2018届高考数学理大一轮复习顶层设计配餐作业30数系的
- 格式:doc
- 大小:88.88 KB
- 文档页数:6
配餐作业(七十六) 不等式证明的基本方法(时间:40分钟)1.(1)已知a ,b 都是正数,且a ≠b ,求证: a 3+b 3>a 2b +ab 2;(2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc 。
证明 (1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2。
因为a ,b 都是正数, 所以a +b >0。
又因为a ≠b , 所以(a -b )2>0。
于是(a +b )(a -b )2>0, 即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2。
(2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc 。
① 同理,b 2(a 2+c 2)≥2ab 2c 。
② c 2(a 2+b 2)≥2abc 2。
③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2,从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c )。
由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c≥abc 。
2.(2016·安徽皖北联考)设函数f (x )=|x +2|+|x -2|,x ∈R ,不等式f (x )≤6的解集为M 。
(1)求M ;(2)当a ,b ∈M 时,证明:3|a +b |≤|ab +9|。
解析 (1)|x +2|+|x -2|≤6等价于⎩⎪⎨⎪⎧ x ≤-2,-2x ≤6或⎩⎪⎨⎪⎧-2<x <2,4≤6或⎩⎪⎨⎪⎧x ≥2,2x ≤6,解得-3≤x ≤3。
故M =[-3,3]。
(2)证明:当a ,b ∈M 时,即-3≤a ≤3,-3≤b ≤3时,要证3|a +b |≤|ab +9|,即证9(a +b )2≤(ab +9)2。
配餐作业(七十五)绝对值不等式(时间:40分钟)1.(2017·沈阳模拟)设函数f(x)=|2x+1|-|x-4|。
(1)解不等式f(x)〉0;(2)若f(x)+3|x-4|〉m对一切实数x均成立,求实数m的取值范围。
解析(1)当x≥4时,f(x)=2x+1-(x-4)=x+5>0,得x>-5,所以x≥4。
当-错误!≤x<4时,f(x)=2x+1+x-4=3x-3〉0,得x>1,所以1〈x<4.当x<-错误!时,f(x)=-2x-1+x-4=-x-5〉0,得x<-5,所以x<-5。
综上,原不等式的解集为(-∞,-5)∪(1,+∞)。
(2)f(x)+3|x-4|=|2x+1|+2|x-4|≥|2x+1-(2x-8)|=9,当-错误!≤x≤4时等号成立,所以m〈9,即m的取值范围为(-∞,9)。
答案(1)(-∞,-5)∪(1,+∞)(2)(-∞,9)2.(2016·南昌一模)设函数f(x)=错误!+错误!的最大值为M。
(1)求实数M的值;(2)求关于x的不等式|x-错误!|+|x+2错误!|≤M的解集。
解析(1)f(x)=错误!+错误!≤2错误!=3错误!,当且仅当x=错误!时等号成立。
故函数f(x)的最大值M=3错误!。
(2)由(1)知M=3错误!。
由绝对值三角不等式可得|x-错误!|+|x +2错误!|≥错误!=3错误!,所以不等式|x-2|+|x+22|≤3错误!的解集就是方程|x -2|+|x+2错误!|=3错误!的解,由绝对值的几何意义得,当且仅当-2错误!≤x≤错误!时,|x-错误!|+|x+2错误!|=3错误!,所以不等式|x-错误!|+|x+2错误!|≤M的解集为{x|-2错误!≤x≤错误!}。
答案(1)3错误!(2){x|-2错误!≤x≤错误!}3.(2017·南宁模拟)已知函数f(x)=|x-a|。
(1)若f(x)≤m的解集为[-1,5],求实数a,m的值;(2)当a=2且0≤t≤2时,解关于x的不等式f(x)+t≥f(x +2)。
数 学 G 单元 立体几何G1 空间几何体的结构19.G1 如图18,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.图1819.解:(1)交线围成的正方形EHGF 如图.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为9779也正确.18.G1,G4,G5 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.18.G1、G5如图14,直三棱柱ABC A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F AEC的体积.图1418.解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.因此AE⊥平面B1BCC1.而AE⊂平面AEF,所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D ,CD . 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角. 由题设,∠CA 1D =45°,所以A 1D =CD =32AB = 3. 在Rt △AA 1D 中,AA 1=A 1D 2-AD 2=3-1=2,所以FC =12AA 1=22.故三棱锥F AEC 的体积V =13S △AEC ·FC =13×32×22=612. 9.G1 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3 B.42π3C .22πD .42π9.B 由条件知该直角三角形的斜边长为22,斜边上的高为2,故围成的几何体的体积为2×13×π×(2)2×2=42π3.18.G1,G4,G5 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示. (1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG .图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.10.G1、G2一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m3.图1310.83π 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3).G2 空间几何体的三视图和直观图9.G2 一个四面体的三视图如图12所示,则该四面体的表面积是( )图12A .1+ 3B .1+2 2C .2+ 3D .2 29.C 四面体的直观图如图所示,设O 是AC 的中点,则OP =OB =1,因此PB =2,于是S △PAB =S △PBC =34×(2)2=32,S △PAC =S △ABC =12×2×1=1,故四面体的表面积S =2×1+2×32=2+ 3.11.G2 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图14所示.