机械设计复习要点
- 格式:docx
- 大小:23.08 KB
- 文档页数:10
机械设计基础背诵知识点机械设计是一门关于机械制造的学科,它涉及到机械零部件的设计、选择、计算和分析等方面的知识。
在机械设计的学习过程中,很多基础的知识点需要我们进行背诵。
下面将介绍一些机械设计基础的知识点。
1. 材料力学材料力学是机械设计的基础。
需要掌握材料的力学性质,包括拉伸强度、屈服强度、硬度等。
还要了解不同材料的特点以及它们的应用范围。
2. 分析力学分析力学是机械设计中的另一个重要知识点。
它涉及到物体的平衡、受力分析以及运动学等内容。
我们需要了解力的合成与分解、力矩的概念、平衡条件等基本概念。
3. 等效应力与疲劳在机械设计中,常常需要进行结构的强度计算。
等效应力理论是常用的一种计算方法,它可以将多个不同方向的应力合成为一个等效应力。
此外,疲劳是机械设计中非常重要的一个问题,我们需要了解疲劳寿命、疲劳裕度等概念。
4. 轴线零件设计轴线零件设计是机械设计中的一个重要内容。
我们需要了解轴线零件的选择与计算,包括轴的强度与刚度计算、连接方式的选择等。
5. 机械传动机械传动是机械设计中常见的一种结构形式。
我们需要了解不同传动装置的特点与适用范围,包括齿轮传动、带传动等。
6. 节气部件设计节气部件设计是机械设计中与流体传动相关的一个内容。
我们需要了解不同节气部件的设计原理与计算方法,包括调节阀、安全阀等。
7. 设备安装与调试设备安装与调试是机械设计中的最后一个环节,我们需要了解设备的安装方式以及调试过程中的一些注意事项。
上述只是机械设计中的一部分基础知识点,希望能够对你在学习机械设计过程中有所帮助。
机械设计是一个广阔的领域,需要我们不断学习与积累,才能够设计出高质量的机械产品。
50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。
2.静力学:研究物体在静止状态下的力学性质。
3.动力学:研究物体在运动状态下的力学性质。
4.运动学:研究物体的运动特性,如速度、加速度和位移。
5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。
6.力的合成:通过矢量相加的方法计算多个力的合力。
7.力的分解:将一个力分解为多个力的合力。
8.平衡:物体受到的合力和合力矩均为零。
9.功:力在物体上产生的位移所做的功。
10.能量:物体的能力做功的量度。
11.弹性力:物体受到变形后,恢复原状的力。
12.摩擦力:物体在运动或静止时受到的阻力。
13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。
14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。
15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。
16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。
17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。
18.滑块机构:由滑块和导轨构成的机构,实现直线运动。
19.传动比:用来衡量运动传递的效率。
20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。
21.离合器:用来连接或分离两个旋转物体的装置。
22.制动器:用来减速、停止或固定运动物体的装置。
23.轴承:用来支撑和减小机械运动中的摩擦力的装置。
24.轴线:用来连接和支撑旋转物体的直线。
25.键连接:通过键连接来实现轴线和轴承的固定。
26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。
27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。
28.轴向力:作用于轴线方向上的力。
29.径向力:作用于轴线垂直方向上的力。
30.弹簧:用来储存和释放能量的装置。
31.拉伸强度:材料抵抗拉伸破坏的能力。
32.压缩强度:材料抵抗压缩破坏的能力。
33.硬度:材料抵抗划伤或穿透的能力。
34.拉伸试验:测试材料的拉伸性能和强度。
《机械设计基础》复习要点一、基本知识:1.模数m=2mm,压力角a=20 度,齿数z=20,齿顶圆直径 da=44.0mm ,齿根圆直径d f=35.0mm 的渐开线直齿圆柱齿轮是齿轮。
