y y +-(10)设121221,31αα⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、122150,91ββγ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭、既可由12αα、线性表示,也可由12ββ、线性表示,则γ为( ) (A )33,4R k k ⎛⎫⎪⎪⎝⎭∈⎪(B )35,10R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(C )-11,2R k k ⎛⎫ ⎪⎪⎪⎝⎭∈(D )15,8R k k ⎛⎫ ⎪⎪⎝⎭∈⎪二、填空题:11~16小题,每小题5分,共30分. (11)设22()ln(1),()cos x f x ax bx x g x e x =+++=-,且()f x 与()g x 为等价无穷小,则ab = . (12)设()y x =⎰,则此曲线的弧长为 .(13)已知(,),2zz z x y e xz x y =+=-,求22z x∂=∂ .(14)23532x y y =+确定()y y x =,则()y y x =在1x =处的法线斜率为 . (15) 函数)(x f 满足⎰==-+200)(,)()2(dx x f x x f x f ,则⎰=31)(dx x f .(16)方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,已知0111412a a a =,则 11120a a a b = .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本题目满分10分) 设曲线)(:x y y L =)(e x >经过点)0,(2e ,L 上任一点),(y x P 到y 轴距离等于该点处的切线在y 轴上的截距. (1)求)(x y ;(2)在L 上求一点使该点处的切线与两坐标轴所围三角形的面积最小并求此最小面积.(18)(本题满分12分) 求函数2cos (,)e2yx f x y x =+的极值.(19)(本题满分12分)已知平面区域{(,)|01}D x y y x =≤≤≥(1)求平面区域D 的面积; (2)求D 绕x 轴旋转一周的旋转体体积.(20) (本题满分12分)设平面有界区域D位于第一象限,曲线22221,2,,x y xy x y xy y +-=+-==0y =围成,求221.3Ddxdy x y +⎰⎰ (21) (本题满分12分)函数()f x 在[,]a a -上具有二阶连续导数. 证明: (1)若(0)0f =, 则存在(,)a a ξ∈-使得21()[()()]f f a f a a ξ''=+-. (2)若()f x 在(,)a a -取极值,则存在(,)a a η∈-使得21()()()2f f a f a a η''+-.(22)(本题满分12分)已知112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭对所有x 均成立.(1)求矩阵A ;(2)求可逆矩阵P 和对角阵Λ,使得1P AP -=Λ.参考答案一、选择题二、填空题 (11)【答案】2-(12)【答案】43π(13)【答案】32-. (14)【答案】 119-(15)【答案】12(16)【答案】8 三、解答题(17)【答案】(1)x x x x y 2ln )(+-=,(2))21,(2323e e ,3min e S =(18)【答案】极小值为2(,2)2e f e k π-=-.(19)【答案】(1)ln(1(2)(1)4ππ-(20). (21)【答案】(Ⅰ)泰勒公式在0=x 处展开; (Ⅱ)泰勒公式在极值点处展开.(22)【答案】(1)111211011A⎛⎫⎪=-⎪⎪-⎝⎭;(2)410301121P⎛⎫⎪= ⎪⎪--⎝⎭,212⎛⎫⎪Λ=-⎪⎪-⎝⎭.。
试卷及解2024考研数学(二)真题析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.函数1(1)(2)()x x f x x --=的第一类间断点的个数是A.3. B.2.C.1.D.0.1.【答案】C【解析】无定义点为12x x ==,对于()()()()()111lim1121211,lim ||ee x x x x x x x x x →⋅-----→===,故1x =是可去间断点.对于()()11222,lim ||x x x x x ---→==+∞,故2x =是第二类间断点另外,0x =是分段点,()()()011limln 12(12lim||ex xx x x x x x →⋅----→==+∞∣,故0x =是第二类间断点.因此只有一个第一类间断点2.设函数()y f x =由参数方程231,et x t y ⎧=+⎪⎨=⎪⎩确定,则2lim 2(2)x x ff x →+∞⎡⎤⎛⎫+-= ⎪⎢⎥⎝⎭⎣⎦A.2e.B.4e 3.C.2e3.D.e3.2.【答案】B【解析】()222lim22x f f x x→+∞⎛⎫+- ⎪⎝⎭=⋅原式()'22f +=1d d d d t y t x t==2212e 23tt t t==⋅4e 3=.3.设函数sin 30()sin d ,()()d ,xxf x t tg x f t t ==⎰⎰则A.()f x 是奇函数,()g x 是奇函数.B.()f x 是奇函数,()g x 是偶函数.C.()f x 是偶函数,()g x 是偶函数.D.()f x 是偶函数,()g x 是奇函数.3.【答案】D【解析】()sin 30sin d xf x t t =⎰,()3sin(sin )cos f x x x ='为奇函数.所以()f x 为偶函数,()()0d xg x f t t =⎰为奇函数.4.已知数列{}(0),n n a a ≠若{}n a 发散,则A.1n n a a ⎧⎫+⎨⎩⎭发散. B.1n n a a ⎧⎫-⎨⎬⎩⎭发散.C.1ee nn a a ⎧⎫+⎨⎬⎩⎭发散. D.1ee nn a a ⎧⎫-⎨⎬⎩⎭发散.4.【答案】D【解析】选项A :取=22n a 11,,, (22),112+.2n n a a +收敛到错误.选项B :取=1,1,1,1,,n a -- 10.n na a -收敛到错误.选项C :取=ln 2,ln 2,ln 2,ln 2,,n a -- 11e2e 2nna a ++收敛到错误.5.已知函数221()sin 0,(,)0,0,x y xy xy f x y xy ⎧+≠⎪=⎨⎪=⎩,则在点(0,0)处A.(,)f x y x ∂∂连续,(,)f x y 可微.B.(,)f x y x ∂∂连续,(,)f x y 不可微.C.(,)f x y x ∂∂不连续,(,)f x y 可微.D.(,)f x y x∂∂不连续,(,)f x y 不可微.5.【答案】C 【解析】()(()(,0,0,0,000limlimx y x y x y →→≠≠--⋅+⋅--⋅+⋅=或()(()(()22,0,0,0,000001sin0limlim0,x y x y x y x y x y xy→→≠≠≠≠+---⋅+⋅==且且则(),f x y 在(0,0)处可微.而()2221112sin cos ,0,(,)=0,0,x x y xy f x y xy xy x y x xy ⎧⎛⎫++-≠∂⎪ ⎪⎨⎝⎭∂⎪=⎩()()()()()()222,0,0,0,00000,11limlim 2sin cos x y x y x y x y x y f x y x xxy x y xy →→≠≠≠≠⎡⎤+∂⎢⎥=-∂⎢⎥⎣⎦且且不存在,从而(),f x y x∂∂在(0,0)处不连续.6.设(,)f x y 是连续函数,则12sin 6d (,)d xx f x y y ππ=⎰⎰A.1arcsin 126d (,)d .y y f x y x π⎰⎰B.121arcsin 2d (,)d .yy f x y x π⎰⎰C.1arcsin 206d (,)d .yy f x y x π⎰⎰D.122arcsin d (,)d .yy f x y x π⎰⎰6.【答案】A【解析】11arcsin 21sin 266d (,)d d (,)d .yxx f x y y y f x y x πππ==⎰⎰⎰⎰选A .7.设非负函数()f x 在∞[0,+)上连续.给出以下三个命题:①若20()d f x x +∞⎰收敛,则0()d f x x +∞⎰收敛;②若存在1,p >使得lim ()px x f x →+∞存在,则0()d f x x +∞⎰收敛;③若0()d f x x +∞⎰收敛,则存在1,p >使得lim ()p x x f x →+∞存在.其中真命题的个数为A.0.B.1.C.2.D.3.【答案】B【解析】①取()2011(),d 11f x x x x +∞=++⎰收敛,01d .1x x +∞+⎰发散,错误②极限比较判别法原话.正确.③极限比较判别法为充分不必要条件.错误.()()()201d 1,lim .1ln 1px x p x f x x x +∞→+∞>=∞++⎰取收敛,8.设A 为3阶矩阵,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 若T 2200020a c c b c c +⎛⎫⎪= ⎪ ⎪⎝⎭,P AP 则=A A.0000.00c a b ⎛⎫⎪⎪ ⎪⎝⎭ B.0000.00b c a ⎛⎫⎪⎪ ⎪⎝⎭C.0000.00a b c ⎛⎫⎪⎪ ⎪⎝⎭D.0000.00c b a ⎛⎫⎪⎪ ⎪⎝⎭8.【答案】C【解析】()3T 212010000, 010120101a c c b c c +⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且AP B P E P ,故()()()11112233T11T (1)(1)----⎡⎤==⎣⎦PA B P E B E 11131313131T3T131 (1)(1)(1)(1)(1)(1)---⎡⎤==---⎣⎦E BE E E BE E 0 10120100100010001001000120101101a c c b c c -+⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪⎪⎪ ⎪⎪⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 0001001000000010010002010110100 a b b c c c ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.9.