若该几何体的表面积为16+20π,则r =( )图14A .1B .2C .4D .811.B 由三视图可知,此组合体的前半部分是一个底面半径为r ,高为2r 的半圆柱(水平放置),后半部分是一个半径为r 的半球,其中半圆柱的一个底面与半球的半个圆面重合,所以此几何体的表面积为2r ·2r +12πr 2+12πr 2+πr ·2r +2πr 2=4r 2+5πr 2=16+20π,解得r =2.6.G2 一个正方体被一个平面截去一部分后,剩余部分的三视图如图12,则截去部分体积与剩余部分体积的比值为( )图12A.18B.17 C.16 D.156.D 由剩余部分的三视图可知,正方体被截去一个三棱锥,剩余部分如图所示,设正方体的棱长为a ,则被截去的三棱锥的体积为13×12a 2×a =16a 3,而正方体的体积为a 3,所以截去部分体积与剩余部分体积的比值为15.7.G2 某四棱锥的三视图如图12所示,该四棱锥最长棱的棱长为( )图12A .1 B. 2 C. 3 D .27.C 根据三视图可得,此四棱锥是底面是正方形,有一条侧棱和底面垂直的四棱锥,如图所示,所以最长棱的棱长为PC =12+12+12=3,故选C.9.G2 某几何体的三视图如图13所示,则该几何体的表面积等于( )图13A .8+2 2B .11+2 2C .14+2 2D .159.B 由三视图可知,该几何体是底面为直角梯形的直四棱柱,其表面积S =(1+1+2+2)×2+12×(1+2)×1×2=11+2 2.10.G2、G7、K3 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )图13A.89πB.827πC.24(2-1)3πD.8(2-1)3π10.A 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x,借助轴截面,由三角形相似可得,x32-12=1-22x1,得x=223,故V正=x3=16227,又V圆锥=13π×12×32-12=22π3,故利用率为16227223π=89π,选A.5.G2一个几何体的三视图如图12所示,则该几何体的表面积为()图12A.3π B.4πC.2π+4 D.3π+45.D 该几何体是底面半径为1、高为2的圆柱被其轴截面截开的半个圆柱,其表面积为12×2π×1×2+2×12×π×12+2×2=3π+4.14.G2,G7 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14.124 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高为1且该棱柱为直三棱柱,其底面积为12,三棱锥A 1PMN 的底面积是12×12×1,高为12,故三棱锥P A 1MN 的体积为13×12×14=124.10.G1、G2 一个几何体的三视图如图13所示(单位:m),则该几何体的体积为________m 3.图1310.83π 根据三视图可知,该几何体是圆柱与两个圆锥的组合体,其体积V =π×12×2+2×13×π×12×1=83π(m 3).2.G2 某几何体的三视图如图11所示(单位:cm),则该几何体的体积是( )图11A .8 cm 3B .12 cm 3C.323 cm 3 D.403cm 3 2.C 该几何体为一个正方体和一个四棱锥的组合体,故所求体积为23+13×2×2×2=323.G3 平面的基本性质、空间两条直线6.G3 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交6.D 若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则l 至少与l 1,l 2中的一条相交,故选D.5.A2、G3 l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件5.A 由l 1,l 2是异面直线,可得l 1,l 2不相交,所以p ⇒q ;由l 1,l 2不相交,可得l 1,l 2是异面直线或l 1∥l 2,所以q ⇒/ p .所以p 是q 的充分条件,但不是q 的必要条件.故选A.G4 空间中的平行关系18.G4,G5,G11 如图13,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.图1318.G1,G4,G5如图15,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥VABC的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.18.G4、G5如图13,三棱台DEF ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.18.证明:(1)证法一:如图,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点.又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,AB∩BE=B,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)如图,连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC,又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.18.G1,G4,G5一个正方体的平面展开图及该正方体的直观图的示意图如图12所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.17.G4、G5、G11如图14,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C中点.(1)求证:EF∥平面A1B1BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.图1417.解:(1)证明:如图所示,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,所以EF∥平面A1B1BA.(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°, 所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m4.A 由两平面垂直的判定定理知,A 正确;对于B ,直线l ,m 相交、平行、异面都有可能,故不正确;对于C ,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D ,l ,m 平行和异面都有可能,故不正确.16.G4、G5 如图12,在直三棱柱ABC A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.