2.渐开线直齿圆柱外齿轮齿廓根切发生在场合。
3.速比不等于1的带传动,当工作能力不足时,传动带将在打滑。
4.带传动在工作时产生弹性滑动,是由于。
5.滚动轴承轴系两端固定支承方式常用在和时。
6.键的结构尺寸:b×h是根据选择的。
7.带传动中,带上受的三种应力是应力,应力和应力。
最大应力等于,它发生在处。
8.带传动与齿轮传动一起做减速工作时,宜将带传动布置在齿轮传动之。
9.确定单根带所能传递功率的极限值P0的前提条件是。
10.普通平键的工作面是()。
11.带传动不能保证精确的传动比,其原因是。
12.普通V带带轮的槽形角随带轮直径的减小而。
13.为了减少装夹工件的时间,同一轴上不同轴段处的键槽应布置在轴的。
14.一定型号V带中的离心拉应力,与带线速度。
15.在一传动机构中,有圆锥齿轮传动和圆柱齿轮传动时,应将圆锥齿轮传动安排在()16.对轴进行表面强化处理,可以提高轴的。
17.工作时只承受弯矩,不传递转矩的轴,称为,自行车的前轴是。
18.转轴设计中在初估轴径时,轴的直径是按来初步确定的19.增大轴在截面变化处的过度圆角半径,可以。
20.开式齿轮传动的主要失效形式是齿面()。
21.滚动轴承62312中轴承的内径为()壹22.带传动的设计准则为。
23.带传动主要依靠来传递运动和动力的。
24.负变位齿轮的分度圆齿槽宽标准齿轮的分度圆齿槽宽。
25.工作时同时承受弯矩和传递转矩的轴,称为,自行车的中轴是。
26.轴的常用材料主要是。
27.在轴的设计中,采用轴环是。
28.为了使齿轮、轴承等有配合要求的零件装拆方便,并减少配合表面的擦伤,在配合轴段前应采用的轴径。
29.为了使零件能靠紧轴肩而得到准确可靠的定位,轴肩处的过渡圆角半径r必须与之相匹配的零件毂孔端部的圆角半径R或倒角尺寸C。
机械设计总复习范文机械设计是机械工程学科中的重要分支,是指根据特定的要求,利用机械原理、理论和设计方法,进行零部件、机构和机械系统的设计。
机械设计的目标是实现机械产品的功能需求,并满足性能、可靠性、经济性及制造与维修的要求。
下面是机械设计的总复习内容。
一、机械设计基础知识:1.机械元件的基本概念和分类。
如紧固件、轴类零部件、轴承、联接件、弹簧、键和槽等。
2.材料力学基础。
包括杨氏模量、拉伸强度、屈服强度、冲击韧性等。
3.机械设计基本原理。
如受力分析、平衡条件、功率传递、传动比等。
4.流体力学原理。
包括液压、气压的基本原理与应用。
二、机械结构设计:1.固体力学分析与设计。
包括强度计算、载荷分配、应力分析、疲劳寿命等。
2.机械系统设计。
包括机构设计、减振设计、噪音与振动控制等。
3.轴系设计。
包括轴的强度计算、轴承的选型、轴的位置配合等。
4.机械传动设计。
包括齿轮传动、带传动、离合器、制动器的设计和计算。
三、机械零件设计:1.零件加工工艺与装配设计。
包括零件的材料选择、表面处理、热处理和加工工艺的设计。
2.零件的尺寸和公差设计。
包括尺寸链的设计、公差配合的选择和计算。
3.标准零件的选用。
如轴承、齿轮、弹簧等标准零件的选用和使用。
四、机械设计的先进技术:1.计算机辅助设计和三维建模技术。
如CAD、CAM和CAE等软件的运用。
2.数字化设计和快速原型制造技术的应用。
3.仿生学在机械设计中的应用。
如叶片和机构设计中的仿生优化等。
4.可靠性设计和维修性设计。
如故障模式与影响分析、可靠性评估和维修性设计等。
五、机械设计的数学基础:1.常用的数学方法与数学模型在机械设计中的应用。
2.微积分、线性代数、概率论和数理统计在机械设计中的应用。
六、机械设计的实践能力:1.利用软件进行机械设计和分析的能力。
2.进行机械实验和测试的能力。
3.解决机械设计问题的能力。
4.进行机械制造和加工的能力。
机械设计总复习的内容主要包括机械设计基础知识、机械结构设计、机械零件设计、机械设计的先进技术、机械设计的数学基础和机械设计的实践能力等方面的内容。
第一章绪论1.通用零件、专用零件有哪些?P4通用零件:传动零件——带、链、齿轮、蜗轮蜗杆等;连接零件——平键、花键、销、螺母、螺栓、螺钉等;轴系零件——滚动轴承、联轴器、离合器等。
专用零件:汽轮机的叶片、内燃机的活塞、纺织机械中的纺锭、织梭等。
第二章机械设计总论1.机器的组成。
P5机器的组成:原动机部分、传动机部分、执行部分、测控系统、辅助系统。
2.机械零件的主要失效形式有哪些?P13①整体断裂;②过大的残余变形;③零件的表面破坏;④破坏正常工作条件引起的失效。
3.机械零件的设计准则有哪些?P16①强度准则;②刚度准则;③寿命准则;④振动稳定性准则;⑤可靠性准则。