设A 为4阶矩阵,*A 为A 的伴随矩阵,若*()=-A A A O 且*≠,A A 则()r A 取值为A.0或1.B.1或3.C.2或3.D.1或2.9.【答案】D【解析】由题意可知*()=-A A A O ,故()()*4r r +-≤A A A.()***,,1r ≠-≠-≥又故即A A A A A O A 因此() 3r ≤A .又()*2*22-=-=-==OA A AAAA A A E A ()()**2,0r r ⇒≤=⇒=此时OA A A 又()*1r ≠⇒≥A A A ,故()12r =或A .10.设,A B 为2阶矩阵,且=,AB BA 则“A 有两个不相等的特征值”是“B 可对角化”的A.充分必要条件.B.充分不必要条件.C.必要不充分条件.D.既不充分也不必要条件.10.【答案】B【解析】方法一充分性,A 有两个不相等的特征值,故A 必可相似对角化.又=,AB BA ,且A 有2个不同特征值,故A 的特征向量都是A 的特征向量.(利用线代9讲结论)又A 有2个线性无关特征向量,故B 有2个线性无关特征向量,故B 必可相似对角化.必要性,B 可相似对角化,不妨取,==B E A E ,则推翻.【解析】方法二因题知A 有两个不同特征值,不妨设为12λλ,且12λλ≠,则存在可逆阵P 使1121111111122 λλλλλλ-------⎛⎫⇒= ⎪⎝⎭=⇔=⎛⎫⎛⎫⇔= ⎪ ⎪⎝⎭⎝⎭又P AP AB BA P APP BP P BPP APP BP P BP B 可相似对角化1-⇔P BP 可相似对角化.12134121211343422111211221223241324 b b b b b b b b b b b b b b b b b b b b λλλλλλλλλλλλλλ-⎛⎫= ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⇔=≠ ⎪ ⎪⎝⎭⎝⎭设代入上式由P BP 122222313311140000b b b b b b b b λλλλ--⇒=⇒==⇒=⎛⎫⇒=⇒ ⎪⎝⎭可对角化P BP P BP ⇒可对角化B 以上推导均基于12λλ≠,反之 可对角化B 无法推出A 有两不同特征值,故A 有两个不同特征值为 B 可对角化的充分非必要条件.二、填空题:11~16小题,每小题5分,共30分.11.曲线2y x =在点(0,0)处的曲率圆方程为.11.221124x y ⎛⎫-+= ⎪⎝⎭【答案】【解析】由图像可转化为2y x =处且()()3221y k y '''=+()0,020,2y xy ==''='12,2k R ==,2211(0)24x y ⎛⎫-+-= ⎪⎝⎭,即221124x y ⎛⎫-+= ⎪⎝⎭.12.函数324(,)2961224f x y x x y x y =--++的极点是.12.【答案】(1,1)【解析】由23618120,24240,x y f x x f y '⎧=-+=⎪⎨'=-+=⎪⎩解得驻点为(1,1),(2,1).又21218,0,72,xxxy yy A f x B f C f y ''''''==-====-代入点(1,1)得24320,6,AC B A -=>=-故(1,1)是极大值点.代入点(2,1)得24320,AC B -=-<故(2,1)不是极值点.13.微分方程21()y x y '=+满足条件(1)0y =的解为.13.【答案】()π arctan 4x y y +=+【解析】方程化为2d ()d xx y y=+d d1d d x u u x y y y=+=-令则即2d 1d uu y=+则21d d 1u y u ⎰=⎰+arctan u y c=+代1,0,1x y u ===.得π 4c =得()πarctan 4x y y +=+14.已知函数2()(e 1)xf x x =+,则(5)(1)f =.14.【答案】31e 【解析】()()()52e 1x x +()()()(5)(4)22e 15e 1x x x x '=++⋅+⋅()()(5)225e 1''x C x ++2e 5e 210e 2x x x x x =⋅+⋅⋅+⋅⋅,则(5)e 10e 20e 31e(1)f++==15.某物体以速度()sin πv t t k t =+作直线运动.若它从0t =到3t =的时间段内平均速度是52,则k =.15.【答案】3π2【解析】30(sin )2πd 53t k t t+=⎰,则3015(sin )2πd t k t t +=⎰,30915cos 22k t -π=π915(11)22k ---=π,则3π2k =.16.设向量1231111,,,1111a ab a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα若123,,ααα线性相关,且其中任意两个向量均线性无关,则ab =.16.【答案】4-【解析】由()22123211111111011011,,1101101111011002a a a a a a a a b b a b a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪==→→⎪ ⎪ ⎪--+-+- ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A ααα由()123,,2r ≤ααα且()(),2i j r i j =≠αα故()123,,2r =ααα1当1a =时,1α与3α相关,不满足题意2当1a ≠时,()()1231111011011,,0110012002002a aa ab a b a a a ⎛⎫⎛⎫⎪ ⎪++⎪ ⎪→→ ⎪ ⎪+--+- ⎪ ⎪++⎝⎭⎝⎭ααα故要满足题意,则20a +=且()120b a -+-=242a ab b =-⎧⇒⇒=-⎨=⎩三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面有界区域D 位于第一象限由曲线1,33xy xy ==与直线1,3y x =3y x =围成,计算()1d d Dx y x y +-⎰⎰.17.【解】令yu xy v x==,,(1)x y ⎧=⎪⎨⎪=⎩(2)12J v ∂x ∂x==∂u∂y ∂v ∂y 故∂u∂v1331331d 1d 2u v v ⎛=+⋅ ⎝⎰⎰原式8ln33=.18.设()y x 为微分方程290,x y xy y '''+-=满足条件112,6x x y y =='==的解.(1)利用变换e tx =将上述方程化为常系数线性方程,并求();y x(2)计算21(.y x x ⎰解:(1)290,x y xy y '''+-=令e tx =,则222222d d d d 1d d 1d 1,,d d d d d d d y y t y y y y x t x t x x t x t x ⎛⎫⎛⎫===+- ⎪ ⎪⎝⎭⎝⎭则2222d d d d 90,90d d d d y y y y y y t t t t-+-=-=即,()()()()3332121123221124e e ,1=233,1336,t t C y C C y x C x y C C x C y x C x y C C x -=+=+=+''=-=-=,,①②从而()312=2=0=2.C C y x x ,,则(2)2211(2y x x x x=⎰⎰3222226624352sin16sin4cos d64(1cos)cos d(cos)cos1164)d6435116464.38532816055x tt t t t t tt uu u u u uππππ==--⎛=-=-⎝⎛⎛=-==⎝⎭⎝⎭⎰⎰令令19.设0,t>平面有界区域D由曲线xy-=与直线,2x t x t==及x轴围成,D绕x轴旋转一周所成旋转体的体积为()V t,求()V t的最大值.19.【解】222222π()π()dπe d(21)e4tt t x xt ttV t y x x x x x--===-+⎰⎰42π(41)e(21)e(0)4t tt t t--⎡⎤=-+-+>⎣⎦()42π1()16e4e0,ln4ln242t tV t t t t'--=--+===,(0,ln2),t∈maxπ3π()0,(ln2,),()0,ln2,[()]ln21664V t t V t t V t''>∈+∞<==+20.已知函数(,)f u v具有2阶连续偏导数,且函数(,)(2,3)g x y f x y x y=+-满足222226 1.g g gx x y y∂∂∂+-=∂∂∂∂(1)求2;fu v∂∂∂(2)若2(,0)1e,(0,)1,50uf u u f v vu-∂==-∂求(,)f u v的表达式.20.【解】(1)23g f fx u v∂∂∂=+∂∂∂2222222222222 2233234129g f f f f f f fx u u v u v v u u v v ⎛⎫⎛⎫∂∂∂∂∂∂∂∂=⋅+⋅++⋅=++⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭,2gx y ∂∂∂222222222222(1)31)23f f f f f f f u u v u v v u u v v ⎛⎫⎛⎫∂∂∂∂∂∂∂=+⋅-++-=+- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭,g f f y u v∂∂∂=-∂∂∂,()()2222222222222112g f f f f f f fy u u v u v v u u v v ⎛⎫∂∂∂∂∂∂∂∂=+⋅--+-=-+ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭,代回原式得,2 251f u v∂=∂∂,故2125f v v ∂=∂∂(2)()111d 2525f v v c u u ∂=⎰=+∂,()()1,0e e u uf u u c u u u --∂==∂代得,1e 25u f u v u -∂=+∂故,则()()()211,e d 1e 2525u u f u v u v u u uv c v --⎛⎫=⎰+=-+++ ⎪⎝⎭.