基于复杂路径下的六自由度机器人动力学仿真
- 格式:pdf
- 大小:864.07 KB
- 文档页数:4
六自由度机械臂控制系统设计与运动学仿真六自由度机械臂控制系统设计与运动学仿真摘要:近年来,随着工业自动化的快速发展,机械臂在生产制造领域的应用越来越广泛。
作为工业机器人的重要组成部分,机械臂的控制系统设计和运动学仿真成为了研究和应用的热点。
本文围绕六自由度机械臂的控制系统设计和运动学仿真展开研究,通过对机械臂的结构、动力学模型和运动学原理的分析,设计了一套完整的机械臂控制系统,并进行了运动学仿真验证实验。
研究结果表明,该控制系统能够实现六自由度机械臂的准确控制和精确运动。
关键词:六自由度机械臂,控制系统,运动学仿真,结构分析,动力学分析1. 引言机械臂是一种能够替代人工完成各种物体抓取、搬运和加工任务的重要设备。
随着工业自动化程度的提高和生产效率的要求,机械臂在生产制造行业中的应用越来越广泛。
机械臂的控制系统设计和运动学仿真成为了研究和应用的热点,尤其是六自由度机械臂。
六自由度机械臂具有较大的运动自由度,在复杂任务中具有更强的工作能力和适应性。
因此,研究六自由度机械臂的控制系统设计和运动学仿真对于改善机械臂的性能和应用具有重要意义。
2. 机械臂结构分析六自由度机械臂的结构由底座、第一至第六关节组成。
底座作为机械臂的固定支撑,通过第一关节与机械臂连接。
第一至第四关节形成了前臂部分,决定了机械臂的悬臂长度。
第五关节和第六关节分别为腕部和手部,负责完成机械臂的末端操作。
结构分析可以为后续的动力学和运动学建模提供基础。
3. 动力学模型机械臂的动力学模型是基于牛顿第二定律和欧拉定理建立的。
通过考虑机械臂各关节的质量、惯性和振动特性,可以对机械臂的力学性能进行描述。
动力学模型的建立是机械臂控制系统设计的重要基础。
4. 运动学原理机械臂的运动学原理研究机械臂的位置、速度和加速度之间的关系。
通过运动学原理可以确定机械臂的姿态和末端位置,实现机械臂的准确定位和精确控制。
运动学原理是机械臂控制系统设计和运动学仿真的重要内容。
基于MATLAB的六⾃由度⼯业机器⼈运动分析和仿真基于MATLAB 的六⾃由度⼯业机器⼈运动分析及仿真摘要:以FANUC ARC mate100⼯业机器⼈为研究对象,对其机构和连杆参数进⾏分析,采⽤D-H 法对机器⼈进⾏正运动学和逆运动学分析,建⽴运动学⽅程。
在MATLAB 环境下,运⽤机器⼈⼯具箱进⾏建模仿真,仿真结果证明了所建⽴的运动学正、逆解模型的合理性和正确性。
关键词:FANUC ARC mate100⼯业机器⼈; 运动学; MATLAB 建模仿真 1引⾔⼯业机器⼈技术是在控制⼯程、⼈⼯智能、计算机科学和机构学等多种学科的基础上发展起来的⼀种综合性技术。
经过多年的发展,该项技术已经取得了实质性的进步[1]。
⼯业机器⼈的发展⽔平随着科技的进步和⼯业⾃动化的需求有了很⼤的提⾼,同时⼯业机器⼈技术也得到了进⼀步的完善。
⼯业机器⼈的运动学分析主要是通过⼯业机器⼈各个连杆和机构参数,以确定末端执⾏器的位姿。
⼯业机器⼈的运动学分析包括正运动学分析和逆运动学分析。
随着对焊接件要求的提⾼,弧焊等机器⼈的需求越来越多。
本⽂就以FANUC ARC mate100机器⼈为研究对象,通过分析机构和连杆参数,运⽤D-H 参数法建⽴坐标系,求出连杆之间的位姿矩阵,建⽴⼯业机器⼈运动学⽅程。
并在MATLAB 环境下,利⽤RoboticsToolbox 进⾏建模仿真。
2 FANUC ARC mate100 D-H 坐标系的建⽴mate100是FANUC 公司⽣产的6⾃由度⼯业机器⼈,包括底座、机⾝、臂、⼿腕和末端执⾏器,每个⾃由度对应⼀个旋转关节,如图1所⽰。
图1FANUC ARC mate 100机器⼈三维模型DENAVIT 和HARTENBERG 于1955年提出了⼀种为关节链中的每⼀个杆件建⽴坐标系的矩阵⽅法,即D-H 参数法,在机器⼈运动学分析得到了⼴泛运⽤。
