【创新设计】(江苏专用)高考数学二轮复习 专题八 数学思想方法考点整合 理
- 格式:doc
- 大小:483.01 KB
- 文档页数:24
专题3转化与化归思想化归就是转化和归结,它是解决数学问题的基本方法,在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,以求得问题的解答.中学数学处处都体现出化归的思想,如化繁为简、化难为易、化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想.1.f (x )是R 上的奇函数,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于________. 解析:由f (x +2)=f (x )知,f (x )的周期为2,所以f (7.5)=f (-0.5)=-f (0.5)=-0.5. 答案:-0.52.若m ,n ,p ,q ∈R 且m 2+n 2=a ,p 2+q 2=b ,ab ≠0,则mp +nq 的最大值是________. 解析:(mp +nq )2=m 2p 2+2mpnq +n 2q 2≤m 2p 2+m 2q 2+n 2p 2+n 2q 2=(m 2+n 2)(p 2+q 2)=ab . 所以-ab ≤mp +nq ≤ab ,当且仅当mq =np 时等号成立. 答案:ab3.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则P 1F +P 2F +P 3F +P 4F +P 5F +P 6F +P 7F =________.解析:设椭圆的另一个焦点为F ′,根据椭圆的对称性知,P 1F+P 7F =P 1F +P 1F ′=2a ,P 2F +P 6F =P 3F +P 5F =2a ,又|P 4F |=a ,∴P 1F +P 2F +P 3F +P 4F +P 5F +P 6F +P 7F =7a =35.答案:354.已知关于x 的方程x 2+2a log 2(x 2+2)+a 2-3=0有惟一解,则实数a 的值为________. 解析:令f (x )=x 2+2a log 2(x 2+2)+a 2-3,显然f (x )是偶函数,方程f (x )=0要有惟一实根,则此根必为x =0,故2a +a 2-3=0,解得a =1或a =-3,当a =-3时,易知方程f (x )=0不止有一个实根,故a =1.答案:15.已知三棱锥S -ABC 的三条侧棱两两垂直,SA =5,SB =4,SC =3,D 为AB 的中点,E 为AC 的中点,则四棱锥S -BCED 的体积为________.解析:由S △ADE =14S △ABC ,得V S -BCED =34V S -ABC =34V A -BSC =34×13×12×SB ×SC ×SA =152.答案:152[典例1](1)如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC = 5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.(2)若不等式x 2108+y 24≥xy3k 对于任意正实数x ,y 总成立的必要不充分条件是k ∈[m ,+∞),则正整数m 只能取________.[解析] (1)将侧面展开后可得:当A 、M 、C1三点共线时,AM +MC 1最小,又AB ∶BC=1∶2,AB =1,BC =2,CC 1=3,所以AM =2,MC 1=2 2.又在原三棱柱中AC 1=9+5=14,所以cos ∠AMC 1=AM 2+C 1M 2-AC 212AM ·C 1M =2+8-142×2×22=-12,故sin ∠AMC 1=32.所以三角形面积为S =12×2×22×32= 3.(2)由x 2108+y 24≥xy3k (x >0,y >0)⇒1xy ⎝ ⎛⎭⎪⎫x 2108+y 24≥13k ⇒x 108y +y 4x ≥13k , 所以13k 小于等于x 108y +y 4x (x >0,y >0)的最小值,因为x 108y +y4x≥2x 108y ·y4x=1108(当且仅当x 2=27y 2时取等号), 所以3k≥108=27×4=2×332⇒log 33k≥log 3(2×332)⇒k ≥log 32+32.所以k 的取值范围是⎣⎢⎡⎭⎪⎫log 32+32,+∞,所以k ∈[m ,+∞)是k ∈⎣⎢⎡⎭⎪⎫log 32+32,+∞的必要不充分条件,即m <log 32+32∈(2,3),所以m =1或m =2.[答案] (1) 3 (2)1或21.把空间问题转化为平面问题是立体几何的基本思想,是化归思想在数学应用中的具体体现. 2.不等式恒成立的问题,一般转化为求函数的最值问题. [演练1]如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC=CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值是________.解析:连结A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平面内,如图所示,连结A 1C ,则A 1C 的长度就是所求的最小值.通过计算,可得∠A 1C 1B =90°.又∠BC 1C =45°,∴∠A 1C 1C =135°. 由余弦定理可求得A 1C =5 2. 答案:5 2 [典例2]已知椭圆x 24+y 22=1,A ,B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A ,B 的定点Q ,以MP 为直径的圆经过直线BP ,MQ 的交点,则点Q 的坐标为________.[解析] 法一:取P (0,2),则M (2,22),设Q (q,0),由以MP 为直径的圆经过直线BP ,MQ 的交点可知,MQ ⊥PB ,则有k MQ ·k PB =-1,即222-q ·⎝ ⎛⎭⎪⎫-22=-1. 解得q =0,即得Q (0,0).法二:设M (2,m ),则直线AM 的方程为y =m4(x +2),联立错误!消去y 并整理得,m 2+832x 2+m 28x +m 28-1=0,则x P =m 28-1-2·m 2+832=-2·m 2-8m 2+8, y P =m 4(x P +2)=8mm 2+8,所以k PB =8mm 2+8-2·m -8m 2+8-2=-2m , 设Q (q,0),则k MQ =m 2-q =-1k PB =m2,解得q =0,即得Q (0,0).法三:设P (x 0,y 0),则直线AP 的方程为y =y 0x 0+2(x +2),可得M ⎝ ⎛⎭⎪⎫2,4y 0x 0+2,设Q (q,0),则k MQ ·k PB=-1,即4y 0x 0+22-q ·y 0x 0-2=-1,所以y 20x 20-4·42-q =-1.又x 204+y 202=1,可得y 20x 20-4=2⎝ ⎛⎭⎪⎫1-x 204x 20-4=-12,进而求得q =0,故Q (0,0).[答案] (0,0)本题把圆过某点的问题转化为两直线的垂直问题,以便于建立方程求解,法一是用特例法,取P 的特殊位置,利用两直线垂直建立方程求解,过程简单,避免了“小题大做”.法二、法三是一般法,设出一个点的坐标,求解另一点的坐标,再由垂直关系建立方程求解.[演练2]过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0),作圆x 2+y 2=a 24的切线,切点为E ,延长FE交曲线右支于点P ,若OE =12( OF +OP),则双曲线的离心率为________.解析:由OE =12( OF +OP)可知E 为PF 的中点,则PF =2EF =2c 2-a 24= 4c 2-a 2.设双曲线的另一个焦点为F ′,则PF ′=2EO =a ,则由双曲线的定义得 4c 2-a 2-a =2a ,即4c 2=10a 2,e =102. 答案:102[典例3]若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,求实数a 的取值范围.