代()210,150f v v =-得()22150c v v =综上:()()211,12550uf u v u e uv v -=-+++.21.设函数()f x 具有2阶导数,且()()()01, 1.f f f x ''''=≤证明:(1)当()0,1x ∈时,()()()()()1011;2x x f x f x f x ----≤(2)()()()1011d .212f f f x x +-≤⎰21.证明:(1)()12()(0)(0)2f f x f f x x ξ'''=++①()()22()(1)(1)1(1)2f f x f f x x ξ'''=+-+-②()1x x⋅-+⋅①②()()()()()12221()(0)(1)(1)(0)1(1)1(1)22f f f x f x f x f x x f x x x x xx ξξ''''''⇒=-++-+-+--+,21111()(0)(1)(1)(1)(1)(1)(1)(1).222 2f x f x f x x x x x x x x x x x ----+-=-+-=- (2)[]02111(1)1()(0)(1)(1)d ()d (0)(1)22x f x f x f x x f x x f f ----=-⋅-⋅⎰⎰1100(0)(1)(1)1()d d .22 12f f x x f x x x +-=-=⎰⎰ 22.设矩阵1101,11,1012a b ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭A B 二次型T123(,,)f x x x =x BAx .已知方程组=0Ax 的解均是T =0B x 的解,但这两个方程组不同解.(1)求,a b 的值;(2)求正交变换=x Qy 将123(,,)f x x x 化为标准形.22.【解】(1)由题意可知,=0Ax 的解均是T=0B x 的解故()r r ⎛⎫=⎪⎝⎭T A A B ,且()2r =A 011011011010101 11011001112011001a a a b b b a a ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎛⎫ ⎪ ⎪ ⎪=→→⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭T 又A B 故1,2a b ==(2)111120111111210122224⎛⎫⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭BA CT T 112112224f ⎛⎫⎪== ⎪ ⎪⎝⎭x BAx x x由()()12310,tr 6r λλλ=⇒====C C 当120λλ==时,得到线性无关的特征向量为12111,101⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ,单位化为12,0⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ =-= ⎪ ⎪ - ⎪⎪ ⎝⎭⎝η η当36λ=时,得到线性无关的特征向量为3112⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化为2112⎛⎫⎪=⎪⎪⎭η()123 ,,0⎛ ==-⎝故令Q ηηη则23T6f ===x Qyx Cx y。
考研数学真题及其答案解析考研是许多大学毕业生追逐更高学术水平的重要途径,而数学部分是很多考生的重点关注。
本文将为大家提供一套考研数学真题,并对其答案进行解析,帮助考生更好地理解解题思路和方法,为考试做好充分准备。
一、选择题1. 题干:在矩阵A=[1 2 3; 4 5 6; 7 8 9]的基础上,若将其第一行的元素都加上2,得到矩阵B,则B的行列式的值是多少?选项:A)2 B)5 C)16 D)24答案与解析:选项C)16解析:根据矩阵的性质,行列式的值在对矩阵的行进行线性组合时保持不变。
对A的第一行进行线性组合后得到矩阵B=[3 4 5; 4 5 6; 7 8 9],计算B的行列式,得到结果16。
2. 题干:设函数f(x)=2^x + 3^x + 4^x,其中x为实数,则函数f(x)的最小值是多少?选项:A)3 B)4 C)5 D)6答案与解析:选项C)5解析:通过求导可得f'(x)=ln(2) * 2^x + ln(3) * 3^x + ln(4) * 4^x。
由于2^x、3^x、4^x都大于0,所以f'(x)恒大于0,即f(x)在整个实数域内单调递增。
由此可知,f(x)的最小值为f(0)=3+1+1=5。
二、填空题1. 题干:设函数f(x)在区间[0,2π]上连续,则∫[0,π] f(x)dx = _______。
答案:∫[0,π] f(x)dx = ∫[π,2π] f(x)dx解析:由于f(x)在区间[0,2π]上连续,所以f(x)在[0,π]和[π,2π]上积分结果相等。
2. 题干:若a > 0,b < 0,则方程e^(3x) + ae^x + b = 0的一个实根为_______。
答案:由题可知,当a > 0,b < 0时,必有一个实根。
三、计算题1. 题干:求解方程组:x + y + z = 6x - y + 2z = 42x + y - z = 1答案与解析:解为x = 1, y = 2, z = 3。
2023年考研数学一真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A. B.C. D.【答案】B.【解析】由已知,则,,所以斜渐近线为.故选B.2.若的通解在上有界,则().A. B.C. D.【答案】D. 【解析】微分方程的特征方程为.若,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若,则,通解为,在上有界.时,若,则,通解为,在上无界. 综上可得,.3. 设函数由参数方程确定,则( ).A .连续,不存在 B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续..时,;时,;时,,故在连续.,,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得绝对收玫; 设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,,记矩阵的秩分别为,则( )A. B. C. D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故. 综上,比较可得B正确.6. 下列矩阵不能相似对角化的是( )A. B.C. D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化. 选D.7. 已知向量,,,,若既可由线性表示,也可由线性表示,则( ) A . B.C. D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,,解得,故.8.设服从参数为1的泊松分布,则().A. B. C. D.【答案】C.【解析】方法一由已知可得,,,故,故选C.方法二由于,于是,因此. 由已知可得,,故,故选C. 9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,,,,则( )A. B.C. D.【答案】D.【解析】由两样本相互独立可得与相互独立,且,,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,,为来自总体的简单随机样本,且为的无偏估计,则( ).A. B. C. D.【答案】A.【解析】由与,为来自总体的简单随机样本,,相互独立,且,,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,,即,解得,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当时,与是等价无穷小,则.【答案】【解析】由题意可知,,于是,即,从而.12.曲面在处的切平面方程为_ .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则.【答案】【解析】由题意知,于是.14.设连续函数满足,,则.【答案】【解析】.15.已知向量,若,则.【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则. 答案】【解析】.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,. 令,解得唯一驻点,,故.18.(本题满分12分)求函数的极值.【解】由已知可得,,由解得驻点为.又,,.在处,,,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,,,,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,,,,两式相减可得,所以,即.21.(本题满分12分)设二次型,,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得..令,则,即时,规范形为.令,则时,规范形为.故可得时化为,可逆变换,其中. (2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故合同但不相似,故不存在可逆矩阵使得.若存在正交矩阵,当时,,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,,,故.(2)由(1)可知,,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故。