图1216.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为三棱柱ABC A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.G5 空间中的垂直关系18.G4,G5,G11如图13,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.图1320.G5、G12 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图14所示的阳马P ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值.图1420.解:(1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC . 由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D , 所以BC ⊥平面PCD .又DE ⊂平面PCD ,所以BC ⊥DE . 又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC . 而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形, 即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB . (2)由已知,PD 是阳马P ABCD 的高,所以V 1=13S 长方形ABCD ·PD =13BC ·CD ·PD ;由(1)知,DE 是鳖臑D BCE 的高,BC ⊥CE , 所以V 2=13S △BCE ·DE =16BC ·CE ·DE .在Rt △PDC 中,因为PD =CD ,点E 是PC 的中点,所以DE =CE =22CD . 于是V 1V 2=13BC ·CD ·PD 16BC ·CE ·DE =2CD ·PD CE ·DE=4.18.G5 如图15,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC, 三棱锥E ACD 的体积为63,求该三棱锥的侧面积.图1518.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E ACD 的体积V E ACD =13×12AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED =6,所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ACD 的侧面积为3+2 5.18.G1,G4,G5 如图15,在三棱锥V ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC 的体积.图1518.解:(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB,所以三棱锥CVAB的体积等于1 3OC·S△VAB=33.又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为3 3.20.G5、G12如图15,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC⊥平面PDO;(2)求三棱锥PABC体积的最大值;(3)若BC=2,点E在线段PB上,求CE+OE的最小值.图1520.解:方法一:(1)证明:在△AOC 中,因为OA =OC ,D 为AC 的中点, 所以AC ⊥DO .又PO 垂直于圆O 所在的平面, 所以PO ⊥AC .因为DO ∩PO =O ,DO ⊂平面PDO ,PO ⊂平面PDO , 所以AC ⊥平面PDO . (2)因为点C 在圆O 上,所以当CO ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又AB =2,所以△ABC 面积的最大值为 12×2×1=1. 又因为三棱锥P ABC 的高PO =1,故三棱锥P ABC 体积的最大值为13×1×1=13.(3)在△POB 中,PO =OB =1,∠POB =90°, 所以PB =12+12= 2. 同理PC =2,所以PB =PC =BC .在三棱锥P ABC 中,将侧面BCP 绕PB 旋转至平面BC ′P, 使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值. 又因为OP =OB ,C ′P =C ′B , 所以OC ′垂直平分PB , 即E 为PB 中点.从而OC′=OE+EC′=22+62=2+62,亦即CE+OE的最小值为2+62.方法二:(1)(2)同方法一.(3)在△POB中,PO=OB=1,∠POB=90°,所以∠OPB=45°,PB=12+12= 2.同理PC= 2.所以PB=PC=BC,所以∠CPB=60°.在三棱锥PABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.所以在△OC′P中,由余弦定理得,OC′2=1+2-2×1×2×cos(45°+60°)=1+2-2 2×22×12-22×32=2+3.从而OC′=2+3=2+62.所以CE+OE的最小值为22+62.18.G1、G5如图14,直三棱柱ABC A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F AEC的体积.图1418.解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.因此AE ⊥平面B 1BCC 1.而AE ⊂平面AEF , 所以平面AEF ⊥平面B 1BCC 1.(2)设AB 的中点为D ,连接A 1D ,CD . 因为△ABC 是正三角形,所以CD ⊥AB .又三棱柱ABC A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角. 由题设,∠CA 1D =45°,所以A 1D =CD =32AB = 3. 在Rt △AA 1D 中,AA 1=A 1D 2-AD 2=3-1=2,所以FC =12AA 1=22.故三棱锥F AEC 的体积V =13S △AEC ·FC =13×32×22=612. 18.G4、G5 如图13,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .18.证明:(1)证法一:如图,连接DG ,CD ,设CD ∩GF =M ,连接MH . 在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形, 则M 为CD 的中点.又H 为BC 的中点, 所以HM ∥BD .又HM ⊂平面FGH ,BD ⊄平面FGH , 所以BD ∥平面FGH .