采⽤这种⽅法建⽴坐标系:(1) Z i 轴沿关节i +1的轴线⽅向。
基于PROE六自由度机械手参数化建模及运动仿真概论基于PRO/E(Pro/ENGINEER)六自由度机械手参数化建模及运动仿真(Introduction to Parametric Modeling and Motion Simulation of a Six Degree-of-Freedom Robot Arm Based on PRO/E)是一种基于 Pro/E 软件的机械手参数化建模方法和运动仿真技术的概念介绍。
机械手是一种能够执行预定动作的自动机器人系统,在工业领域被广泛应用。
参数化建模和运动仿真是机械手设计与验证的重要工具,可以提高设计效率和减少实验成本。
首先,本文介绍了 Pro/E 软件的基本原理和特点。
Pro/E 是一种三维 CAD(计算机辅助设计)软件,具有强大的参数化建模和运动仿真能力。
它可以通过调整参数来改变模型的形状和尺寸,以便满足不同的设计要求。
Pro/E 还提供了强大的运动仿真功能,可以模拟机械手在不同工况下的运动特性。
接下来,本文详细介绍了机械手的六个自由度,即机械手可以在三维空间中进行平移和转动的六个方向。
机械手的自由度决定了它的灵活性和工作范围。
参数化建模是在 Pro/E 软件中定义机械手的结构和参数,以便能够根据实际需求对机械手进行定制化设计。
然后,本文提出了一种基于 Pro/E 软件的机械手参数化建模方法。
通过定义机械手的几何尺寸、关节角度和连杆长度等参数,可以实现对机械手结构和工作范围的快速调整。
参数化建模可以大大加快机械手的设计过程,减少人工调整的工作量。
最后,本文介绍了基于 Pro/E 软件的机械手运动仿真技术。
通过给定关节的运动规律和工作环境的约束条件,可以模拟机械手在不同运动状态下的姿态和运动轨迹。
运动仿真可以帮助设计师评估机械手的性能和可靠性,并进行优化设计。
总结起来,基于 Pro/E 的六自由度机械手参数化建模和运动仿真技术是一种高效、准确和可靠的机械手设计方法。
《六自由度串联机器人运动优化与轨迹跟踪控制研究》篇一一、引言随着科技的不断发展,六自由度串联机器人在工业自动化、医疗康复、军事航天等领域的应用越来越广泛。
而如何提高机器人的运动性能,使其在复杂的任务环境中实现高精度的轨迹跟踪控制,成为当前研究的热点问题。
本文将针对六自由度串联机器人的运动优化与轨迹跟踪控制进行研究,旨在提高机器人的运动性能和作业精度。
二、六自由度串联机器人概述六自由度串联机器人是一种多关节机器人,具有六个独立的运动轴,能够实现空间三维运动。
其结构紧凑、灵活度高、适应性强,在许多领域得到广泛应用。
然而,由于其复杂的运动学和动力学特性,使得其运动控制和轨迹跟踪成为一大挑战。
三、运动优化研究(一)优化算法研究针对六自由度串联机器人的运动优化问题,本文采用基于遗传算法的优化方法。
遗传算法是一种模拟自然进化过程的优化算法,能够快速寻找到全局最优解。
通过对机器人运动学模型进行建模,将机器人的运动轨迹优化问题转化为一个求解最优解的问题,运用遗传算法进行求解。
(二)运动学模型建立为了实现机器人的运动优化,需要建立精确的运动学模型。
本文采用D-H(Denavit-Hartenberg)法建立机器人的运动学模型,通过求解机器人各关节之间的变换矩阵,得到机器人末端执行器的位置和姿态。
在此基础上,进一步分析机器人的工作空间、奇异形态等问题,为后续的轨迹规划和控制提供依据。
四、轨迹跟踪控制研究(一)控制器设计为了实现六自由度串联机器人的高精度轨迹跟踪控制,本文采用基于PID(比例-积分-微分)控制器的控制策略。
通过对机器人运动过程中的速度、加速度等参数进行实时调整,使机器人能够快速、准确地跟踪设定的轨迹。
同时,针对机器人系统的非线性和不确定性,引入自适应控制算法,提高系统的鲁棒性。
(二)轨迹规划与实现轨迹规划是轨迹跟踪控制的关键环节。
本文采用基于时间最优的轨迹规划方法,根据机器人的运动学模型和任务要求,生成平滑、连续的轨迹。