第三章机械零件的强度1.交变应力参数有哪些?应力比r的定义是什么?r = -1、r =0、r=1分别叫什么?P27最大应力σmax、最小应力σmin、平均应力σm=σmax+σmin2、应力幅度σa=σmax−σmin2、应力比(循环特性系数)r=σminσmax。
最小应力与最大应力之比称为应力比(循环特性系数)。
r = -1:对称循环应力、r =0:脉动循环应力、r =1:静应力。
第五章螺纹连接和螺旋传动1.连接螺纹有哪些?各有哪些特点?P71①普通螺纹。
牙型为等边三角形,牙型角α=60°,内、外螺纹旋合后留有径向间隙。
同一公称直径螺纹按螺距大小可分为粗牙螺纹和细牙螺纹。
②55°非密封管螺纹。
牙型为等腰三角形,牙型角α=55°。
管螺纹为英制细牙螺纹。
可在密封面间添加密封物来保证密封性。
③55°密封管螺纹。
牙型为等腰三角形,牙型角α=55°。
螺纹旋合后,利用本身的变形就可以保证连接的紧密型。
④米制锥螺纹。
牙型角α=60°,螺纹牙顶为平顶。
2.传动螺纹有哪些?各有哪些特点?P72①矩形螺纹。
牙型为正方形,牙型角α=0°。
传动效率比其他螺纹高。
②梯形螺纹。
牙型为等腰梯形,牙型角α=30°。
1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230—450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形.确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀.疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
河北工业大学机械设计基础第一章机械设计概论复习思考题1、机械设计的基本要求包括哪些方面?2、机械设计的一般程序如何?3、对机械零件设计有哪些一般步骤?4、对机械零件设计有哪些常用计算准则?5、对机械零件材料的选择应考虑哪些方面的要求?习题1.何谓机械零件的失效?何谓机械零件的工作能力?2.机械零件常用的计算准则有哪些?第二章机械零件的强度复习思考题1、静应力与变应力的区别?静应力与变应力下零件的强度计算有何不同?2、稳定循环变应力的种类有哪些?画出其应力变化曲线,并分别写出最大应力σmax、最小应力σmin、平均应力σm、应力幅σa与应力循环特性γ的表达式。
3、静应力是否一定由静载荷产生?变应力是否一定由变载荷产生?4、机械零件疲劳破坏的特征有哪些?机械零件疲劳强度与哪些因素有关?5、如何由σ-1、σ0和σs三个试验数据作出材料的简化极限应力图?6、相对于材料,影响机械零件疲劳强度的主要因素有哪些?综合影响因素Kσ的表达式为何?如何作零件的简化极限应力图?7、应力集中、零件尺寸和表面状态是否对零件的平均应力σm和应力幅均有影响?8、按Hertz公式,两球体和圆柱体接触时的接触强度与哪些因素有关?习题1.某材料的对称循环弯曲疲劳极限1801=-σMPa 。
取循环基数N 0=5×106,m =9,试求循环次数N 分别为7000、25000、62000次时的有限寿命弯曲疲劳极限。
2.已知材料的机械性能为σs =260MPa ,σ-1=170MPa ,ψσ=0.2,试绘制此材料的简化根限应力线图。
3.圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用上题中的材料,设其强度极限B =420MPa ,试绘制此零件的简化极限应力线图,零件的βσ=βq =1。
4.如上题中危险剖面上的平均应力σm =20MPa ,应力幅σa =30MPa ,试分别按①γ=C ,②σm =C ,求出该载面的计算安全系数S ca 。
机械设计基础复习资料一、基础知识0、零件(独立的机械制造单元)组成(无相对运动)构件(一个或多个零件、是刚体;独立的运动单元)组成(动连接)机构(构件组合体);两构件直接接触的可动连接称为运动副;运动副要素(点、线、面);平面运动副、空间运动副;转动副、移动副、高副(滚动副);点接触或线接触的运动副称为高副(两个自由度、一个约束)、面接触的运动副称为低副(一个自由度、两个约束,如转动副和移动副)0.1曲柄存在的必要条件:最短杆与最长杆长度之和小于其余两杆长度之和。
连架杆和机架中必有一杆是最短杆。