证法二:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形HBEF 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,AB ∩BE =B , 所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)如图,连接HE ,GE .因为G ,H 分别为AC ,BC 的中点, 所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC , 又H 为BC 的中点, 所以EF ∥HC ,EF =HC ,因此四边形EFCH 是平行四边形, 所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H , 所以BC ⊥平面EGH . 又BC ⊂平面BCD , 所以平面BCD ⊥平面EGH .18.G5 如图15(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1 BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1 BCDE 的体积为362,求a 的值.图1518.解:(1)证明:在图(1)中, 因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图(2)中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC . 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1 BCDE 的高. 由图(1)知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1 BCDE 的体积V =13×S ×A 1O =13×a 2×22a =26a 3. 由26a 3=362,得a =6. 18.G1,G4,G5 一个正方体的平面展开图及该正方体的直观图的示意图如图12所示. (1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG .图1218.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCDEFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCDEFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.17.G4、G5、G11如图14,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB 1=27,点E 和F 分别为BC 和A 1C 中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.图1417.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A 1B 1BA ,所以EF ∥平面A 1B 1BA .(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°, 所以直线A 1B 1与平面BCB 1所成的角为30°.4.G4,G5 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m4.A 由两平面垂直的判定定理知,A正确;对于B,直线l,m相交、平行、异面都有可能,故不正确;对于C,要求α内两条相交直线都平行于β,才能推出α∥β,故不正确;对于D,l,m平行和异面都有可能,故不正确.18.G5,G11如图14,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.图1418.解:(1)证明:设E为BC的中点,连接DE.由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A 1F ⊥DE ,垂足为F ,连接BF . 因为A 1E ⊥平面ABC ,所以BC ⊥A 1E . 因为BC ⊥AE ,所以BC ⊥平面AA 1DE . 所以BC ⊥A 1F ,所以A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角. 由AB =AC =2,∠CAB =90°,得EA =EB = 2. 由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =14. 由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72. 所以sin ∠A 1BF =A 1F A 1B =78. 20.G5、G7 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC . 又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在直角三角形ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,△AFE ∽△ABC ,故S △AFE S △ABC =232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12×49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S四边形DFBC=S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高. 在直角三角形PEC 中,PE =PC 2-EC 2=42-22=2 3. 所以V 四棱锥P DFBC =13·S 四边形DFBC ·PE =13×718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以BC =3或BC =3 3.G6 多面体与球 G7 棱柱与棱锥10.G2、G7、K3 某工件的三视图如图13所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )图13A.89π B.827πC.24(2-1)3π D.8(2-1)3π10.A 由三视图知,原工件是底面半径为1,母线长为3的圆锥.设新正方体工件的棱长为x ,借助轴截面,由三角形相似可得,x32-12=1-22x1,得x =223,故V 正=x 3=16227,又V 圆锥=13π×12×32-12=22π3,故利用率为16227223π=89π,选A.14.G2,G7 在三棱柱ABC A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P A 1MN 的体积是________.14.124 由题意知,三棱柱的底面是直角边长为1的等腰直角三角形,棱柱的高为1且该棱柱为直三棱柱,其底面积为12,三棱锥A 1PMN 的底面积是12×12×1,高为12,故三棱锥P A 1MN 的体积为13×12×14=124.5.G2、G7、G8 某几何体的三视图如图12所示,则该几何体的体积为()图12A.13+2πB.13π6C.7π3 D.5π25.B 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =13×12×π×12×1+π×12×2=13π6.20.G5、G7 如图14,三棱锥P ABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P DFBC 的体积为7,求线段BC 的长.