[解] 由x 4+ax 3+ax 2+ax +1=0,得⎝⎛⎭⎪⎫x 2+1x 2+a ⎝⎛⎭⎪⎫x +1x+a =0,即⎝⎛⎭⎪⎫x +1x 2+a ⎝ ⎛⎭⎪⎫x +1x +a -2=0, 令t =x +1x(t ∈(-∞,-2]∪[2,+∞)),则函数f (t )=t 2+at +a -2在t ∈(-∞,-2]∪[2,+∞)上有零点,因为Δ=a 2-4a +8>0恒成立,所以f (-2)≤0或f (2)≤0或⎩⎪⎨⎪⎧-a 2>2,f 2 >0或⎩⎪⎨⎪⎧-a 2<-2,f -2 >0,解得a ≤-23或a ≥2.所以a 的取值范围是⎝⎛⎦⎥⎤-∞,-23∪[2,+∞).本题利用换元法先把四次方程转化为二次方程,再把方程有实根的问题转化为函数有零点的问题,从而可以数形结合求解.[演练3]设x ,y 为正实数,a = x 2+xy +y 2,b =p xy ,c =x +y .(1)如果p =1,则是否存在以a ,b ,c 为三边长的三角形?请说明理由;(2)对任意的正实数x ,y ,试探索当存在以a ,b ,c 为三边长的三角形时p 的取值范围. 解:(1)存在;∵p =1时b <a <c , 且c -a =x +y -x 2+xy +y 2 =xyx +y +x 2+xy +y2<xy =b , 所以p =1时,存在以a ,b ,c 为三边长的三角形.(2)∵a <c ,∴若a ,b ,c 构成三角形,只需⎩⎪⎨⎪⎧a +c >b ,c -a <b ,即⎩⎨⎧x +y +x 2+xy +y 2>p xy ,x +y -x 2+xy +y 2<p xy ,两边除以xy ,令xy =t ,得⎩⎪⎨⎪⎧f t >p ,g t <p ,这里f (t )=t +1t+t +1t+1,g (t )=t +1t-t +1t+1, 由于f (t )=t +1t+t +1t +1≥2+2+1=2+3, 所以g (t )=t +1t-t +1t+1=1t +1t+t +1t+1≤2-3,当且仅当t =1时,f (t )取最小值2+3,g (t )取最大值2- 3.因此2-3<p <2+ 3.即p 的取值范围为(2-3,2+3)时,以a ,b ,c 为三边的三角形总存在. [专题技法归纳]等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法.通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题.历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,这有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧.等价转化思想方法的特点具有灵活性和多样性.在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行.它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形.消去法、换元法、数形结合法等等,都体现了等价转化思想,我们经常在函数、方程、不等式之间进行等价转化.1.设x ,y ∈R 且3x 2+2y 2=6x ,则x 2+y 2的取值范围是________. 解析:法一:由6x -3x 2=2y 2≥0,得0≤x ≤2. 由y 2=3x -32x 2,得x 2+y 2=-12x 2+3x=-12(x -3)2+92∈[0,4].法二:由3x 2+2y 2=6x ,得(x -1)2+y 232=1,设⎩⎪⎨⎪⎧x -1=cos α,y =62sin α,则x 2+y 2=1+2cos α+cos 2α+32sin 2α=1+32+2cos α-12cos 2α=-12cos 2α+2cos α+52∈[0,4]. 答案:[0,4]2.已知a >b >1,且log a b +3log b a =132,则a +1b 2-1的最小值为________.解析:令t =log a b <log a a =1,则log b a =1t,则log a b +3log b a =132可化为t +3t =132.解得t =12或t =6(舍去),即log a b =12,则b =a ,即b 2=a ,所以a +1b 2-1=a +1a -1=(a -1)+1a -1+1≥2 a -1 ×1a -1+1=3,当且仅当a -1=1a -1,即a =2时取等号.答案:33.若不等式x 2+px >4x +p -3对一切0≤p ≤4均成立,则实数x 的取值范围是________.解析:∵x 2+px >4x +p -3,∴(x -1)p +x 2-4x +3>0,令g (p )=(x -1)p +x 2-4x +3,则要使它对0≤p ≤4均有g (p ) >0,只要有⎩⎪⎨⎪⎧g 0 >0,g 4 >0,解得x >3或x <-1.答案:(-∞,-1)∪(3,+∞)4.若函数y =cos π3x 在区间[0,m ]上至少取得2个最大值点,则正整数m 的最小值为________.解析:因为x ∈[0,m ],所以π3x ∈⎣⎢⎡⎦⎥⎤0,π3m ,因为函数y =cos π3x 在区间[0,m ]上至少取得2个最大值点,所以π3m ≥2π,即m ≥6,所以正整数m 的最小值为6.答案:65.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析:原命题等价于圆心(0,0)到直线12x -5y +c =0的距离小于1,即|c |13<1,故c 的取值范围是(-13,13).答案:(-13,13)6.已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[0,2],则m =________,n =________.解析:由u =mx 2+8x +n x 2+1,得(u -m )x 2-8x +(u -n )=0.∵x ∈R ,u -m ≠0,∴Δ=(-8)2-4(u -m )(u -n )≥0.即u 2-(m +n )u +(mn -16)≤0.由1≤u ≤9知,关于u 的一元二次方程u 2-(m +n )u +(mn -16)=0的两根为1,9,由韦达定理,得m +n =1+9,mn -16=1×9,解得m =n =5.答案:5 57.设三棱柱ABC -A 1B 1C 1的体积为V ,P ,Q 分别是侧棱AA 1,CC 1上的点,且PA =QC 1,则四棱锥B -APQC 的体积为________.解析:特殊化法,取直棱柱,且P ,Q 为侧棱的中点,连结AQ ,则V B -APQC =2V B -AQC =2V Q -ABC =2×13S △ABC ·QC=2×13S △ABC ×12C 1C =13S △ABC ×C 1C =13V .答案:13V8.设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,则u =y x -xy的取值范围是________.解析:由可行域得区域内的点与原点连线的斜率范围是⎣⎢⎡⎦⎥⎤13,2,故令t =yx,则t ∈⎣⎢⎡⎦⎥⎤13,2, u =t -1t ,根据函数u =t -1t 在⎣⎢⎡⎦⎥⎤13,2上单调递增,得u ∈⎣⎢⎡⎦⎥⎤-83,32.答案:⎣⎢⎡⎦⎥⎤-83,32 9.设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO ·PA 2=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是________.解析:由题设知∠OPA 2=90°,设P (x ,y )(x >0),以OA 2为直径的圆方程为⎝ ⎛⎭⎪⎫x -a 22+y 2=a24,与椭圆方程联立得e 2x 2-ax +b 2=0.由题设知,要求此方程在(0,a )上有实根,∵x =a 为其一根,则另一根为ae2-a ,且a e 2-a <a .解得e 2>12,所以e 的取值范围为⎝ ⎛⎭⎪⎫22,1. 答案:⎝⎛⎭⎪⎫22,1 10.已知集合A ={x |x 2+a ≤(a +1)x ,a ∈R },存在a ∈R ,使得集合A 中所有整数元素的和为28,则实数a 的取值范围是________.解析:到不等式x 2+a ≤x (a +1),即(x -a )(x -1)≤0,因此该不等式的解集中必有1与a .要使集合A 中所有整数元素的和为28,必有a >1.注意到以1为首项、1为公差的等差数列的前7项和为7 1+72=28,因此由集合A 中所有整数元素的和为28得7≤a <8,即实数a 的取值范围是[7,8).答案:[7,8)11.我们知道,在三角形ABC 中,若三边a ,b ,c 满足c 2=a 2+b 2,则三角形ABC 是直角三角形,现在请你研究:若c n=a n+b n(n ≥3的自然数),问三角形ABC 为哪种三角形?