2023年全国硕士研究生招生考试考研《数学二》真题及详解一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.曲线1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【正确答案】B【参考解析】由已知1ln 1y x e x ⎛⎫=+⎪-⎝⎭,则可得: 1ln 11lim lim lim ln 11x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e 。
2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【正确答案】D【参考解析】当x ≤0时,可得:()(1d ln f x x x C ==++⎰当x >0时,可得:()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx xx x x xx x x C =+=+=+-=+++⎰⎰⎰⎰在x =0处,有:(110lim ln x x C C -→+=,()22lim 1sin cos 1x x x x C C +→+++=+由于原函数在(-∞,+∞)内连续,所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧+++≤⎪=⎨⎪+++>⎩⎰令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩。
2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。
2023年全国硕士研究生招生考试数学一试题一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是最符合题目要求的.1.曲线1ln 1y x e x的斜渐近线为A.y x e B.1y x eC.y xD.1y x e2.若微分方程0y ay by 的解在 , 上有界,则A.0,0a b B.0,0a b C.0,0a b D.0,0a b 3.设函数 y f x 是由2,sin x t t y t t确定,则A. f x 连续, 0f 不存在.B. 0f 存在, f x 在0x 处不连续.C. f x 连续, 0f 不存在.D. 0f 存在, f x 在0x 处不连续.4.已知(1,2,...)n n a b n ,若级数1nn a与1nn b均收敛,则“1nn a绝对收敛”是“1nn b绝对收敛”的A.充分必要条件 B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.已知n 阶矩阵,,A B C .满足 ABC O ,E 是n 阶单位矩阵,记矩阵OA BC E ,AB C O E ,E AB ABO 的秩分别为123,,r r r ,则A.123r r r B.132r r r C.312r r r D.213r r r 6.下列矩阵中不能相似于对角矩阵的是A.11022003aB.1112003a aC.11020002aD.11022002a7.已知向量121212212,1,5,03191.若 既可由12, 线性表示,也可由12, 线性表示,则A.33,4k kR B.35,10k k R C.11,2k kR D.15,8k kR 8.设随机变量X 服从参数为1的泊松分布,则E X EXA.1e B.12C.2eD.19.设12,,,n X X X 为来自总体 21,N的简单随机样本,12,,,mY Y Y为来自总体22,2N 的简单随机样本,且两样本相互独立.记1111,,n m i i i i X X Y Y n m221111n i i S X X n ,22111mi i S Y Y m ,则A. 2122~,S F n m S B. 2122~1,1S F n m S C. 21222~,S F n m S D. 21222~1,1S F n m S 10.设12,X X 为来自总体 2,N的简单随机样本,其中(0) 是未知参数.若12ˆa X X为 的无偏估计.则aA.2B.2二、填空题:11~16小题,每小题5分,共30分.11.当0x 时,函数 2ln 1f x ax bx x 与 2cos x g x e x 是等价无穷小,则ab.12.曲面222ln 1z x y x y 在点 0,0,0处的切平面方程为.13.设f x 是周期为2的周期函数,且 1,0,1f x x x ,若01cos 2n n a f x a n x,则21n n a.14.设连续函数 f x 满足: 2f x f x x ,20f x dx ,则 31f x dx.15.已知向量12311010111,,,10111111αααβ,112233k k k γααα,若,(1,2,3)T T i i i γαβα,则222123k k k.16.设随机变量,X Y 相互独立,且1~1,3X B,1~2,2Y B,则 2P X Y .三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.设曲线 0y y x x 经过点 1,2,该曲线上任一点 ,P x y 到y 轴的距离等于该点处的切线在y 轴上的截距.(1)求 y y x .(2)求函数 1x f x y t dt在(0,) 的最大值.18.(本题满分12分)求函数 23,f x y y x y x 的极值.19.(本题满分12分)设空间有界区域 由柱面221x y 和平面0z 和1x z 所围成, 为 的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy.20.(本题满分12分)已知 f x 在 ,a a 上具有二阶连续导数.证明:(1)若 00f ,则存在 ,a a ,使得 21f f a f a a.(2)若f x 在,a a 内取得极值,则存在,a a ,使得212f f a f a a.21.(本题满分12分)已知二次型2221231231213,,2222f x x x x x x x x x x ,22212312323,,2g y y y y y y y y .(1)求可逆变换x y P ,将二次型 123,,f x x x 化成 123,,g y y y .(2)是否存在正交变换x y Q ,将二次型 123,,f x x x 化成 123,,g y y y .设二维随机变量 ,X Y 的概率密度为 22222,1,0,x y x y f x y,其他.(1)求,X Y 的协方差.(2),X Y 是否相互独立?(3)求22+Z X Y ,求Z 的概率密度.23考研数一真题答案速查一、选择题1.考点:渐近线答案:B.1y x e2.考点:常系数线性微分方程答案:C.0,0a b 3.考点:参数方程求导,分段函数求导答案:C. f x 连续,但 0f 不存在.4.考点:数项级数敛散性的判定答案:A.充分必要条件5.考点:矩阵的秩答案:B.132r r r 6.考点:相似对角化答案:D.11022002a 7.考点:向量的线性表示答案:D.15,8k kR 8.考点:常见分布答案:C.2e9.考点:三大抽样分布答案:D.21222~1,1S F n m S 10.考点:估计量的评选标准(无偏性)答案:A.2二、填空题11.考点:等价无穷小答案:212.考点:空间曲面的切平面答案:20x y z 13.考点:傅里叶级数答案:014.考点:定积分的换元法答案:1215.考点:向量内积与线性方程组答案:11916.考点:常见分布答案:13三、解答题17.考点:切线方程、一阶线性微分方程、函数求最值答案:(1)ln 2y x x x ;(2) f x 的最大值为241544f e e.18.考点:多元函数求极值答案: ,f x y 在210,327处取极大值2104,327729f.19.考点:第二类曲面积分(高斯公式)答案:5420.考点:泰勒中值定理的证明答案:(1)在0x 处泰勒展开,用介值定理推论处理余项.(2)在极值点处泰勒展开,用介值定理推论处理余项.21.考点:二次型的配方法、合同与相似答案:(1)111010001P ,x y P (2)不存在正交变换,因为两个二次型的系数矩阵不相似.22.考点:协方差、独立性、随机变量函数的分布答案:(1)0.(2)不独立.(3) 2,01,0,Z z z f z其他.。
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy∂∂不存在C. (0,1)f x ∂∂存在,(0,1)fy∂∂存在D. (0,1)f x ∂∂不存在,(0,1)fy∂∂不存在【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B 1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A .故选B.. 6.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B. 35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T 1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=. 故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是 1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e e x x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C.9.