图1420.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰三角形PDC 中DC 边的中点,故PE ⊥AC . 又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,PE ⊥AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因为∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在直角三角形ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,△AFE ∽△ABC ,故S △AFE S △ABC =232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12×49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S四边形DFBC=S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P DFBC 的高. 在直角三角形PEC 中,PE =PC 2-EC 2=42-22=2 3. 所以V 四棱锥P DFBC =13·S 四边形DFBC ·PE =13×718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以BC =3或BC =3 3.9.G7 现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.9.7 设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8 ,即283πr 2=1003π+32π,解得r =7.G8 多面体与球5.G2、G7、G8 某几何体的三视图如图12所示,则该几何体的体积为( )图12A.13+2πB.13π6C.7π3 D.5π25.B 由三视图知,该几何体为一个圆柱与一个半圆锥的组合体,其中圆柱的底面半径为1、高为2,半圆锥的底面半径为1、高为1,所以该几何体的体积V =13×12×π×12×1+π×12×2=13π6.10.G8 已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.C 因为V 三棱锥O ABC =V 三棱锥C OAB ,所以三棱锥O ABC 体积的最大值即三棱锥C OAB 体积的最大值,所以当C 到平面OAB 的距离最大时,即CO ⊥平面OAB 时,体积最大,设球的半径为r ,则V 三棱锥O ABC=V三棱锥C OAB=16r 3=36,所以r =6,则球O 的表面积S =4πr 2=144π.图12A.13+2πB.13π6C.7π3 D.5π2G9 空间向量及运算G10 空间向量解决线面位置关系G11 空间角与距离的求法17.G4、G5、G11 如图14,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1;(3)求直线A 1B 1与平面BCB 1所成角的大小.图1417.解:(1)证明:如图所示,连接A 1B .在△A 1BC 中,因为E 和F 分别是BC 和A 1C 的中点,所以EF ∥BA 1.又因为EF ⊄平面A 1B 1BA ,所以EF ∥平面A 1B 1BA .(2)证明:因为AB =AC ,E 为BC 的中点,所以AE ⊥BC .因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1.又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1.(3)取BB 1的中点M 和B 1C 的中点N ,连接A 1M ,A 1N ,NE .因为N 和E 分别为B 1C 和BC 的中点,所以NE ∥B 1B ,NE =12B 1B ,故NE ∥A 1A ,且NE =A 1A ,所以A 1N ∥AE ,且A 1N =AE .又因为AE ⊥平面BCB 1,所以A 1N ⊥平面BCB 1,从而∠A 1B 1N 为直线A 1B 1与平面BCB 1所成的角.在△ABC 中,可得AE =2,所以A 1N =AE =2.因为BM ∥AA 1,BM =AA 1,所以A 1M ∥AB ,A 1M =AB, 又由AB ⊥BB 1,得A 1M ⊥BB 1. 在Rt △A 1MB 1中,可得A 1B 1=B 1M 2+A 1M 2=4. 在Rt △A 1NB 1中,sin ∠A 1B 1N =A 1N A 1B 1=12,因此∠A 1B 1N =30°,所以直线A1B1与平面BCB1所成的角为30°.18.G5,G11如图14,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.图1418.解:(1)证明:设E为BC的中点,连接DE.由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A 1E ⊥平面ABC ,得A 1A =A 1B =4,A 1E =14. 由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72. 所以sin ∠A 1BF =A 1F A 1B =78. 18.G4,G5,G11 如图13,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.图13 图1422.G11、G12 如图16,在四棱锥P ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.图1622.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2), 设平面PCD 的一个法向量为m =(x ,y ,z ),所以m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1, 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)由BP →=(-1,0,2),可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2), 从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2 . 设1+2λ=t ,t ∈,则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910,当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|取得最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.G12 单元综合6.G12 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图11,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )。