为什么?解:三角形ABC 是锐角三角形.∵c n=a n+b n, ∴c >a ,c >b 即c 是三角形ABC 的最大边, ∴要证角C 是锐角,只要证cos C >0即可.而cos C =a 2+b 2-c 22ab,即证a 2+b 2>c 2,构造函数f (x )=⎝ ⎛⎭⎪⎫a c x +⎝ ⎛⎭⎪⎫b c x.∵c >a ,c >b ,∴1>a c>0,1>b c>0. ∴f (x )在(0,+∞)上是减函数.∵n >2,∴f (n )<f (2),∴⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2,而⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n =1, ∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2>1,即a 2+b 2>c 2. 故当n >2时,三角形是锐角三角形.12.若定义在(-∞,4]上的减函数f (x ),使得不等式f (m -sin x )≤f ⎝ ⎛⎭⎪⎫1+2m -74+cos 2x 对于一切实数x 均成立,求m 的取值范围.解:依题意⎩⎪⎨⎪⎧m -sin x ≤4,1+2m -74+cos 2x ≤4,1+2m -74+cos 2x ≤m -sin x ,1+2m ≥0对任意x ∈R 恒成立.由不等式的性质可知,第二个不等式可省略,故⎩⎪⎨⎪⎧m -sin x ≤4,m -1+2m ≥-⎝⎛⎭⎪⎫sin x -122-121+2m ≥0,对x ∈R 恒成立.因为(m -sin x )max =m +1,⎝⎛⎭⎪⎫sin x -122min =0,所以⎩⎪⎨⎪⎧m +1≤4,1+2m -m ≤12,1+2m ≥0,解此不等式组,得m =-12或32≤m ≤3,即m 的取值范围为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m =-12,或32≤m ≤3.。
高考理科数学二轮分类与整合的思想创新技巧「思想方法解读」 分类与整合的思想就是将一个复杂的数学问题分解成若干个简单的基础问题,通过对基础问题的解答,解决原问题的思维策略.实质上就是“化整为零,各个击破,再积零为整”的策略,使用分类与整合思想应明白这样几点:一是引起分类整合的原因;二是分类中整合的原则,不重不漏,分类标准统一;三是明确分类整合的步骤;四是将各类情况总结归纳.常见的分类整合问题有以下几种:(1)由概念引起的分类整合;(2)由性质、定理、公式的限制条件引起的分类整合;(3)由数学运算引起的分类整合;(4)由图形的不确定性引起的分类整合;(5)由参数的变化引起的分类整合.热点题型探究热点1 公式、定理的分类整合法例1 (1)(2019·开封市高三第三次模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,且x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且∀x ∈⎝⎛⎭⎪⎫11π36,17π36,|f (x )|<1,则ω的最大值为( ) A .5 B .4 C .3 D .2答案 C解析 因为x =-π4为f (x )的零点, 所以-π4ω+φ=k 1π(k 1∈Z ),① 因为x =π4为y =f (x )图象的对称轴, 所以π4ω+φ=k 2π+π2(k 2∈Z ),② ①+②,得2φ=(k 1+k 2)π+π2,得 φ=(k 1+k 2)π2+π4, 因为|φ|≤π2,得φ=±π4.②-①,得π2ω=(k 2-k 1)π+π2, 所以ω=2(k 2-k 1)+1=2n +1(n ∈Z ). 当ω=5时,如果f (x )=sin ⎝⎛⎭⎪⎫5x +π4, 令5x +π4=k π+π2,k ∈Z ,所以x =k π5+π20,k ∈Z , 当k =2时,x =9π20∈⎝ ⎛⎭⎪⎫11π36,17π36,与已知不符.如果f (x )=sin ⎝ ⎛⎭⎪⎫5x -π4,令5x -π4=k π+π2,k ∈Z ,所以x =k π5+3π20,k ∈Z , 当k =1时,x =7π20∈⎝ ⎛⎭⎪⎫11π36,17π36,与已知不符.当ω=3时,如果f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4, 令3x +π4=k π+π2,k ∈Z ,所以x =k π3+π12,k ∈Z , 当k =1时,x =5π12∈⎝ ⎛⎭⎪⎫11π36,17π36,与已知不符.如果f (x )=sin ⎝⎛⎭⎪⎫3x -π4, 令3x -π4=k π+π2,k ∈Z ,所以x =k π3+π4(k ∈Z )∉⎝ ⎛⎭⎪⎫11π36,17π36,与已知相符.故选C.(2)(2019·上海市嘉定(长宁)区高三第二次质量调研)已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且当0≤x ≤1时,f (x )=log 2(x +a ).若对于任意x ∈[0,1],都有f ⎝⎛⎭⎪⎫-x 2+tx +12≥1-log 23,则实数t 的取值范围为________.答案 [0,3]解析 由题意,f (x )为周期为4的函数,且是奇函数.0在函数定义域内,故f (0)=0,得a =1,所以当0≤x ≤1时,f (x )=log 2(x +1),当x ∈[-1,0]时,-x ∈[0,1],此时f (x )=-f (-x )=-log 2(-x +1),又f (x +2)=-f (x )=f (-x ),所以f (x )以x =1为对称轴,且当x ∈[-1,1]时,f (x )单调递增;当x ∈[1,3]时,f (x )单调递减.易知当x ∈[2,3]时,f (x )=-log 2(x -1).当x ∈[-1,3]时,令f (x )=1-log 23,得x =-12或x =52,所以在[-1,3]内,当f (x )≥1-log 23时,x ∈⎣⎢⎡⎦⎥⎤-12,52.设g (x )=-x 2+tx +12,若对于x ∈[0,1]都有f ⎝ ⎛⎭⎪⎫-x 2+tx +12≥1-log 23, 因为g (0)=12∈⎣⎢⎡⎦⎥⎤-12,52.故g (x )∈⎣⎢⎡⎦⎥⎤-12,52.①当t2<0时,g (x )在[0,1]上单调递减,故g (x )∈⎣⎢⎡⎦⎥⎤t -12,12⊆⎣⎢⎡⎦⎥⎤-12,52,得t ≥0,无解. ②当0≤t ≤1,即0≤t 2≤12时,此时g ⎝ ⎛⎭⎪⎫t 2最大,g (1)最小,即g (x )∈⎣⎢⎡⎦⎥⎤t -12,t 24+12⊆⎣⎢⎡⎦⎥⎤-12,52.解得t ∈[0,1]. ③当1<t ≤2,即12<t2≤1时,此时g (0)最小,g ⎝ ⎛⎭⎪⎫t 2最大,即g (x )∈⎣⎢⎡⎦⎥⎤12,t 24+12⊆⎣⎢⎡⎦⎥⎤-12,52.解得t ∈(1,2]. ④当t >2时,即t 2>1,故g (x )在[0,1]上单调递增,故g (x )∈⎣⎢⎡⎦⎥⎤12,t -12⊆⎣⎢⎡⎦⎥⎤-12,52.解得t ∈(2,3].综上,t ∈[0,3].(3)已知数列{a n }的前n 项和S n 满足S n =2a n +1(n ∈N *),且a 1=1.则数列{a n }的通项公式是________.答案a n =⎩⎨⎧1,n =1,12·⎝ ⎛⎭⎪⎫32n -2,n ≥2解析 ①当n =1时,由已知可得a 1=2a 2,即a 2=12a 1=12.②当n ≥2时,由已知S n =2a n +1(n ∈N *),可得S n -1=2a n (n ≥2,n ∈N *),两式相减得a n =2a n +1-2a n ⇒2a n +1=3a n ,即a n +1a n =32,所以数列{a n }从第二项开始成一个首项为a 2=12,公比为32的等比数列,故当n ≥2,n ∈N *时有a n =12·⎝ ⎛⎭⎪⎫32n -2. 所以a n =⎩⎨⎧1,n =1,12·⎝ ⎛⎭⎪⎫32n -2,n ≥2.解决由概念、法则、公式引起的分类整合问题的步骤第一步:确定需分类的目标与对象,即确定需要分类的目标,一般把需要用到公式、定理解决问题的对象作为分类目标.第二步:根据公式、定理确定分类标准.运用公式、定理对分类对象进行区分.第三步:分类解决“分目标”问题.对分类出来的“分目标”分别进行处理.第四步:汇总“分目标”.将“分目标”问题进行汇总,并作进一步处理.1.