六自由度机械臂的动力学仿真及控制刘泽宇;冯雷;黄道敏;周曾成;唐国元【摘要】介绍了一种六自由度机械臂装置,分析了六自由度机械臂的基本理论知识,在SolidWorks软件中建立了六自由度机械臂的模型.然后将模型导入ADAMS中,建立动力学仿真模型,通过对机械臂各部件运动的仿真分析,得出每个关节达到指定转速所需力矩,从而为各关节电机的选型提供依据.最后使用MATLAB与ADAMS 进行联合仿真,在Simulink中建立控制方案,实现对机械臂各关节角的精确控制,为六自由度机械臂的发展提供设计参考及依据.【期刊名称】《机械与电子》【年(卷),期】2018(036)004【总页数】5页(P38-41,62)【关键词】六自由度机械臂;ADAMS;动力学仿真;PID控制【作者】刘泽宇;冯雷;黄道敏;周曾成;唐国元【作者单位】华中科技大学船舶与海洋工程学院,湖北武汉430074;武汉第二船舶设计研究所,湖北武汉430064;武汉空军预警学院,湖北武汉430019;华中科技大学船舶与海洋工程学院,湖北武汉430074;华中科技大学船舶与海洋工程学院,湖北武汉430074【正文语种】中文【中图分类】TP2730 引言随着工业自动化水平的日益提高,机械臂在自动化生产中正发挥越来越重要的作用。
应用机械臂,可以代替人在高温、高腐蚀性等恶劣环境中完成指定任务,还可以在精度要求较高及重复性较大的生产过程中完成抓取、搬运、装配、喷涂、焊接等动作。
在国外,工业机械臂产品已经具有了成熟完善的行业标准,而在国内这个领域还需完善,这为工业机械臂的发展提供广阔的应用前景[1-2]。
为了更好地分析和研究工业机械臂的性能及操作,建立了一个六自由度机械臂的模拟样机,通过仿真分析得出机械臂的动力学特性,然后在MATLAB中进行控制。
1 六自由度机械臂样机的理论基础及模型建立1.1 六自由度机械臂介绍本文所述六自由度机械臂末端安装有标准接口,用于支持和转运专业人员的训练和试验。
《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着科技的飞速发展,自动化与机器人技术已广泛应用于各种领域,六自由度机械臂是其中一种重要而常见的自动化工具。
它具备灵活的运动能力与复杂操作功能,能够在高精度的环境中完成一系列作业。
本篇论文旨在介绍六自由度机械臂控制系统的设计与运动学仿真,旨在提升机械臂的性能和可靠性。
二、六自由度机械臂控制系统设计1. 硬件设计六自由度机械臂控制系统主要由机械臂主体、驱动器、传感器和控制单元等部分组成。
其中,机械臂主体由多个关节组成,每个关节由一个驱动器驱动。
传感器用于检测机械臂的位置、速度和加速度等信息,控制单元则负责处理这些信息并发出控制指令。
2. 软件设计软件设计部分主要包括控制算法的设计和实现。
我们采用了基于PID(比例-积分-微分)的控制算法,以实现对机械臂的精确控制。
此外,我们还采用了路径规划算法,使机械臂能够按照预定的路径进行运动。
3. 控制系统架构控制系统采用分层架构,分为感知层、决策层和执行层。
感知层通过传感器获取机械臂的状态信息;决策层根据这些信息计算控制指令;执行层则根据控制指令驱动机械臂进行运动。
三、运动学仿真运动学仿真主要用于模拟机械臂的运动过程,验证控制系统的性能。
我们采用了MATLAB/Simulink软件进行仿真。
1. 模型建立首先,我们需要建立机械臂的数学模型。
根据机械臂的结构和运动规律,我们可以建立其运动学方程。
然后,将这些方程导入到MATLAB/Simulink中,建立仿真模型。
2. 仿真过程在仿真过程中,我们设定了不同的工况和任务,如抓取、搬运、装配等。
通过改变控制参数和路径规划算法,观察机械臂的运动过程和性能表现。
我们还对仿真结果进行了分析,以评估控制系统的性能和可靠性。
四、实验结果与分析我们通过实验验证了六自由度机械臂控制系统的性能。
实验结果表明,该系统能够实现对机械臂的精确控制和灵活操作。
在各种工况和任务下,机械臂都能以较高的速度和精度完成任务。