配餐作业(三十) 数系的扩充与复数的引入(时间:40分钟)一、选择题 1.若复数z =a +3ii+a 在复平面上对应的点在第二象限,则实数a 可以是( )A .-4B .-3C .1D .2解析 若z =a +3ii+a =(3+a )-a i 在复平面上对应的点在第二象限,则⎩⎪⎨⎪⎧3+a <0-a >0,即a <-3,故选A 。
答案 A2.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( ) A .5-4i B .5+4i C .3-4iD .3+4i解析 根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i 。
故选D 。
答案 D3.i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则lg(a +b )的值是( )A .-2B .-1C .0 D.12解析 ∵+-1+i1-i =3-i 2=32-12i =a +b i , ∴⎩⎪⎨⎪⎧a =32,b =-12,∴lg(a +b )=lg1=0,故选C 。
答案 C4.(2017·兰州模拟)已知复数z =(a 2-1)+(a -1)i(a ∈R )是纯虚数,则a =( ) A .0 B .1 C .-1D .±1解析 由题意得⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a =-1。
故选C 。
答案 C5.满足z +iz=i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析 去掉分母,得z +i =z i ,所以(1-i)z =-i , 解得z =-i 1-i =12-12i ,故选B 。
答案 B6.(2016·北京高考)复数1+2i2-i =( )A .iB .1+iC .-iD .1-i解析1+2i2-i=++2-i2+i=5i5=i 。
配餐作业(四) 函数及其表示(时间:40分钟)一、选择题1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析 ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象。
故选B 。
答案 B2.(2016·沈阳模拟)函数f (x )=x +3+log 2(6-x )的定义域是( )A .{x |x >6}B .{x |-3<x <6}C .{x |x >-3}D .{x |-3≤x <6}解析 依题意⎩⎪⎨⎪⎧x +3≥0,6-x >0。
所以-3≤x <6。
故选D 。
答案 D3.给出四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图象是一条直线;④f (x )=lg x 2与g (x )=2lg x 是相等函数。
其中正确的有( ) A .1个 B .2个 C .3个D .4个解析 由函数的定义知①正确。
因为满足f (x )=x -3+2-x 的x 不存在, 所以②不正确。
因为y =2x (x ∈N )的图象是位于直线y =2x 上的一群孤立的点,所以③不正确。
因为f (x )与g (x )的定义域不同,所以④不正确。
故选A 。
答案 A4.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6 C .f (x )=6x +9 D .f (x )=2x +3解析 由f (x )+2f (3-x )=x 2①可得f (3-x )+2f (x )=(3-x )2②,由①②解得f (x )=13x 2-4x +6。
2018届高考数学一轮复习配餐作业37二元一次不等式组与简单的线性规划问题含解析理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高考数学一轮复习配餐作业37二元一次不等式组与简单的线性规划问题含解析理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高考数学一轮复习配餐作业37二元一次不等式组与简单的线性规划问题含解析理(word版可编辑修改)的全部内容。
配餐作业(三十七)二元一次不等式(组)与简单的线性规划问题(时间:40分钟)一、选择题1.(2016·四川高考)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足错误!则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析取x=y=0满足条件p,但不满足条件q,反之,对于任意的x,y满足条件q,显然必满足条件p,所以p是q的必要不充分条件,故选A。
答案A2.若满足条件错误!的整点(x,y)恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.-3 B.-2C.-1 D.0解析不等式组所表示的平面区域如图中阴影部分,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点。
故选C。
答案C3.(2017·郑州模拟)已知点P(x,y)的坐标满足条件错误!那么点P到直线3x-4y-13=0的距离的最小值为()A。
配餐作业(六十六) 排列与组合(时间:40分钟)一、选择题1.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.28 B.49C.56 D.85解析依题意,满足条件的不同选法的种数为C22C17+C12C27=49种。
故选B。
答案 B2.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法种数为( )A.2 520 B.2 025C.1 260 D.5 040解析C210A28=2 520。
故选A。
答案 A3.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.18种B.24种C.36种D.72种解析若甲、乙在同一路口,则有C23A33=18种;若甲、乙与其余一名交警在同一路口,则有C13A33=18种,所以一共有36种分配方案。
故选C。