(2019·新疆维吾尔族自治区检测)已知x ∈R ,sin x -3cos x =5,则tan2x =( )A.43 B .34 C .-34 D .-43答案 A解析 由sin x -3cos x =5及sin 2x +cos 2x =1,得(5+3cos x )2+cos 2x =1.即5cos 2x +35cos x +2=0,cos x =-255或cos x =-55,所以当cos x =-255时,sin x =-55,tan x =12,tan2x =2×121-14=43;当cos x =-55时,sin x =255,tan x =-2,tan2x =2×(-2)1-4=43.所以tan2x =43,故选A.2.(2019·云南高三第一次统考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,BD 平分∠ABC 交AC 于点D ,BD =2,则△ABC 的面积的最小值为( )A .3 3B .4 3C .5 3D .6 3答案 B解析 设A =α,则0<α<π3,C =π-2π3-α=π3-α, ∵∠ABC =2π3,BD 平分∠ABC 交AC 于点D ,BD =2,∴∠ABD =∠CBD =π3.在△ABD 中,∠ADB =π-π3-α=2π3-α,由正弦定理可得AB sin ⎝⎛⎭⎪⎫2π3-α=BD sin α,∴AB =2sin ⎝ ⎛⎭⎪⎫2π3-αsin α=2sin ⎝ ⎛⎭⎪⎫π3+αsin α.在△CBD 中,∠CDB =π3+α,由正弦定理可得BC sin ⎝ ⎛⎭⎪⎫π3+α=BDsin ⎝ ⎛⎭⎪⎫π3-α, ∴BC =2sin ⎝ ⎛⎭⎪⎫π3+αsin ⎝ ⎛⎭⎪⎫π3-α.∴△ABC 的面积S =12AB ·BC ·sin 2π3 =34×2sin ⎝ ⎛⎭⎪⎫π3+αsin α×2sin ⎝ ⎛⎭⎪⎫π3+αsin ⎝ ⎛⎭⎪⎫π3-α=32·1+12cos2α+32sin2α14cos2α+34sin2α-14=32·2(2+cos2α+3sin2α)3sin2α+cos2α-1=32⎝ ⎛⎭⎪⎫2+63sin2α+cos2α-1 =322+62sin ⎝⎛⎭⎪⎫2α+π6-1,∵0<α<π3,∴π6<2α+π6<5π6,∴12<sin ⎝ ⎛⎭⎪⎫2α+π6≤1,∴当sin ⎝ ⎛⎭⎪⎫2α+π6=1时,即α=π6时,△ABC 的面积S 最小,最小值为32×(2+6)=43,故选B.3.已知锐角△ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若b 是12,2的等比中项,c 是1,5的等差中项,则a 的取值范围是________.答案 (22,10)解析 因为b 是12,2的等比中项,所以b = 12×2=1;因为c 是1,5的等差中项,所以c =1+52=3. 因为△ABC 为锐角三角形,①当a 为最大边时,有⎩⎪⎨⎪⎧12+32-a 2>0,a ≥3,1+3>a ,解得3≤a <10;②当c 为最大边时,有⎩⎪⎨⎪⎧12+a 2-32>0,a +1>3,a ≤3,解得22<a ≤3.由①②得22<a <10,所以实数a 的取值范围是(22,10). 热点2 位置关系的分类整合法例2 (1)(2019·兰州一模)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)答案 A解析 如图,设DE 是椭圆的短轴,利用动态分析,或过A ,D ,B 作圆F ,根据圆周角定理,易知∠AMB ≤∠ADB .若C 上存在点M 满足∠AMB =120°,则∠ADB ≥120°,所以|OB ||OD |=tan ∠ODB ≥tan60°= 3.当焦点在x 轴上时,|OB |=3,|OD |=m ,3m ≥ 3,解得0<m ≤1;当焦点在y 轴上时,|OB |=m ,|OD |=3,m3≥ 3,解得m ≥9.故m 的取值范围是(0,1]∪[9,+∞),选A. (2)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤4,x -2y ≤2,如果目标函数z =x +ay 的最大值为163,则实数a 的值为( )A .3B .143C .3或143 D .3或-113答案 D解析 先画出线性约束条件所表示的可行域,如图中阴影部分所示,目标函数化为y =-1a x +1a z ,当a >0时,-1a <0,只需目标函数截距最大.①若-12<-1a <0,即a >2,最优解为A ⎝ ⎛⎭⎪⎫43,43,z =43+43a =163,a =3,符合题意;②若-1a <-12,即0<a <2,最优解为B ⎝ ⎛⎭⎪⎫3,12,z =3+12a =163,a =143,不符合题意,舍去. 当a <0时,-1a >0,只需目标函数截距最小. ③若0<-1a <12,即a <-2,最优解为C (-2,-2), z =-2-2a =163,a =-113,符合题意;④若12<-1a <1,即-2<a <-1,最优解为B ⎝ ⎛⎭⎪⎫3,12,此时a =143,不符合题意,舍去.⑤若-1a >1,即-1<a <0,最优解为B ⎝ ⎛⎭⎪⎫3,12,z =3+12a =163,a =143,不符合题意,舍去; 综上可知实数a 的值为3或-113.故选D.六类常见的由图形的位置或形状变化引起的分类整合(1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.1.(2019·山西太原第五中学阶段检测)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,且z =ax +3y 的最小值为7,则a 的值为( )A .1B .2C .-2D .-1答案 B解析由约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3作出可行域如图中阴影部分所示,联立方程组求得A (2,1),B (4,5),C (1,2),化目标函数z =ax +3y 为y =-a 3x +z 3.当a >0时,由图可知,当直线y =-a 3x +z3过A 或C 时,直线在y 轴上的截距最小,z 有最小值.若过A ,则2a +3=7,解得a =2,符合题意;若过C ,则a +6=7,解得a =1不符合题意.当a <0时,由图可知,当直线y =-a 3x +z3过A 或B 时,直线在y 轴上的截距最小,z 有最小值.若过A ,则2a +3=7,解得a =2,不符合题意;若过B ,则4a +15=7,解得a =-2,不符合题意.所以a 的值为2.故选B.2.如图,M ,N 是焦点为F 的抛物线y 2=4x 上的两个不同的点,且线段MN 的中点A 的横坐标为3,直线MN 与x 轴交于B 点,则点B 的横坐标的取值范围是( )A .(-3,3]B .(-∞,3]C .(-6,-3)D .(-6,-3)∪(-3,3]答案 A解析 ①若直线MN 的斜率不存在,则点B 的坐标为(3,0).②若直线MN 的斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得y 21-y 22=4(x 1-x 2),∴y 1-y 2x 1-x 2(y 1+y 2)=4,即k MN =2t ,∴直线MN的方程为y -t =2t (x -3),∴点B 的横坐标x B =3-t 22,由⎩⎨⎧y -t =2t (x -3),y 2=4x消去x ,得y 2-2ty +2t 2-12=0,由Δ>0得t 2<12,又t ≠0,∴x B =3-t22∈(-3,3).综上,点B 的横坐标的取值范围为(-3,3].热点3 含参数问题的分类整合法例3 (2019·石家庄市第二中学高三模拟)函数f (x )=1e ·e x -ax -1e (a 为常数)的图象与x 轴有唯一公共点M .(1)求函数f (x )的单调区间;(2)若a =-2,存在不相等的实数x 1,x 2,满足f (x 1)=-f (x 2),证明:x 1+x 2<0. 解 (1)函数f (x )的定义域为R ,且f (0)=0,由题意可知,曲线f (x )与x 轴存在公共点M (0,0),又f ′(x )=e x -1-a ,若a ≤0,则f ′(x )>0,f (x )单调递增; 若a >0,由f ′(x )=0得x =1+ln a ,当x ∈(-∞,1+ln a )时,f ′(x )<0,f (x )单调递减; 当x ∈(1+ln a ,+∞)时,f ′(x )>0,f (x )单调递增. ①当1+ln a =0,即a =1e 时,f (x )的极小值为f (0)=0, 曲线f (x )与x 轴只有一个公共点,符合题意;②当1+ln a >0,即a >1e 时,由基本结论“x >0时,e x >x 2”,a +2>a >1+ln a . 