0.2在四杆机构中,不满足曲柄存在条件的为双摇杆机构,满足后,若以最短杆为机架,则为双曲柄机构;若以最短杆相对的杆为机架则为双摇杆机构;若以最短杆的两邻杆之一为机架,则为曲柄摇杆机构0.3 凸轮从动件作等速运动规律时,速度会突变,在速度突变处有刚性冲击,只能适用于低速凸轮机构;从动件作等加等减速运动规律时,有柔性冲击,适用于中、低速凸轮机构;从动件作简谐运动时,在始末位置加速度也会变化,也有柔性冲击,之适用于中速凸轮,只有当从动件做无停程的升降升连续往复运动时,才可以得到连续的加速度曲线(正弦加速度运动规律),无冲击,可适用于高速传动。
0.4凸轮基圆半径和凸轮机构压力角有关,当基圆半径减小时,压力角增大;反之,当基圆半径增大时,压力角减小。
设计时应适当增大基圆半径,以减小压力角,改善凸轮受力情况。
0.5.机械零件良好的结构工艺性表现为便于生产的性能便于装配的性能制造成本低1.按照工作条件,齿轮传动可分为开式传动两种。
1.1.在一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【齿面疲劳点蚀】1.2对于闭式软齿面来说,齿面点蚀,轮齿折断和胶合是主要失效形式,应先按齿面接触疲劳强度进行设计计算,确定齿轮的主要参数和尺寸,然后再按齿面弯曲疲劳强度进行校核。
1.3闭式齿轮传动中的轴承常用的润滑方式为飞溅润滑1.4. 直齿圆锥齿轮的标准模数规定在_大_端的分度圆上。
机械设计基础知识点一、 绪论1、机器:用来变换或传递能量、物料、信息的机械装置;2、机构:把一个或几个构件的运动,变换成其他构件所需的具有确定运动的构件系统;3、构件是指组成机械的运动单元;零件指组成机械的制造单元;二、 机械设计基础知识1、 失效:机械零件丧失工作能力或达不到设计要求性能时,称为失效;2、零件失效形式及原因:1) 断裂失效:零件在受拉压弯剪扭等外载荷作用,某一危险截面应力超过零件的强度极限发生的断裂、2) 变形失效:作用于零件上的应力超过材料的屈服极限,则零件将产生塑性变形、3) 表面损伤失效:零件的表面操作破坏主要是腐蚀、磨损和接触疲劳;3、应力和应力循环特性:可用min max /σσ=r 来表示变应力的不对称程度;r=+1为静应力;r=0为脉动循环变应力;r=-1为对称循环变应力,-1<r<+1为不对称循环变应力;4、零件设计准则:强度准则、刚度准则、耐磨性准则、振动稳定性准则、耐热性准则、可靠性准则;5、机械零件材料选择的基本原则:1) 材料的使用性能应满足工作要求力学、物理、化学、2) 材料的工艺性能满足制造要求铸造性、可锻性、焊接性、热处理性、切削加工性、3) 力求零件生产的总成本最低相对价格、资源状况、总成本;6、摩擦类型:按摩擦表面间的润滑状态不同分为:干摩擦、边界摩擦、流体摩擦、混合摩擦;7、磨损:由于机械作用或伴有物理化学作用,运动副表面材料不断损失的现象称为磨损,分类:粘着磨损、磨粒磨损、表面疲劳磨损、腐蚀磨损;8、常用润滑剂:润滑油、润滑脂9、零件结构工艺性的基本要求:毛坯选择合理、结构简单合理、制造精度及表面粗糙度规定适当;三、 平面机构基础知识1、 运动副:两构件直接接触,并保持一定相对运动,则将此两构件可动连接称之为运动副;按照接触形式,通常把运动副分为低副和高副两类;2、平面机构的自由度:机构能产生独立运动的数目称为机构的自由度;设平面机构中共有n 个活动构件,在各构件尚未构成运动副时,它共有3n 个自由度;而当各构件构成运动副后,设共有个低副和个高副,则机构的自由度为F=3n-2-H L P P -;3、机构具有确定运动的条件:机构自由度应大于0,且机构的原动件的数目应等于机构的自由度的数目;当机构不满足这一条件时,如果机构的原动件数小于机构的自由度,机构的运动不能确定;如果原动件数大于机构的自由度,机构不能产生运动,并将导致机构中最薄弱环节的损坏4、复合铰链、局部自由度、虚约束各自的引入5、瞬心:两构件互作平面相对运动时,在任一瞬时都可以认为它们是绕某一点作相对转动;该点即为两构件的速度瞬心;6、三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上;四、平面连杆机构1、平面连杆机构基本类型:按两连架杆的运动形式将铰链四杆分为三种:曲柄摇杆机构、双曲柄机构、双摇杆机构;2、平面四杆机构的演化:1)曲柄摇杆机构、2)曲柄滑块机构、3)导杆机构、4)摇块机构、5)定块机构、6)偏心轮机构、7)双滑块机构;3、铰链四杆机构有周转副的条件是:1)最短杆与最长杆的长度之和小于或等于其他两杆的长度之和;2)组成该周转副的两杆中必有一杆为四杆中的最短杆;4、不同形式的获得条件:1)当最短杆为机架时,机架上有两个周转副,故得双曲柄机构;2)当最短杆为连架杆时,机架上有一个周转副,该四杆机构将成为曲柄摇杆机