设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11ni i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S : B. 2122(1,1)S F n m S --: C. 21222(,)S F n m S : D. 21222(1,1)S F n m S --: 【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且 2212(1)(1)n S n χσ--:,2222(1)(1)2m S m χσ--:, 因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----:,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若µ()E σσ=,则a =( ).A.2B.2【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ:,22(,)X N μσ:,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得a =A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】1220sin 2cos 11lim 2sincos limx tx t tt t x x x x t=→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y xf x y x y -=+,且(1,1)4f π=,则f =____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y x f x y x y x y yϕ-==-++⎰, 所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanxf x y C y=-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,arctan 233f ππ=-=.13.20(2)!nn x n ∞==∑____________.【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=, 22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑. 14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)t t --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0x a y y x y b ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t tt ππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求1|d d Dx y -⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则|1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数; (3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。
考研数学试题真题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. 3x^2+3C. x^2-3xD. x^3-3答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。
A. -2B. 2C. -5D. 5答案:B4. 设随机变量X服从正态分布N(0,1),则P(X>1)的值是多少?A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
答案:12. 已知等差数列的前三项分别为2,5,8,求第n项的通项公式。
答案:a_n = 2 + 3(n-1)3. 计算极限lim(x→0) (sin x)/x。
答案:14. 设函数f(x)=x^2-4x+c,若f(x)在x=2处取得最小值,则c的值为。
答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:函数f(x)的导数为f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
经检验,x=1为极大值点,x=11/3为极小值点。
2. 已知函数f(x)=x^3-3x,求其在区间[-2,2]上的最大值和最小值。
答案:函数f(x)的导数为f'(x)=3x^2-3,令f'(x)=0,解得x=±1。
经检验,f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2。
因此,在区间[-2,2]上,最大值为2,最小值为-2。
3. 计算定积分∫(0,π) sin x dx。
考研数学类试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2 - 3B. x^3 - 3C. 3x^2 - 3xD. x^3 + 3x答案:A2. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_5的值。
A. 21B. 31C. 41D. 51答案:B3. 计算定积分∫(0,1) (2x-1)dx的值。
A. 1/2B. 3/2C. 2D. 3答案:B4. 设矩阵A=\[\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}\],求A的行列式值。
A. -2B. 2C. -5D. 5答案:B二、填空题(每题5分,共20分)1. 设函数g(x)=ln(x+√(1+x^2)),求g'(x)的值。
答案:1/(1+x^2)2. 已知数列{b_n}满足b_1=2,b_{n+1}=3b_n-2,求b_3的值。
答案:143. 计算二重积分∬(D) (x^2+y^2)dxdy,其中D为x^2+y^2≤1的区域。
答案:π4. 设矩阵B=\[\begin{matrix}2 & 0 \\ 0 & 3\end{matrix}\],求B的逆矩阵。
答案:\[\begin{matrix}1/2 & 0 \\ 0 & 1/3\end{matrix}\]三、解答题(每题15分,共30分)1. 求函数F(x)=e^x-x^2在区间[0,1]上的最大值和最小值。
答案:最大值为e-1,最小值为0。
2. 已知函数h(x)=x^3-3x^2+2,求h(x)的单调区间。
答案:单调递增区间为(-∞,1)和(2,+∞),单调递减区间为(1,2)。
2023年全国硕士研究生招生考试(数学三)试题及答案解析1.已知函数,ln sin f x y y x y ,则A. 0,1fx 不存在,0,1f y 存在.B. 0,1fx 存在,0,1f y 不存在.C. 0,1fx ,0,1f y均存在.D. 0,1fx ,0,1f y均不存在.x 0,2.函数f (x )(x 1)cos x ,x 0的一个原函数为 x ),x 0,A.F (x )(x 1)cos x sin x ,x 0. x ) 1,x 0,B.F (x )(x 1)cos x sin x ,x 0. x ),x 0,C.F (x )(x 1)sin x cos x ,x 0. x ) 1,x 0,D.F (x )(x 1)sin x cos x ,x 0.上有界,则B.a 0,b 0.D.a 0,b 0.3.若微分方程y ay by 0的解在 ,A.a 0,b 0.C.a 0,b 0.4.已知a n b nn 1n 1,2, ,若级数n 1an与n 1bn均收敛,则“n 1an绝对收敛”是“bn绝B.充分不必要条件.D.既不充分也不必要条件.对收敛”的A.充分必要条件.C.必要不充分条件.5.设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵, M 为矩阵M 的伴随矩阵,则=A E OB A..A B B A O B A B..B A A B O A B C..B A B A OA B D..A B A B OB A 6二次型f x 1,x 2,x 3 x 1 x 22x 1 x 324 x 2 x 32的规范形为A.y 12y 22B.y 12y 22C.y 12y 224y 32D.y 12y 22y 322311 12 2 15 09 17.已知向量α1 ,α2 ,β1 ,β2 ,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ 34 3A.k,k R50 3 B.k1 ,k R1 2 1 C.k,k R1 D.k 58,k R8.设随机变量X 服从参数为1的泊松分布,则EA.1eB.12C.X EX2eD.19.设X 1,X 2, ,X n 为来自总体N1,2的简单随机样本,Y 1,Y 2, ,Ym为来自总体N 2,2 2 的简单随机样本,且两样本相互独立,记111111n m n m i i n m n m i 1i 1X X i ,Y Y i ,S 12 X i X 2,S 22Y i Y1 1 2,则A. 2122,S F n m S B. 21221,1S F n m S C. 21222,S F n m S D. 212221,1S F n m S 10.设X 1,X 2为来自总体N,2的简单随机样本,其中 0 是未知参数.记a X 1 X 2,若E,则aA.2B.2二、填空题1111.l x x x i mx 22 x sin cos _______.2πx d y y d x x y 12.已知函数f (x ,y )满足d f (x ,y ),f 1,1 24则f .!=2nx 2nn 013. .14.设某公司在t 时刻的资产为f (t ),从0时刻到t 时刻的平均资产等于f (t )tt ,假设f (t )连续且f (0)=0,则f (t )=1231230,20x ax x x ax 15.已知线性方程组 x ax 1 bx 2 2,有解,其中a ,b 为常数,若a110a211a 4,则1a 112aa b 0.16.