答案 C4.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( )A.8 B.16C.24 D.60解析根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有A44=24种不同的坐法。
故选C。
答案 C5.(2016·昆明七校模拟)某校从8名教师中选派4名同时去4个边远地区支教(每地1名老师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( ) A.900种B.600种C.300种D.150种解析依题意,就甲是否去支教进行分类计数:第一类,甲去支教,则乙不去支教,且丙也去支教,则满足题意的选派方案有C25·A44=240种;第二类,甲不去支教,且丙也不去支教,则满足题意的选派方案有A46=360种。
因此,满足题意的选派方案共有240+360=600种,故选B。
答案 B6.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有( ) A.34种B.48种C.96种D.144种解析程序A有A12=2种结果,将程序B和C看作一个元素与除A外的3个元素排列有A22A44=48种,∴由分步乘法计数原理,实验编排共有2×48=96种方法。
配餐作业(三十二)等差数列(时间:40分钟)一、选择题1.(2017·泉州模拟)等差数列{a n}的前三项为x-1,x+1,2x+3,则这个数列的通项公式为()A.a n=2n-5 B.a n=2n-3C.a n=2n-1 D.a n=2n+1解析∵等差数列{a n}的前三项为x-1,x+1,2x+3,∴2(x+1)=(x-1)+(2x+3),解得x=0。
∴a1=-1,a2=1,d=2,故a n=-1+(n-1)×2=2n-3。
故选B。
答案 B2.在等差数列{a n}中,a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36C.20 D.19解析a m=a1+a2+…+a9=9a1+9×82d=36d=a37。
故选A。
答案 A3.(2016·陕西质监)已知数列{a n}满足a1=15,且3a n-1=3a n-2。
若a k·a k+1<0,则正整数k=()A.21 B.22C.23 D.24解析3a n+1=3a n-2⇒a n+1=a n-23⇒{a n}是等差数列,则a n =473-23n 。
∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23。
故选C 。
答案 C4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10解析 因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146, 所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180, 又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60, 所以S n =n (a 1+a n )2=n ·602=390, 即n =13,故选A 。
配餐作业(五十九) 最值、范围问题(时间:40分钟)1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22。
(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2。
解析 (1)由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2。
所以椭圆的方程为x 22+y 2=1。
(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2), 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0。
由已知得(1,1)在椭圆外,则Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k2,x 1x 2=2kk -1+2k2。
从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )·⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -2k k -=2k -2(k -1)=2。
故直线AP 与AQ 的斜率之和为2。
答案 (1)x 22+y 2=1 (2)见解析2.已知圆E :x 2+⎝ ⎛⎭⎪⎫y -122=94经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点F 1,F 2,且与椭圆C 在第一象限的交点为A ,且F 1,E ,A 三点共线。
直线l 交椭圆C 于M ,N 两点,且MN →=λOA →(λ≠0)。
(1)求椭圆C 的方程;(2)当△AMN 的面积取到最大值时,求直线l 的方程。
解析 (1)∵F 1,E ,A 三点共线, ∴F 1A 为圆E 的直径, ∴AF 2⊥F 1F 2。
配餐作业(三十一) 数系的扩充与复数的引入一、选择题1.下列各式的运算结果为纯虚数的是( ) A .i(1+i)2 B .i 2(1-i) C .(1+i)2D .i(1+i)解析 i(1+i)2=i·2i =-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i,2i 是纯虚数。
故选C 。
答案 C2.(2018·长春监测)已知复数z =1+i ,则下列命题中正确的个数是( )①|z |=2;②z =1-i ;③z 的虚部为i ;④z 在复平面内对应的点位于第一象限。
A .1B .2C .3D .4解析 ①|z |=12+12=2,①正确;②由共轭复数的定义知,②正确;③对于复数z =a +b i(a ∈R ,b ∈R ),a 与b 分别为复数z 的实部与虚部,故z =1+i 的虚部为1,而不是i ,③错误;④z =1+i 在复平面内对应的点为(1,1),在第一象限,④正确。
故正确命题的个数为3。
故选C 。
答案 C3.(2017·山西二联)设复数z =4-5i 1-i ,则复数z -1的模为( )A .252B .4C .522D .2解析 因为z =4-5i 1-i =(4-5i )(1+i )(1-i )(1+i )=4+4i -5i +51-(-1)=9-i 2=92-12i ,所以z -1=72-12i 。
所以|z -1|=⎝ ⎛⎭⎪⎫722+⎝ ⎛⎭⎪⎫-122=522。
故选C 。
答案 C4.(2018·成都诊断)若复数z 1=a +i(a ∈R ),z 2=1-i ,且z 1z 2为纯虚数,则z 1在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析 z 1z 2=a +i 1-i =(a +i )(1+i )2=(a -1)+(1+a )i2为纯虚数,则a =1,所以z 1=1+i ,z 1在复平面内对应的点为(1,1),在第一象限。
配餐作业(三十) 数系的扩充与复数的引入
(时间:40分钟)