构;3)当最短杆为连杆时,机架上没有周转副,得到双摇杆机构;5、急回动动特性:摇杆在摆去与摆回时的速度不同的性质;6、行程速度变化系数K:K=180°+θ/180°-θ机构在两个极位时,原动件AB所处两个位置之间的锐角θ称为极位夹角θ角越大,K值越大,机构的急回特性也越显着7、压力角:从动件驱动力F与力作用点绝对速度所夹锐角;压力角的余角称为传动角;为了保证机构据传动性能良好,设计通常应使minγ≥40°;在传递力矩较大时,则应使minγ≥50°,对于一些受力很小或不常使用的操作机构,则可允许传动角小些,只要不发生自锁即可;8、死点:设摇杆CD为主动件,则当机构处于图示两个位置之一时,连杆与从动曲柄共线,出现了传动角等于0度的情况;这时主动什CD通过连杆作用于从动件AB 上的力恰好通过其回转中心,所以不能使构件AB转动而出现“顶死”现象;机构的此种位置称为死点;五、凸轮机构1、由于加速度发生无穷大突变而产生的冲击称为刚性冲击,由于加速度的有限值突变产生的冲击称为柔性冲击;2、基圆:以凸轮轮廓曲线的最小向径0r为半径所作的圆称为凸轮的基圆;3、压力角:从动件运动方向与力F之间所夹的锐角即为压力角;4、滚子半径的选择:设理论轮廓曲线外凸部分的最小曲率半径为min ρ,滚子半径为T r ,则相应位置实际轮廓曲线的曲率半径'ρ为'ρ=min ρ-T r ; 且有1) 当min ρ>T r 时,'ρ>0,实际轮廓曲线为一平滑曲线,从动件的运动不会出现失真;2) 当min ρ=T r 时,'ρ=0,实际轮廓曲线出现尖点,尖点极易磨损,磨损后,会使从动件的运动出现失真;3) 当min ρ<T r 时,'ρ<0,实际轮廓曲线出现相交,图中交点以上的轮廓曲线在实际加工时会被切去,使从动件的运动出现严重的失真,这在实际生产中是不允许的;六、 齿轮传动1、齿廓啮合基本定律:一对传动齿轮的瞬时角速比与其连心线被齿廓接触点公法线所分割的两段长度成反比,这个规律称为齿廓啮合基本定律;2、渐开线定义及其性质:当一直线沿某圆作纯滚动时,此直线上任意一点K 的轨迹称为该圆的渐开线,这个圆称为渐开线的基圆,该直线称为渐开线的发生线; 性质:1) 发生线在基圆上滚过的长度等于基圆上被滚过的弧长;2) 渐开线上任意一点的公法线必与基圆相切;3) 渐开线上各点的曲率半径不同,离基圆远,曲率半径越大,渐开线越平缓;4) 渐开线的形状取决于基圆的大小,同一基圆上的渐开线形状相同,不同基圆上的渐开线形状不同,基圆越大,渐开线越平直,基圆半径为无穷大时,渐开线为直线;5) 渐开线是从基圆开始向外展开的,故基圆内无渐开线;6) 渐开线上各点的压力角不相等,离基圆越远,压力角越大;3、渐开线齿廓的啮合特性:1) 四线合一啮合线、过啮合点的公法线、基圆的公切线和正压力作用线四线合一;2) 啮合线为一直线,啮合角为一定值;3) 中心距可调性;4、渐开线标准齿轮正确啮合条件:m1=m2=m,α1=α2=α;5、齿轮连续传动的条件是1/21≥=b p B B εPb 表示基圆齿距,ε越大,表示多对轮齿同时啮合的概率越大,齿轮传动越平稳;6、根切现象:用范成法加工齿轮,当刀具的齿顶线与啮合线的交点超出啮合极限点时,会出现轮齿根部的渐开线齿廓被刀具切去一部分的现象,称为根切;7、最少齿数:根切的产生与齿轮的齿数相关,齿数越少,越容易产生根切;标准齿轮欲避免根切,其齿数必须大于或等于不发生根切时的最少齿数,对于正常齿制的齿轮,最小为17,短齿制齿轮为14,若要求齿轮的齿数小于最少齿数而又不发生根切,则应采用变位齿轮;8、变位齿轮:以切削标准齿轮的位置为基准,将刀具的位置沿径向移动一段距离,这一距离称为刀具的变位量,以xm 表示;其中m 为模数,x 为变位系数;并规定刀具远离轮坯中心的变位系数为正,刀具靠近轮坯中心的变位系数为负;当刀具变位后,与分度圆相切的不是刀具的中线,而是刀具节线,这样切出的齿轮称为变位齿轮;9、轮齿常见的失效形式:1) 轮齿折断 2) 齿面点蚀 3) 齿面胶合 4) 齿面磨损5) 塑性变形;10、斜齿圆柱齿轮传动的正确啮合条件:n n n n n n m m m αααββ====-=212121;;m 、α分别代表两轮的法面模数和法面压力角;11、直齿圆锥齿轮正确啮合的条件:m1=m2=m,α1=α2=αm 、α分别代表两轮的大端模数和压力角;12、蜗杆传动正确啮合的条件是:ααα====2121;t a t a m m m m 、α分别代表蜗杆轴向模数、蜗轮端面模数和蜗杆轴向压力角、蜗轮端面压力角;13、齿轮传动的润滑方式:浸油润滑、喷油润滑七、 轮系1、平面定轴轮系传动比的计算公式:; 