知f (a +2)=e a +1-a (a +2)-1e >(a +1)2-a 2-2a -1=0,又f (1+ln a )<f (0)=0.由零点存在定理知,此时的函数f (x )在区间(1+ln a ,a +2)上有一个零点,这与函数f (x )的图象与x 轴有唯一公共点矛盾,舍去;③当1+ln a <0,即0<a <1e 时,设m (a )=1+ln a +1a e ,m ′(a )=a e -1a 2e <0,则m (a )>m ⎝ ⎛⎭⎪⎫1e =1>0, 即1+ln a >-1a e ,f ⎝ ⎛⎭⎪⎫-1a e =e -1a e -1 -⎝ ⎛⎭⎪⎫-a a e -1e =e -1a e -1 >0.又f (1+ln a )<f (0)=0.由零点存在定理知,此时函数f (x )在区间⎝ ⎛⎭⎪⎫-1a e ,1+ln a 上有一个零点,这与函数f (x )的图象与x 轴有唯一公共点矛盾,舍去;综上所述,当a =1e 时,f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).当a ≤0时,f (x )的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:a =-2时,f (x )=ex -1+2x -1e ,由f (x 1)=-f (x 2),得e x 1-1+2x 1-1e =-⎝⎛⎭⎪⎫e x 2-1+2x 2-1e , 所以2x 1+2x 2+(e x 1-1+e x 2-1)-2e =0, 由基本不等式,知2(x 1+x 2)+2e x 1-1·e x 2-1-2e <0,即e x 1+x 22 -1+(x 1+x 2)-1e <0,即f ⎝ ⎛⎭⎪⎫x 1+x 22<0,即f ⎝ ⎛⎭⎪⎫x 1+x 22<f (0),而当a =-2时,由(1)知f (x )在(-∞,+∞)上单调递增,故x 1+x 22<0,所以x 1+x 2<0.利用分类整合思想的注意点(1)分类整合要标准统一,层次分明,分类要做到“不重不漏”.(2)分类整合时要先根据题设条件确定讨论的级别,再确定每级讨论的对象与标准,每级讨论中所分类别应做到与前面所述不重不漏,最后将讨论结果归类合并,其中级别与级别之间有严格的先后顺序、类别和类别之间没有先后;最后整合时要注意是取交集、并集,还是既不取交集也不取并集只是分条列出.(2019·湖南省高三六校联考)已知函数f (x )=e x ,g (x )=ax 2+x +1(a >0).(1)设F (x )=g (x )f (x ),讨论函数F (x )的单调性; (2)若0<a ≤12,证明:f (x )>g (x )在(0,+∞)上恒成立.解 (1)F (x )=g (x )f (x )=ax 2+x +1e x , F ′(x )=-ax 2+(2a -1)x e x =-ax ⎝ ⎛⎭⎪⎫x -2a -1a e x .①若a =12,F ′(x )=-x 22e x ≤0,∴F (x )在R 上单调递减.②若a >12,则2a -1a >0,当x <0或x >2a -1a 时,F ′(x )<0,当0<x <2a -1a 时,F ′(x )>0,∴F (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a -1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫0,2a -1a 上单调递增.③若0<a <12,则2a -1a <0,当x <2a -1a 或x >0时,F ′(x )<0,当2a -1a <x <0时,F ′(x )>0.∴F (x )在⎝ ⎛⎭⎪⎫-∞,2a -1a ,(0,+∞)上单调递减,在⎝ ⎛⎭⎪⎫2a -1a ,0上单调递增.(2)证明:∵0<a ≤12,∴ax 2+x +1≤12x 2+x +1.设h (x )=e x-12x 2-x -1,则h ′(x )=e x -x -1. 设p (x )=h ′(x )=e x -x -1,则p ′(x )=e x -1,在(0,+∞)上,p ′(x )>0恒成立.∴h ′(x )在(0,+∞)上单调递增.又∵h ′(0)=0,∴x ∈(0,+∞)时,h ′(x )>0, ∴h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,∴e x-12x 2-x -1>0,e x >12x 2+x +1,∴e x >12x 2+x +1≥ax 2+x +1,∴f (x )>g (x )在(0,+∞)上恒成立.。
数学思想方法【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。
对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。
2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。
3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。
【要点梳理】1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。
2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数.3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。
第2讲分类讨论思想、转化与化归思想高考定位分类讨论思想、转化与化归思想近几年高考每年必考,一般表达在解析几何、函数与导数及数列解答题中,难度较大.(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n}的前n项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、根本不等式等.(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为根本定理、根本公式或根本图形问题.(2)换元法:运用“换元〞把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的根本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,到达化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造〞一个适宜的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜想问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进展解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 获得原问题的解决,表达了正难那么反的原那么.热点一 分类讨论思想的应用[应用1] 由性质、定理、公式的限制引起的分类【例1-1】 (1)设数列{a n }的前n 项和为S n ,2S n =3n+3,那么数列{a n }的通项a n =________.(2)实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.假设f (1-a )=f (1+a ),那么a 的值为________.解析 (1)由2S n =3n +3得:当n =1时,2S 1=31+3=2a 1,解得a 1=3;当n ≥2时,a n =S n -S n -1=12[(3n +3)-(3n -1+3)]=3n -1,由于n =1时,a 1=3不适合上式.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)当a >0时,1-a <1,1+a >1,这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去;当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a . 