设随机变量X 与Y 相互独立,且X B 1,p ,Y B 2,p ,p 0,1 ,则X +Y 与X Y .的相关系数为三、解答题17.已知可导函数y =y (x )满足ae x y 2 y ln(1 x )cos y b 0,且y (0) 0,y '(0) 0.(1)求a ,b 的值;(2)判断x 0是否为y (x )的极值点.18.已知平面区域D ={(x,y )|0 y x 1}.(1)求D 的面积;(2)求D 绕x 轴旋转所成旋转体的体积.D1|d x d y .19.已知平面区域D {(x ,y )|(x 1)2 y 2 1}.计算二重积分 |20.(12分)设函数f (x )在[-a ,a ]上具有2阶连续导数,证明:1a(1)若f (0)=0,则存在 a ,a ,使得f ''( )2[f (a ) f ( a )];(2)若f(x )在(-a ,a )内取得极值,则存在 a ,a 使得1.2f ''a2f (a ) f ( a )12x 1x 2x 3x 1x 2x 3x21.设矩阵A 满足对任意x 1,x 2,x 3均有A2 . x x3 x 2 x 3(1)求A ;(2)求可逆矩阵P 与对角矩阵 ,使得P 1AP Λ.xx22.设随机变量变量X 的概率密度为f x 1 e e 2, x ,令Y e x.(1)求X 的分布函数;(2)求Y 的概率密度;(3)Y的期望是否存在?2023年全国硕士研究生入学统一考试数学三答案一、选择题1.A2.D3.C4.A5.D6.B7.D8.C9.D10.A空题11、二、填23π12、113、e x2+2e −x14、f (t )=2(1-t )-2e t 15、816、p (p-1)将y (0) 0代入ae x2yy y1 1xcos y ln(1 x )(sin y )y 0得a 0 1 0,所以a 1b 1 1xcos y ln(1 x )sin y y 0(2)由e x2yy y1两边对x 求导,得:(1)将(0,0)代入得a b 01e x 2 y 22yy y(1 1x )2cos y 11xsin ysin y y ln(1 x ) 2sin yy cos y y 01 x代入,得1 y (0) 1 0,y (0) 2 0,x 0为极大值.17【解析】2141tan ttan t xsec t (1)24se tan c tsec 2tdt 4t dt2csc tdt1)21(2)11 1x 2 x 2dx 112 1 1x 2 x dx 4)dx (1 18【解析】D 1 {(x ,y ∣)x 2 y 2 1,(x 1)2 y 2 1 )x 2 y 2 1,(x 1)2 y 2 1D 2 (x ,y∣D 1D 2d x d y1 1d x d y原式=161310829D 12cos2d 1 1 r r d r 1πd x d y 2 6d 1 r r d r 2其中 19【解析】π2π022259182D 2DD 1D 1d x d y 2cos1 1 1 r 1 r d r1 π d x d yd x d yd x d y d所以4439π原式=.1 x 22f【解析】(1)f (x ) f (0) f (0)x 1 22f 112f a 2,f ( a ) f (0)( a ) a 2,其中 1 a ,0 ,则f (a ) f(0)a2 0,a .12 1 2 f ( a ) f (a )ff a 212 1 2 ff 2f (a )a f ( a ) f , 1, 2 a ,a ,由介值定理可知平均值 即证(2)x 0 0设f (x )在x =x 0处取得极值即x 0 ( a a ),f22x 0( )ff (x ) f x 0 f x x 0 x x 020代入x a ,x a21f f ( a ) f x 0 a x 02(1), 1 a ,x 02n 1f f (a ) f x 0a x 02(2), 2 x 0,a(2)-(1)得222100()()22f f f a f a a x a x222100|()()|22f f f a f a a x a x2200()()22f f a x a x 2200()2f a x a x 220()222f a x220()f a x2()2f a ,12 ()max f f f 其中,,a a 21()|()()|2f f a f a a. 21.【解析】12123311111011x x x xx x2(1)由题可知,A 11.2011 111A (2)|A E | (2 )(2)( 1) 01232,1,2A 中1 A 中对应的线性无关特征向量1(4,3,1).T 2 A 中对应的线性无关特征向量21,0,12T3 A 中对应的线性无关特征向量3(0,1,1)123,,p 1212P AP22.【解析】xf (t )dt ( x )(1)F (x ) txt e 2dte121 1xt d e te1t x1 e 11 1e x(2) 当0y 时22111()(ln )(1)(1)Y X y f y f y y y y y 210(1)()0 Y y y f y其它 (3) 20d (1)EY y y y,2(1)y y 1y ,所以期望不存在.。
试卷及解2024考研数学(三)真题析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.设函数21()lim1nn xf x nx →∞+=+,则()f x A.在1x =,1x =-处都连续.B.在1x =处连续,在1x =-处不连续.C.在1x =,1x =-处都不连续.D.在1x =处不连续,在1x =-处连续.1.【答案】D【解析】当21 1lim11nn xx x nx →∞+<=++时,,当211lim01nn xx nx →∞+>=+时,,当21,lim01n x n →∞==+时,当01lim01n x n→∞=-=+时,,故()1,11,0,x x f x +-<<⎧=⎨⎩其他.故在1x =-时,连续;1x =时不连续.选D.2.设sin d a k aI x x π+=⎰,k 为整数,则I 的值A.只与a 有关B.只与k 有关C.与,a k 均有关D.与,a k 均无关2.【答案】B 【解析】π|sin |d a k a I x x+=⎰ππ0|sin |d sin d 2.k x x k x x k ===⎰⎰选B.3.设(,)f x y 是连续函数,则12sin 6d (,)d xx f x y y ππ=⎰⎰A.1arcsin 126d (,)d .yy f x y x π⎰⎰B.121arcsin 2d (,)d .yy f x y x π⎰⎰C.1arcsin 206d (,)d .yy f x y x π⎰⎰D.122arcsin d (,)d .yy f x y x π⎰⎰3.【答案】A【解析】11arcsin 21sin 266d (,)d d (,)d .yxx f x y y y f x y x πππ==⎰⎰⎰⎰选A.4.幂级数nnn a x∞=∑的和函数为ln(2)x +,则20nn na∞==∑A.16-B.13-C.16D.134.【答案】A【解析】()112ln 2ln 1ln 2ln 2(1)2nn n x x x n ∞-=⎛⎫⎪⎛⎫⎝⎭+=++=+- ⎪⎝⎭∑23462222ln 222346x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭=+-+-+ ⎪⎝⎭224680246357320234111 2322242111 2221114182 .138361624nn naa a a a ∞==+++++⎛⎫=-+⋅--+ ⎪⋅⋅⎝⎭⎡⎤=-+++⎢⎥⎣⎦⎡⎤⎢⎥=-=-=-⨯=-⎢⎢⎥-⎣⋅⎦∑ 5.设二次型()T123,,f x x x =x Ax 在正交变换下可化成22212323y y y -+,则二次型f 的矩阵A 的行列式与迹分别为.6,2A --.6,2B -.6,2C -.6,2D 5.【答案】C【解析】()T123,,f x x x =x Ax 正交变换下化为22212323y y y -+⇒A 的特征值为1,2,3-()()()1236,tr 1232⇒=⋅-⋅=-=+-+=A A .6.设A 为3阶矩阵,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 若T 2200020a c c b c c +⎛⎫⎪= ⎪ ⎪⎝⎭,P AP 则=AA.0000.00c a b ⎛⎫⎪⎪ ⎪⎝⎭ B.0000.00b c a ⎛⎫⎪⎪ ⎪⎝⎭C.0000.00a b c ⎛⎫⎪⎪ ⎪⎝⎭D.0000.00c b a ⎛⎫⎪⎪ ⎪⎝⎭6.【答案】C【解析】()3T 212010000, 010120101a c c b c c +⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且AP B P E P 故()()()11112233T11T (1)(1)----⎡⎤==⎣⎦PA B P E B E 11131313131T3T131(1)(1)(1)(1)(1)(1)---⎡⎤==---⎣⎦E BE E E BE E 0 10120100100010001001000120101101a c c b c c -+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪= ⎪⎪⎪⎪ ⎪⎪⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 0001001000000010010002010110100 a b b c c c ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.7.设矩阵131,2112ij a b b aM +⎛⎫⎪⎪= ⎪ ⎪⎝⎭A 表示A 的行j 列元素的余子式,若1||2=-A .且2122230M M M -+-=.则3.02A a a ==-或3.02B a a ==或1.12C b b ==-或1.12D b b =-=或7.