一、选择题
1.若复数z =a +3i
i +a 在复平面上对应的点在第二象限,则实数a 可以是( )
A .-4
B .-3
C .1
D .2
解析 若z =a +3i
i +a =(3+a )-a i 在复平面上对应的点在第二
象限,则⎩
⎪⎨⎪⎧
3+a <0
-a >0,即a <-3,故选A 。
答案 A
2.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )
A .5-4i
B .5+4i
C .3-4i
D .3+4i
解析 根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i 。
故选D 。
答案 D
3.i 是虚数单位,若2+i 1+i =a +b i(a ,b ∈R ),则lg(a +b )的值是( )
A .-2
B .-1
C .0
D.12
解析 ∵(2+i )(1-i )(1+i )(1-i )
=3-i 2=32-1
2i =a +b i ,
∴⎩⎪⎨⎪⎧
a =32,
b =-12,∴lg(a +b )=lg1=0,故选C 。
答案 C
4.(2017·兰州模拟)已知复数z =(a 2-1)+(a -1)i(a ∈R )是纯虚数,则a =( )
A .0
B .1
C .-1
D .±1
解析 由题意得⎩
⎪⎨⎪⎧
a 2
-1=0,
a -1≠0,解得a =-1。
故选C 。
答案 C
5.满足z +i
z =i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12i
D .-12-12i
解析 去掉分母,得z +i =z i ,所以(1-i)z =-i , 解得z =-i 1-i =12-1
2i ,故选B 。
答案 B
6.(2016·北京高考)复数1+2i
2-i =( )
A .i
B .1+i
C .-i
D .1-i
解析 1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i 5
=i 。
故选A 。
答案 A
7.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A .1+2i B .1-2i C .-1+2i
D .-1-2i
解析 通性通法:设z =a +b i(a ,b ∈R ),则z =a -b i 。
故2z +z =2(a +b i)+a -b i =3a +b i =3-2i ,所以
⎩⎪⎨⎪⎧ 3a =3b =-2,解得⎩⎪⎨⎪⎧
a =1
b =-2
,所以z =1-2i 。
故选B 。
光速解法:设z =a +b i(a ,b ∈R ),由复数的性质可得z +z =2a ,故2z +z =(z +z )+z ,故2z +z 的虚部就是z 的虚部,实部是z 的实部的3倍。
故z =1-2i ,选B 。
答案 B
8.(2016·开封一模)已知复数z =1+a i(a ∈R )(i 是虚数单位),z z =-35+4
5i ,则a =( )
A .2
B .-2
C .±2
D .-1
2
解析 由题意可得1-a i 1+a i =-35+45i ,即(1-a i )21+a =1-a 2-2a i 1+a =-3
5
+45i ,∴1-a 21+a 2=-35,-2a 1+a 2=4
5
,∴a =-2,故选B 。
答案 B 二、填空题
9.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是
________。
解析 复数z =(1+2i)(3-i)=5+5i ,其实部是5。
答案 5
10.(2016·天津高考)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________。
解析 因为z =21+i =1-i ,所以z 的实部是1。
答案 1
11.(2016·北京高考)设a ∈R 。
若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________。
解析 (1+i)(a +i)=(a -1)+(a +1)i ,由已知得a +1=0,解得a =-1。
答案 -1
12.(2016·天津高考)已知a ,b ∈R ,i 是虚数单位。
若(1+i)(1-b i)=a ,则a
b 的值为________。
解析 (1+i)(1-b i)=1+b +(1-b )i =a ,所以b =1,a =2,a
b =2。
答案 2
(时间:20分钟)
1.设复数z 1,z 2在复平面内的对应点关于虚轴对称,若z 1=1-2i ,则z 2
z 1
的虚部为( )
A.35 B .-35 C.45
D .-45
解析 复数z 1=1-2i 对应的点(1,-2)关于虚轴对称的点为(-
1,-2),则z 2=-1-2i ,所以z 2z 1
=-1-2i 1-2i =-(1+2i )2
5=35-4
5i 的虚部是-4
5。
故选D 。
答案 D
2.设f (n )=⎝
⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭
⎪⎫1-i 1+i n
(n ∈N *),则集合{f (n )}中元素的个数为( )
A .1
B .2
C .3
D .无数个
解析 f (n )=⎝
⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭
⎪⎫1-i 1+i n =i n
+(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…。
∴集合中共有3个元素。
故选C 。
答案 C
3.已知复数z =1+m i 4-3i +m
25(m ∈R )的实数是虚部的2倍,则m =
________。
解析 由题意知,z =1+m i 4-3i +m 25=(1+m i )(4+3i )(4-3i )(4+3i )+m
25=
4-2m +(4m +3)i
25,因为实部是虚部的2倍,所以4-2m =2(4m +3),解得m =-1
5。
答案 -1
5
4.已知复数z =i +i 2+i 3+…+i 2 014
1+i ,则复数z 在复平面内对应
的点为________。
解析 ∵i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2 013=4×503+1,2 014=4×503+2, ∴z =i +i 2+i 3+…+i 2 0141+i =i +i 21+i =-1+i 1+i =
(-1+i )(1-i )(1+i )(1-i )=2i
2=i ,对应的点为(0,1)。
答案 (0,1)
5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若复数x =1-i
1+i ,y =⎪⎪
⎪⎪
⎪⎪4i x i 2 x +i ,则y =________。
解析 因为x =1-i 1+i
=(1-i )2
2=-i 。
所以y =⎪⎪
⎪⎪⎪⎪4i x i 2 x +i =⎪⎪⎪⎪
⎪⎪
4i 12 0=-2。
答案 -2。