由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案 (1)⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2 (2)-34探究提高 由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致的情况下使用,如等比数列的前n 项和公式、函数的单调性等.[应用2] 由数学运算要求引起的分类【例1-2】 (1)不等式|x |+|2x +3|≥2的解集是________.(2)m ∈R ,那么函数f (x )=(4-3m )x 2-2x +m 在区间[0,1]上的最大值为________. 解析 (1)原不等式可转化为⎩⎪⎨⎪⎧x <-32,-x -〔2x +3〕≥2,或⎩⎪⎨⎪⎧-32≤x ≤0,-x +〔2x +3〕≥2或⎩⎪⎨⎪⎧x >0,x +〔2x +3〕≥2.解得x ≤-53或-1≤x ≤0或x >0,故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-53∪[-1,+∞). (2)①当4-3m =0,即m =43时,函数f (x )=-2x +43,它在[0,1]上是减函数,所以f (x )max =f (0)=43.②当4-3m ≠0, 即m ≠43时,f (x )是二次函数.当4-3m >0,即m <43时,二次函数f (x )的图象开口向上,对称轴方程x =14-3m >0,它在[0,1]上的最大值只能在区间端点取得(由于此处不涉及最小值,故不需讨论区间与对称轴的关系).f (0)=m ,f (1)=2-2m ,当m ≥2-2m ,又m <43,即23≤m <43时,f (x )max =m .当m <2-2m ,又m <43,即m <23时,f (x )max =2(1-m ).当4-3m <0,即m >43时,二次函数f (x )的图象开口向下,又它的对称轴方程x =14-3m <0,所以函数f (x )在[0,1]上是减函数,于是f (x )max =f (0)=m .由①,②可知,这个函数的最大值为f (x )max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23.答案 (1)⎝⎛⎦⎥⎤-∞,-53∪[-1,+∞) (2)f (x )max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23探究提高 由数学运算要求引起的分类整合法,常见的类型有除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数问题,含有绝对值的不等式求解,三角函数的定义域等,根据相应问题中的条件对相应的参数、关系式等加以分类分析,进而分类求解与综合. [应用3] 由参数变化引起的分类 【例1-3】 函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .假设a ≤0,那么f ′(x )>0,所以f (x )在(0,+∞)上单调递增.假设a >0,那么当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,那么g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).探究提高 由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法. 热点二 转化与化归思想 [应用1] 换元法【例2-1】 实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,那么a 的最大值是________. 解析 令b =x ,c =y ,那么x +y =-a ,x 2+y 2=1-a 2.此时直线x +y =-a 与圆x 2+y 2=1-a 2有交点,那么圆心到直线的距离d =|a |2≤1-a 2,解得a 2≤23,所以a 的最大值为63.答案63探究提高 换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进展替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进展. [应用2] 特殊与一般的转化 【例2-2】 f (x )=33x+3,那么f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x+33x+3=1, ∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,…,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016. 答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而到达成批处理问题的效果. [应用3] 常量与变量的转化【例2-3】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,那么x 的取值范围为________.解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2xg (m )=(x 2-1)m -2x +1,那么原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g 〔-2〕<0,g 〔2〕<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12,即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12.答案 ⎝⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的参数,将其看作是“主元〞,而把其他变元看作是常量,从而到达减少变元、简化运算的目的. [应用4] 正与反的相互转化【例2-4】 假设对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x 在区间(t ,3)上总不为单调函数,那么实数m 的取值范围是________.解析 g ′(x )=3x 2+(m +4)x -2,假设g (x )在区间(t ,3)上总为单调函数,那么①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t ,3)上恒成立,∴m +4≥2t-3t 恒成立,那么m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t ,3)上恒成立,那么m +4≤23-9,即m ≤-373.∴函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5.答案 ⎝⎛⎭⎪⎫-373,-5探究提高 否认性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可,一般地,题目假设出现多种成立的情形,且不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多〞、“至少〞及否认性命题情形的问题中.1.分类讨论思想的本质是“化整为零,积零为整〞.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进展讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏〞的分析讨论. 常见的分类讨论问题有: (1)集合:注意集合中空集讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论;函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论. (4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,根本不等式相等条件是否满足的讨论. (6)立体几何:点、线、面及图形位置关系的不确定性引起的讨论.(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等. 2.