周转轮系传动比的计算公式:H n H m H n H m Hmn i ωωωωωω--==齿数连乘积转化轮系中所有主动轮齿数连乘积转化轮系中所有从动轮±= 2、轮系的应用:1) 实现相距较远的两轴之间的传动;2) 实现变速传动;3) 获得大的传动比;4) 实现换向传动;5) 实现运动的合成与分解;八、 带传动与链传动1、打滑现象:当传动的功率P 增大时,有效接力也相应增大,即要求带和带轮接触面上有更大的摩擦力来维持传动;但是,在一定的初拉力下,带和带轮接触面上所能产生的摩擦力有一极限值,称为临界摩擦力或临界有效拉力;当传递的圆周力超过该极限值时,带就在带轮上打滑,即所谓的打滑现象;2、带中最大应力发生在绕入小带轮的点处,其值为:3、带传动的弹性滑动:1) 传动带是弹性体,受力后会产生弹性伸长,带传动工作时,和松边的拉力不等,因而弹性伸长也不同;2) 带在绕过主动轮时,作用在带上的拉力逐渐减小,弹性伸长量也相应减小;3) 因而带在随主动轮前进的同时,沿着主动轮渐渐身后收缩滑动,而在带动从动轮旋转时,情况正好相反,即一边带动从动轮旋转,一边尚其表面向前拉伸滑动;4) 这种由于带的弹性和接力差引起的带在带轮上的滑动,称为带的弹性滑动;4、带的打滑是两个完全不同的概念;弹性滑动是带传动工作时的固有特性,只要主动轮一驱动,紧边和松边就产生拉力差,弹性滑动不可避免;而打滑是因为过载引起的全面滑动,是可以采取措施避免的;5、带传动的包角要求:小带轮包角/a 57.3×﹚d -﹙d ±18012=α,其中d2,d1分别表示大带轮和小带轮的直径,a 表示中心距;6、带传动的最大应力发生在小带轮某一点:其值为c b σσσσ++=11max ,其中1σ=A F /1A 为带的横截面积为紧边拉应力;A qvv A F cc //==σq 为每米长的质量,v 为带速;d YE b /2=σY 表示带截面的节面到最外层的距离;E 为带的弹性模量;d 为带轮直径;7、链传动优缺点:与带传动相比,其主要优点是:1) 能获得准确的平均传动比;2) 所需张紧力小,因而作用在轴上的压力小,3) 结构更为紧凑,传动效率较高,4) 可在高温、油污、潮湿等恶劣环境下工作;与齿轮传动相比较优点:1) 中心距较大而结构较简单,2) 制造与安装精度要求较低;链传动的主要缺点是:1) 瞬时传动比不恒定,2) 传动平稳性差,工作时有一定的冲击和噪声;8、链节距:链条上相邻两销轴的中心距称为链节距,以p 表示,它是链条最主要的参数,滚子链使用时为封闭环形,链条长度以链节数来表示;当链节数为偶数时,链条连接成环形时正好是外链板与内链板相连接,接头处可用开口销和弹簧夹来锁住活动的销轴,当链节数为奇数时,则需要采用过渡链节,链条受力后,过渡链节的链节除受拉力外,还承受附加的弯矩;因此应避免采用奇数链节;九、 连接与弹簧1、螺纹副:外螺纹与内螺纹旋合面组成螺纹副,亦称螺旋副;2、自锁条件:对于矩形螺纹,螺纹副的自锁条件为ρϕ≤,其中ϕ为斜面倾角,ρ为摩擦角;对于非矩形螺纹,其自锁条件为v ρϕ≤,其中v ρ为当量摩擦角,并且有v v f f ρβtan cos /==;3、螺纹的预紧:在一般的螺纹连接中,螺纹装配时都应拧紧,这时螺纹连接受到预紧力的作用,对于重要的螺纹连接,为了保证连接的可靠性、强度和密封性要求,应控制预紧力的大小;4、螺纹的防松:为了保证安全可靠,设计螺纹连接时要采取必要的防松措施;螺纹连接防松的根本问题在于防止螺纹副的相对转动;1) 在静载荷和工作温度变化不大的情况下,拧紧的螺纹连接件因满足自锁性条件一般不会自动松脱;2) 但在冲击、振动和变载的作用下,预紧力可能在某一瞬间消失,连接仍有可能自行松脱而影响正常工作,甚至发生严重事故;3) 当温度变化较大或在高温条件下工作时,连接件与被连接件的温度变形或材料的蠕变,也可能引起松脱;5、防松措施:1) 摩擦防松弹簧垫圈、双螺母、尼龙圈锁紧螺母、2) 机械防松开口销与槽形螺母、止动垫圈与圆螺母、3) 粘合防松6、螺栓的主要失效形式有:1) 螺栓杆拉断;2) 螺纹的压溃和剪断;3) 经常装拆时会因磨损而发生滑扣现象;7、键:平键和半圆键工作面是两侧面;楔键和切向键工作面是上下面;十、 轴承滚动轴承、滑动轴承1、滚动轴承分类:按滚动体形状可以分为球轴承和滚子轴承;按承受载荷的方向或公称接触角的不同,滚动轴承可以分为向心轴承和推力轴承;2、滚动轴承特点:主要优点是:1) 摩擦阻力小、启动灵活、效率高; 2) 轴承单位宽度的承载能力较强; 3) 极大地减少了有色金属的消耗;4) 易于互换,润滑和维护方便; 主要缺点是:1) 