【答案】B【解析】120101322211111222112121bba bbbba a a-+===A 1211(1)122a b +⎛⎫=-⋅- ⎪⎝⎭111(21)22b a ⎛⎫=-⋅--=-⎪⎝⎭11(21)22b a ⎛⎫⇒--=⎪⎝⎭12122b ab a ⇒--+=又2122232122230M M M A A A =-+-=++13131111111101111201a b a b a b a b +++====+-=,1b a ⇒=+代入(1)中,得11(1)2022a a a a ++--+=0a ⇒=或312ab =⇒=或52.8.设随机变量X 的概率密度为()()61,01,0,x x x f x ⎧-<<=⎨⎩其他,则X 的三阶中心矩()3E X EX -=A.132-B.0C.116D.128.【答案】B 【解析】1211116(1)d 6634122EX x x x ⎛⎫=-=⋅-=⨯= ⎪⎝⎭⎰3311321021211116(1)d 6d 022 22 x t E X x x x xt t t t --=⎛⎫⎛⎫⎛⎫⎛⎫-=--+⋅-⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰令.9.随机变量,X Y 相互独立,且~(0,2),~(1,1)X N Y N -,设{}{}122,21p P X Y p P X Y =>=->,则121A.2p p >>211B.2p p >>121C.2p p <<211D.2p p <<9.【答案】B【解析】(2)2011E X Y EX EY -=-=+=,(2)44219D X Y DX DY -=+=⨯+=,所以2~(1,9)X Y N -;(2)2022E X Y EX EY -=-=+=,(2)4246D X Y DX DY -=+=+=,所以2~(2,6)X Y N -;121011113333X Y p P ΦΦ---⎧⎫⎛⎫⎛⎫=>=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭21p P ΦΦ⎛⎛=>=--= ⎝⎝,所以2112p p >>,故选B.10.设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是A.X Y + B.2X Y+C.2X D.X10.【答案】D【解析】X 与Y 的联合概率密度为2()e ,0,0(,)()()0,x y Y X x y f x y f x f y λλ-+⎧>>=⋅=⎨⎩其他设Z 的分布函数为()Z F z ,则{}{}()Z F z P Z z P X Y z=≤=-≤1当0z <时,()0Z F z =;2当0z ≥时,{}{}()20Z F z P z X Y z P X Y z =-≤-≤=≤-≤02e d e d y z y x yy x λλλλ+∞+--=⎰⎰.()()02202e e e d 2e d 2e e d 1e .y y y z y z y z y y yλλλλλλλλλλ+∞---++∞+∞----=-=-=-⎰⎰⎰所以()1Z E ,从而Z 与X 服从相同的分布,选D.二、填空题:11~16小题,每小题5分,共30分.11.当0x →时,()2221sin d 1cos xt tt t++⎰与k x 是同阶无穷小,则k =.11.【答案】3【解析】当0x →时,()22221sin ~1cos 2x xx x++,则()223201sin d ~1cos xt tt Ax t++⎰.从而3k =.12.4225d 34x x x +∞=+-⎰.12.【答案】1πln 328-【解析】()()42222255d d 3414x x x x x x +∞+∞=+--+⎰⎰222211d d 14x x x x +∞+∞=--+⎰⎰222111d d 114x x x x x +∞+∞⎛⎫=-- ⎪-++⎝⎭⎰⎰222111ln arctan 2122x x x +∞+∞⎛⎫-=- ⎪+⎝⎭111ππ1π0ln ln 32322428⎛⎫⎛⎫=---=- ⎪ ⎪⎝⎭⎝⎭.13.函数()324,2961224f x y x x y x y =--++的极值点是.13.【答案】()1,1【解析】23618120,24240,x y f x x f y ⎧'=-+=⎪⎨'=-+=⎪⎩解得(1,1) ,(2,1).1218xx A f x ''==-,0xy B f ''==,272yy C f y ''==-,代入(1,1)得24320,6AC B A -=>=-,故(1,1)是极大值点,(1,1)23f =.代入(2,1)得24320AC B -=-<,不是极值.14.某产品的价格函数是250.25,20,350.75,20Q Q p Q Q -≤⎧=⎨->⎩(p 为单价,单位:万元;Q 为产量,单位:件),总成本函数为215050.25C Q Q =++(万元),则经营该产品可获得的最大利润为(万元).14.【答案】50【解析】()()()22(250.25)15050.25,20,350.7515050.25,20.Q Q Q Q Q L PQ C Q Q Q Q Q ⎧--++≤⎪=-=⎨--++>⎪⎩整理得:220.5(20)50,20,(15)75,20.Q Q L Q Q ⎧--+≤=⎨--+>⎩所以20Q =时,50L =为最大利润.15.设A 为3阶矩阵,*A 为的A 伴随矩阵,E 为3阶单位矩阵,若(2)1,()2r r -==E A E +A ,则*A =.15.【答案】16【解析】() 132r <-=E A ,() 23r =<E +A ⇒A 有特征值2,1-.又()3222r λ-=-⇒=E A 有 2个线性无关的特征向量2λ⇒=至少有两重根.()311r λ-=⇒=-E +A 有1个线性无关特征向量1λ⇒=-至少有一重根.又A 为3阶⇒A 的特征值为22,1-,,故()*122214,||16n -=⋅⋅-=-===A A A A .16.设随机试验每次成功的概率为p ,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为413,则p =.16.【答案】23p =【解析】A :全成功,B :至少成功一次.()33()()4()()1(1)13P AB P A p P A B P B P B p ====--,331344(1)p p =--整理得(32)(3602)3p p p p -+=⇒=.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面有界区域D 位于第一象限由曲线1,33xy xy ==与直线1,3y x =3y x =围成,计算()1d d Dx y x y +-⎰⎰.17.【解】令yu xy v x==,,(1)x y ⎧=⎪⎨⎪=⎩(2)12x xuv J y y v uv∂∂∂∂==∂∂∂∂故3113331d 1d 2u v v⎛=+⋅ ⎝⎰⎰原式38ln 3=.18.设函数(,)z z x y =由方程2e ln(1)0xz y z +-+=确定,求22(0,0)22z z x y ⎛⎫∂∂+ ⎪∂∂⎝⎭.18.【解】将0y =代入得e xz =-,则22e xz x ∂=-∂,代()220,001z x x∂=⇒=-∂.将0x =代入得()21ln 1z y z+=+,得()222ln 11z yz zz y z y∂∂=++⋅∂+∂.代0,0,1x y z ===-得()0,0ln2zy ∂=∂.又22222122 211z z z y z z z z z y y z y z y y ⎡⎤⎛⎫∂∂⋅⎢⎥ ⎪+∂∂∂∂⎝⎭⎢=⋅+⋅+⋅⎢⎥∂+∂+∂∂⎢⎥⎣⎦,代0,0,1,ln2zx y z y∂===-=∂得()220,02ln2z y ∂=-∂.故原式为12ln2--.19.设0t >,平面有界区域D 由曲线-2e xy x =与直线x t =,2x t =及x 轴围成,D 的面积为()S t ,求()S t 的最大值.19.【解】()22ed txt S t x x -=⎰,()()42424e e e 4e t t t t S t t t t ---=-=-'则,42 4e e 0ln2.t t t ---=⇒=令()() 0ln20;ln20.t S t t S t <<'>><'当时,当时,故ln2t =时,()S t 取最大值,有()ln 4ln 4222ln 2ln 21113 ln2e d e ln2.221664x x x S x x x ---⎛⎫==-+=+ ⎪⎝⎭⎰20.设函数()f x 具有2阶导数,且()()()01, 1.f f f x ''''=≤证明:(1)当()0,1x ∈时,()()()()()1011;2x x f x f x f x ----≤(2)()()()1011d .212f f f x x +-≤⎰20.证明:(1)()12()(0)(0)2f f x f f x x ξ'''=++①()()22()(1)(1)1(1)2f f x f f x x ξ'''=+-+-②()1x x⋅-+⋅①②()()()()()12221()(0)(1)(1)(0)1(1)1(1)22f f f x f x f x f x x f x x x x x x ξξ''''''⇒=-++-+-+--+,21111()(0)(1)(1)(1)(1)(1)(1)(1).222 2f x f x f x x x x x x x x x x x ----+-=-+-=- (2)[]02111(1)1()(0)(1)(1)d ()d (0)(1)22x f x f x f x x f x x f f ----=-⋅-⋅⎰⎰1100(0)(1)(1)1()d d .22 12f f x x f x x x +-=-=⎰⎰ 21.设矩阵11011103,2126--⎛⎫⎪= ⎪⎪⎝⎭A 1012111,2322a a ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭B 向量023⎛⎫ ⎪= ⎪ ⎪⎝⎭,α10.1⎛⎫ ⎪= ⎪ ⎪-⎝⎭β(1)证明:方程组=Ax α的解均为方程组=Bx β的解;(2)若方程组=Ax α与方程组=Bx β不同解,求a 的值.21.