转化与化归思想遵循的原那么:(1)熟悉化原那么:将陌生的问题转化为熟悉的问题,将未知的问题转化为的问题,以便于我们运用熟知的知识、经历和问题来解决.(2)简单化原那么:将复杂问题化归为简单问题,通过对简单问题的解决,到达解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原那么:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难那么反原那么:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,那么公比q 的值是________.解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1q ≠1时,a 1q 2=7,a 1〔1-q 3〕1-q=21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12.答案 1或-12x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,那么PR →·PQ →的值为________.解析 特殊位置法,当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a . 答案 a 22x +cos x +k =0有解,那么k 的取值范围是________.解析 转化为求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝ ⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 4.假设数列{a n }的前n 项和S n =3n-1,那么它的通项公式a n =________. 解析 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -1a 为正常数,假设不等式1+x ≥1+x2-x 22a对一切非负实数x 恒成立,那么a 的最大值为________.解析 原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,那么x =t 2-1,所以(*)式可化为〔t 2-1〕22a ≥1+t 2-12-t =t 2-2t +12=〔t -1〕22对t ≥1恒成立,所以〔t +1〕2a≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4,故a 的最大值是4. 答案 46.△ABC 和点M 满足MA →+MB →+MC →k 使得CA →+CB →=kCM →成立,那么k 等于________. 解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心,取AB 的中点D , ∴CA →+CB →=2CD →=2×32CM →=3CM →,∵CA →+CB →=kCM →,∴k =3.答案 3F 1,F 2为椭圆x 29+y 24=1的两个焦点,PP ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,那么PF 1PF 2的值为________. 解析 假设∠PF 2F 1=90°,那么PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25, 解得PF 1=143,PF 2=43,∴PF 1PF 2=72.假设∠F 2PF 1=90°,那么F 1F 22=PF 21+PF 22=PF 21+(6-PF 1)2,解得PF 1=4,PF 2=2, ∴PF 1PF 2=2.综上所述,PF 1PF 2=2或72. 答案 2或72f (x )=ln x -14x +34x-1,g (x )=-x 2+2bx -4,假设对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,那么实数b 的取值范围是________.解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x -1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x2. 由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2].当b <1时,g (x 2)max =g (1)=2b -5;当1≤b ≤2时,g (x 2)max =g (b )=b 2-4; 当b >2时,g (x 2)max =g (2)=4b -8.故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8.解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142, 第三个不等式组无解.综上所述,b 的取值范围是⎝⎛⎦⎥⎤-∞,142. 答案 ⎝ ⎛⎦⎥⎤-∞,142 二、解答题9.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0.(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .解 (1)a n +2-2a n +1+a n =0,所以a n +2-a n +1=a n +1-a n ,所以{a n +1-a n }为常数列, 所以{a n }是以a 1为首项的等差数列,设a n =a 1+(n -1)d ,a 4=a 1+3d , 所以d =2-83=-2,所以a n =10-2n .(2)因为a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0. 记T n =a 1+a 2+…+a n ,那么T n =n 〔8+10-2n 〕2=9n -n 2.所以当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =T 5-(T n -T 5)=2T 5-T n =n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =T n =9n -n 2.所以S n =⎩⎪⎨⎪⎧9n -n 2〔n ≤5〕,n 2-9n +40 〔n >5〕.g (x )=axx +1(a ∈R ),f (x )=ln(x +1)+g (x ). (1)假设函数g (x )过点(1,1),求函数f (x )的图象在x =0处的切线方程; (2)判断函数f (x )的单调性.解 (1)因为函数g (x )过点(1,1),所以1=a 1+1,解得a =2,所以f (x )=ln(x +1)+2xx +1.由f ′(x )=1x +1+2〔x +1〕2=x +3〔x +1〕2,那么ff (0)=0,所以切点为(0,0),故所求的切线方程为y =3x . (2)因为f (x )=ln(x +1)+axx +1(x >-1), 所以f ′(x )=1x +1+a 〔x +1〕-ax 〔x +1〕2=x +1+a 〔x +1〕2. ①当a ≥0时,因为x >-1,所以f ′(x )>0,故f (x )在(-1,+∞)上单调递增;②当a <0时,由⎩⎪⎨⎪⎧f ′〔x 〕<0,x >-1,得-1<x <-1-a ,故f (x )在(-1,-1-a )上单调递减;由⎩⎪⎨⎪⎧f ′〔x 〕>0,x >-1,得x >-1-a ,故f (x )在(-1-a ,+∞)上单调递增.综上,当a ≥0时,函数f (x )在(-1,+∞)上单调递增;当a <0时,函数f (x )在(-1,-1-a )上单调递减,在(-1-a ,+∞)上单调递增.x 2a 2+y 2b2=1(a >b >0)的一个焦点与抛物线y 2=43x 的焦点F 重合,且椭圆短轴的两个端点与点F 构成正三角形. (1)求椭圆的方程;(2)假设过点(1,0)的直线l 与椭圆交于不同的两点P ,Q ,试问在x 轴上是否存在定点E (m ,0),使PE →·QE →恒为定值?假设存在,求出E 的坐标,并求出这个定值;假设不存在,请说明理由.解 (1)由题意,知抛物线的焦点为F (3,0),所以c =a 2-b 2= 3. 因为椭圆短轴的两个端点与F 构成正三角形,所以b =3×33=1. 