接触应力高,抗冲击能力较差,高速重载荷下寿命较低,不适用于有冲击的瞬间过载的高转速场合; 2) 减振能力低,运转时有噪声;3) 径向外廓尺寸大;4) 小批量生产特殊的滚动轴承时成本较高;3、滚动轴承的代号:基本代号中右起12位数字为内径代号,右起第3位表示直径系列代号,右起第4位为宽高度系列代号,当宽度系列为0系列时,可以不标出;4、滚动轴承类型选择:考虑承载能力、速度特性、调心性能、经济性5、滑动轴承的分类:按所受载荷方向的不同,主要分为径向滑动轴承和推力滑动轴承;按滑动表面间摩擦状态的不同,可分为干摩擦滑动轴承、非液体摩擦滑动轴承和液体摩擦滑动轴承;6、滑动轴承轴瓦材料性能:1) 摩擦因数小,有良好的耐磨性、耐腐蚀性、抗胶合能力强;2)热膨胀系数小,有良好的导热性;3)有足够的机械强度和可塑性;十一、轴1、轴的分类:按承载情况不同,轴可以分为以下三类:1)心轴只承受弯矩而不传递转矩的轴、2)传动轴主要传递动力,即主要传递转矩,不承受或承受很小弯矩、3)转轴用于支承传动件和传递动力,既承受弯矩又传递转矩;4)按照轴线的形状还可以分为:直轴、曲轴、钢丝软轴;2、轴的结构设计要求:1)便于轴上零件的装拆和调整;2)对轴上零件进行准确的定位且固定可靠;3)要求轴具有良好的加工工艺性;4)尽量做到受力合理,应力集中小,承载能力强,节约材料和减轻重量;。
机械设计复习要点第二章、机械设计总论
1、机器的组成:原动机部分、传动部分、执行部分
2、机械设计的主要失效形式
①整体断裂
②过大的残余变形
③零件的表面破坏
④破坏正常工作条件引起的破坏
3、避免在预定寿命期限内失效的要求
强度要求
刚度要求
寿命
4、机械零件的设计准则
强度准则
刚度准则
寿命准则
第三章、机械零件的强度
1、应力比r=-1,对称循环应力
r=0,脉动循环应力
r=1,静应力
(注σmax=σm+σa,r=(σm-σa)/(σm+σa)=σmin/σmax)2等疲劳寿命曲线
3、零件的接触强度
接触应力σH
第四章、摩擦
第五章螺纹连接和螺旋传动
1螺纹类型
连接螺纹:普通螺纹、非螺纹密封的管螺纹、用螺纹密封的管螺纹传动螺纹:矩形螺纹、锯齿螺纹、
2、螺纹的主要参数
大经d:螺纹的最大直径,在标准中定为公称直径
小径d1:螺纹的最小直径
中经d2:齿厚=齿槽宽处直径,几何计算用。
一般取:d
2=(d+d
1
)
线数n:n=1时用于联接;n>1时用于传动;n↑→η↑,但为便于制造n≤4
螺距p:螺纹相邻两个牙型上对应点之间的距离
导程:S=nP
螺纹升角
牙型角:螺纹牙两侧面夹角
接触高度h
2、螺纹连接基本类型
螺栓连接
双头螺柱连接:用于有一联接件较厚,并经常装拆的场合,拆卸时只需拧下螺母即可。
螺钉连接:用于有一联接件较厚,且不需经常装拆的场合。
3、螺纹连接预紧的目的在于增强连接的可靠性和紧密性,以防止受载后被连接件间出现缝隙或发生相对滑移。
但过大的预紧力会导致整个连接的结构尺寸增大,也会使连接件在装配或偶然过载时被拉断。
4、松动原因:冲击、振动、变载荷下或温度变化较大时,导致螺旋副摩擦力F f减小或瞬时消失,最后螺纹松动
防松的根本问题在于防止螺旋副在受载时发生相对转动
防松的方法
摩擦防松:对顶螺母、弹簧垫圈、自锁螺母
机械防松:开口销与六角开槽螺母、止动垫圈、串联钢丝
破坏螺旋副运动关系防松:冲点、涂胶粘剂
第六章键连接
1、键连接的主要类型:平键连接、半圆头连接、楔键连接
2、键的选择包括类型选择和尺寸选择。
键的类型应根据键连接的结构特点、使用要求和工作条件来选择;键的尺寸则按符合标准规格和强度要求来取定。
3、销主要用来固定零件之间的相对位置,称为定位销,它是组合加工和装配时的重要辅助零件;也可用于连接,称为连接销,可传递不大的载荷;还可作为安全装置过程中的过载剪断元件,称为安全销。
第八章带传动
1、带传动是一种挠性运动。
带传动的基本组成零件为带轮(主动带轮和从动带轮)和传动带。
2、带传动分为摩擦型带传动和啮合型带传动
摩擦型带传动:平带传动、圆带传动和V带传动
平带传动:结构简单,传动效率高,带轮容易制造,在传动中心距较大的情况下应用较多;
圆带传动:结构简单,多用于小功率传动;
V带传动:V带的横截面呈等腰梯形,带轮上也做出相应的轮槽,传动时,V带的两个侧面和轮槽接触,槽面摩擦可以提供更大的摩擦力,另外,V带传动的允许的传动比大,结构紧凑,大多数V带已标准化啮合型带传动:也称为同步带传动,它通过传动带平面上等距分布的横向齿和带轮上相应齿槽的啮合来传动。
啮合型带传动与摩擦型带传动比较,同步带传动的带轮和传动带之间没有相对滑动,能够保证严格传动比,但同步带传动对中心距及其尺寸稳定性要求较高。