证明:(1)(,)1⎛⎫⇒= ⎪-⎝⎭=0x x A A αα(,)1⎛⎫⇒= ⎪-⎝⎭=0x Bx βB β又11010110101103202042212630328310121011311110000232210121a a a a ----⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎛⎫=→⎪⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭A αB β1101011010010210102100220001100011000000000000000022000000a a ----⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪→→⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭,故()3r r ⎛⎫== ⎪⎝⎭A αB βA ,α.即(,)1⎛⎫= ⎪-⎝⎭0x A α的解是(,)1⎛⎫= ⎪-⎝⎭0B βx 的解.即=Ax α的解是=Bx β的解(2)=Ax α与方程组=Bx β不同解,即=Ax α与=Bx β不等价又=Ax α的解是=Bx β的解,故=Bx β的解不是=Ax α的解.即(,)3r r ⎛⎫≠=⎪⎝⎭A αB βB β,故1012110121,1110011312322103063a a a a ⎛⎫⎛⎫ ⎪ ⎪→--→---- ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭B β101211012101021010210113100110a a a a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭故10a -=即1a =.22.X 服从[]0,θ上的均匀分布,()0θ∈+∞,为未知参数,12,,,n X X X 为总体X 的简单随机样本,记为(){}()12max ,,,,.n c n n X X X X T cX == (1)求c 使得();c E T θ=(2)记()()2,c h c E T θ=-求c 使得()f c 最小.22.【解】(1){}()()12max ,n n n E cX cEX cE X X X θ⎡⎤===⎣⎦ 10()0X x f x θθ⎧<<⎪⎨⎪⎩其他00(),01,X x x F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ {}()120,0max ~(),01,,n n n n X x xX X X F x x x θθθ<⎧⎪⎪=<⎨⎪⎪⎩ ()10()0. X n n n n xx f x θθ-⎧⋅<<⎪=⎨⎪⎩其他{}1110,1max ,d 1n n n n nnx n E X X x x n θθθθθθ-+==⋅+⎰1nn θ=+,所以1n c n+=.(2)()2222()22c c c ch c E T T ET E ET θθθθ=+-=++()()()()222n n E cX E cX θθ=+-()()2222n n c EX c EX θθ=+-因为()221201d 2n n n n n nx n EX x x x n θθθθ-+=⋅=+⎰22nn θ=⋅+()11001d 11n n n n n nxn nEX x x x n n θθθθθ-+=⋅⋅=⋅=++⎰所以22222 ()21221=21n n nc n h c c c c n n n n θθθθθ⎛⎫=+-⋅+-⋅ ⎪++++⎝⎭令2()1221n n f x x x n n =+-++,22()021n n f x x n n '=-=++解得21n x n +=+,即21n c n +=+时,()h c 取最小值.。
2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。
考研数学考试题目及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(x)在区间[1,+∞)上单调递增,则c 的取值范围是:A. c≥-3B. c≤-3C. c≥3D. c≤3答案:C2. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}-1 & 0 \\ 0 & 1\end{bmatrix}\],则A+B=:A. \[\begin{bmatrix}0 & 2 \\ 3 & 5\end{bmatrix}\]B. \[\begin{bmatrix}0 & 2 \\ 3 & 4\end{bmatrix}\]C. \[\begin{bmatrix}-1 & 2 \\ 3 & 4\end{bmatrix}\]D. \[\begin{bmatrix}1 & 2 \\ 3 & 5\end{bmatrix}\]答案:D3. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则数列{a_n}的通项公式为:A. a_n=2^n-1B. a_n=2^(n-1)-1C. a_n=2^n+1D. a_n=2^(n-1)+1答案:A4. 设函数f(x)=x^3-3x+1,求f'(x):A. f'(x)=3x^2-3B. f'(x)=x^2-3C. f'(x)=3x^2+3D. f'(x)=x^2+3答案:A二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)=______。
答案:3x^2-12x+112. 已知等差数列{a_n}的前n项和为S_n,且S_5=75,S_10=225,则a_6+a_7+a_8+a_9+a_10=______。
考研卷数学真题及答案解析
考研是许多大学毕业生追求深造的一条途径,而其中数学科目一直是考研生们最为关注的科目之一。
为了帮助广大考生更好地备考数学,本文将介绍一些考研卷的数学真题,并进行相应的答案解析。
第一套真题:2015年考研数学数一真题
真题题目一:设函数f(x)在区间[-\pi,\pi]上连续,且
f(x)=f(x+2\pi)。
证明:对任意的整数n,有\int_{-
\pi}^{\pi}f(x)\cos(nx)dx=\pi \cdot f(0)\delta_{n,0},其中
\delta_{n,0}表示Kronecker delta。
答案解析:
此题为一道定积分的证明题,需要运用定积分的基本性质和Kronecker delta的定义进行证明。
首先,我们可以利用定积分的性质进行变形,得到:
\begin{align*} \int_{-\pi}^{\pi}f(x)\cos(nx)dx &=
\int_{-\pi}^{\pi}f(x)\cos(0\cdot x)dx \\ &=\int_{-
\pi}^{\pi}f(x)dx \end{align*}
由于f(x)在[-\pi,\pi]上连续且f(x)=f(x+2\pi),所以有:
\begin{align*} \int_{-\pi}^{\pi}f(x)dx &= \int_{-
\pi}^{0}f(x)dx + \int_{0}^{\pi}f(x)dx \\ &= \int_{-
\pi}^{0}f(x+2\pi)dx+\int_{0}^{\pi}f(x)dx \\ &=
\int_{\pi}^{2\pi}f(u)du + \int_{0}^{\pi}f(x)dx \\ &=
\int_{0}^{\pi}f(u)du + \int_{0}^{\pi}f(x)dx \\ &=
2\int_{0}^{\pi}f(x)dx \end{align*}
其中,我们做了变量代换u=x+2\pi。
综上所述,我们得到了\int_{-
\pi}^{\pi}f(x)\cos(nx)dx=2\int_{0}^{\pi}f(x)dx。
又根据Kronecker delta的定义,当n=0时,\delta_{n,0}=1;当n\neq0时,\delta_{n,0}=0。
所以,我们有\int_{-\pi}^{\pi}f(x)\cos(nx)dx=\pi \cdot
f(0)\delta_{n,0},得证。
通过以上解析,我们可以看到该题目对于考生的数学基础知识要求较高,需要熟悉定积分的基本性质,并且能够合理灵活地运用。
第二套真题:2017年考研数学数一真题
真题题目二:设函数f(x)在[a,b]上可导,且0 \leq f'(x)
\leq f(x),证明:f(x)在[a,b]上恒为0。
答案解析:
我们首先分析问题,题目中给出了函数f(x)在[a,b]上的可导性以及f'(x) \leq f(x)的条件,目标是要证明f(x)在[a,b]上恒为0。
由已知条件可知,f(x)在[a,b]上连续,那么根据微分中值定理,存在c \in (a,b)使得f(c) = \frac{f(b)-f(a)}{b-a}。
由于f'(x) \leq f(x),所以f(b)-f(a) \leq (b-a)f(c)。
因为\[ 0 \leq f'(x) = \lim_{x \to c}\frac{f(x)-f(c)}{x-c} \],所以我们有f(x) \geq f(c)对任意的x \in [a,b]恒成立。
将上述两个不等式相结合,我们可以得到:
f(b)-f(a) \leq (b-a)f(c) \leq (b-a)f(x)
即f(x)-f(a) \geq 0,对任意的x \in [a,b]恒成立。
再结合f(a) \leq f(x),我们得到:
f(x) - f(a) \geq 0 且 f(a) \leq f(x)
根据实数的传递性,我们可以得到:f(x)-f(a)=0,对任意的x \in [a,b]恒成立。
因此,我们可以得出结论,f(x)在[a,b]上恒为0。
通过以上解析,我们可以看到该题目考察的是数学分析知识,包括函数可导性、微分中值定理等等。
解题的关键在于巧妙地运用已知条件,合理地推导出结论。
综上所述,通过对两道考研数学真题的答案解析,我们可以了解到考研数学题目对考生的数学基础知识的要求较高,涉及到的知识点也比较广泛。
因此,考生在备考过程中需要有系统地学习和掌握相关知识,并且要多做习题进行巩固。
希望本文的解析能够对广大考生的备考提供一些帮助。