3、带的应力分析
拉应力:包括紧边拉应力和松边拉应力
弯曲应力:弯曲应力与带轮的基准直径成反比,所以带在小带轮上的弯曲应力一定大于大带轮的弯曲应力
离心拉应力:当带随着带轮作圆周运动时,必须在带中施加一定的力,以迫使带作圆周运动,这个力习惯上称为离心拉力
4、带中可能产生的瞬时最大应力发生在带的紧边开始绕上小带轮处
5、带的弹性滑动:由于带的弹性变形而引起的带与带轮之间的微量滑动。
因为带传动总有紧边和松边,所以弹性滑动也总是存在的,是无法避免的
6、带传动的主要失效形式是打滑和疲劳破坏,因此,带传动的设计准则是:在保证不打滑的条件下,带传动具有一定的疲劳强度和寿命。
7、带传动参数
中心距:中心距大可以增加带轮的包角,减少单位时间内带的循环次数,有利于提高带的寿命,但是中心距过大,则会增加带的波动,降
低带传动的平稳性,同时增大带传动的整体尺寸;中心距小,则有相反的利弊。
传动比:传动比大,会减小带轮的包角,当带轮的包角减小到一定程度时,带传动就会打滑,从而无法传递规定的功率。
带轮的基准直径:在带传动需要传递的功率给定条件下,减小带轮的直径,会增大带传动的有效拉力,从而导致V带根数增加;这样不仅增大了带轮的宽度,也增大了载荷在V带之间分配的不均匀性;另外,带轮直径减小,增加了带的弯曲应力,为了避免弯曲应力过大,小带轮基准直径就不能过小
带速:当带的传递功率一定时,提高带速可以降低带传动的有效拉力,相应的减少带的根数或者V带的横截面积,总体上减少带传动的尺寸;但是,提高带速,也提高了V带的离心拉力,增加了单位时间内带的循环次数,不利于提高带传动的疲劳强度和寿命;降低带速则有相反的利弊
第九章链传动
1、链传动是一种挠性运动,它由链条和链轮组成,通过链轮轮齿和
链条链节的啮合来传动运动和动力。
2链传动的优缺点
3、滚子链
当链节数为偶数时,接头处可用开口销和弹簧垫片来固定,一般前者用于大节距,后者用于小节距;当链节数为奇数时,需采用过渡链节,由于过渡链节的链板要受附加弯矩的作用,所以在一般情况下不用奇数链节。
4、链传动的瞬时传动比是变化的,链传动的传动比变化与链条绕在链轮上的多边形特征有关,故将以上现象称为链传动的多边形效应。
(链速的不均匀现象(
5、链传动参数选择
链轮齿数:小链轮齿数少,可减少外廓尺寸,但齿数过少,会增加运动的不均与性和动载荷,链条在进入和退出啮合时,链节间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损,所以小链轮的齿数不宜过少,一般最少齿数为9.
z↓,同时啮合齿数↓,磨损↑
z↓,链节间相对转角↑,↑功率消耗
z1↑→z2↑↑─→d+Δd↑→跳齿、脱链↑→寿命↓
5、链节距p
P链传动尺寸↑—承载能力↑;运动不均匀性↑、动载↑、振动噪音↑,所以尽量采用小节距链条。
一般,重载、中心距a小、传动比i大:小节距、多排链;带速v小、中心距a大、传动比i小:大节距、单排链
第十章齿轮传动
1、开式齿轮传动:齿轮传动没有防尘罩或机壳,齿轮完全暴露在外边的叫开式齿轮传动,这种传动不仅外界杂物极易侵入,而且润滑不良,因此工作条件不好,轮齿也容易磨损,故只宜用于低速传动。
半开式齿轮传动:齿轮传动有简单的防护罩,有时还把大齿轮部分浸在油池中,这种叫半开式齿轮传动,这种传动工作条件有所改善,但仍不能做到严密防止外界杂物侵入,润滑条件也不算最好。
闭式齿轮传动:齿轮传动装在经过精确加工而且封闭严密的箱体内,称为闭式齿轮传动,它的润滑及防护条件最好,多用于重要的场合。
2、齿轮传动的失效形式:轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形。
3、设计准则
对于闭式传动,软齿面:点蚀、折断,按σH设计,按σF校验
硬齿面:按σF设计,按σH校验
开式传动:通常只计算σF(考虑磨损可将模数加大10-15%)
4、轮齿受力分析
5、同一齿面往往在节线附近的齿根面先发生点蚀、然后才扩展到齿顶面,亦即齿顶面比齿根面具有较高的接触疲劳强度。
6齿轮传动的强度计算说明
7、圆柱齿轮的实用齿宽,在按公式b=φd d1计算后再适当圆整,而且常将小齿轮的齿宽在圆整值的基础上人为地加宽5-10mm,以防止大小齿轮因装配误差产生轴向错位时导致啮合齿宽减小而增大轮齿单位齿宽的工作载荷。
8、斜齿圆柱齿轮受力分析
圆周力:主动轮与转向相反,从动轮与转向相同
径向力:指向圆心
轴向力:主动轮可用左右手判断(左旋用左手,右旋用右手)
注:齿轮旋转方向判定:往那边倒就往哪边旋
9、齿轮结构设计
第十一章蜗杆传动。