可求得a =2,故椭圆的方程为x 24+y 2=1.(2)假设存在满足条件的点E ,当直线l 的斜率存在时设其斜率为k ,那么l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k 〔x -1〕得(4k 2+1)x 2-8k 2x +4k 2-4=0,设P (x 1,y 1),Q (x 2,y 2),解上述方程后易得:x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1.那么PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), 所以PE →·QE →=(m -x 1)(m -x 2)+y 1y 2 =m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1=〔4m 2-8m +1〕k 2+〔m 2-4〕4k 2+1=〔4m 2-8m +1〕⎝⎛⎭⎪⎫k 2+14+〔m 2-4〕-14〔4m 2-8m +1〕4k 2+1 =14(4m 2-8m +1)+2m -1744k 2+1. 要使PE →·QE →为定值,令2m -174=0,即m =178,此时PE →·QE →=3364.当直线l 的斜率不存在时,不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,.下载后可自行编辑修改,页脚下载后可删除。
下篇 考前增分指导一、二、三教书用书 文技巧——巧解填空题的5大妙招解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.填空题的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型,要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.方法一 直接法对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法.它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果的方法.要善于透过现象抓本质,有意识地采取灵活、简捷的解法解决问题.【例1】 设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若PF 1+PF 2=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________. 解析 设P 点在双曲线右支上,由题意得⎩⎪⎨⎪⎧PF 1+PF 2=6a ,PF 1-PF 2=2a , 故PF 1=4a ,PF 2=2a ,则PF 2<F 1F 2, 得∠PF 1F 2=30°, 由2a sin 30°=4asin ∠PF 2F 1,得sin ∠PF 2F 1=1, ∴∠PF 2F 1=90°,在Rt △PF 2F 1中,2c =(4a )2-(2a )2=23a , ∴e =c a= 3. 答案3探究提高 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【训练1】 (1)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. (2)如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于________. 解析 (1)∵tan ⎝⎛⎭⎪⎫θ+π4=12,∴tan θ=-13,即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,又θ为第二象限角, 解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105. (2)这是一道几何概型的概率问题,点Q 取自△ABE 内部的概率为12·|AB |·|AD ||AB |·|AD |=12.答案 (1)-105 (2)12方法二 特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.【例2】 (1)若f (x )=12 015x-1+a 是奇函数,则a =________. (2)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.解析 (1)因为函数f (x )是奇函数,且1,-1是其定域内的值,所以f (-1)=-f (1),而f (1)=12 014+a ,f (-1)=12 015-1-1+a =a-2 0152 014.故a -2 0152 014=-⎝ ⎛⎭⎪⎫a +12 014,解得a =12.(2)把平行四边形ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC →=18. 答案 (1)12(2)18探究提高 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.【训练2】 如图,在△ABC 中,点M 是BC 的中点,过点M 的直线与直线AB 、AC 分别交于不同的两点P 、Q ,若AP →=λAB →,AQ →=μAC →,则1λ+1μ=________.解析 由题意可知,1λ+1μ的值与点P 、Q 的位置无关,而当直线PQ 与直线BC 重合时,则有λ=μ=1,所以1λ+1μ=2.答案 2方法三 图象分析法对于一些含有几何背景的填空题,若能数中思形,以形助数,通过数形结合,往往能迅速作出判断,简捷地解决问题,得出正确的结果.韦恩图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.【例3】 (1)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |(0<x ≤10),-12x +6(x >10),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.解析 (1)函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,作出h (x )=⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的图象,观察它与直线y =m 的交点,可知当m ≤0或m >1时有交点,即函数g (x )=f (x )+x -m 有零点.(2)a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ), 如图所示,由图象可知,0<a <1, 1<b <10,10<c <12.∵f (a )=f (b ),∴|lg a |=|lg b |. 即lg a =lg 1b ,a =1b.则ab =1.所以abc =c ∈(10,12).答案 (1)(-∞,0]∪(1,+∞) (2)(10,12)探究提高 图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【训练3】 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为________.解析 由f (-4)=f (0),得16-4b +c =c . 由f (-2)=-2,得4-2b +c =-2. 联立两方程解得b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0.在同一直角坐标系中,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,即函数g (x )有3个零点. 答案 3 方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.【例4】 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62, 故球O 的体积V =4πR33=6π.答案6π探究提高 构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.【训练4】 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx(x >0).当0<x <1时,f ′(x )>0, 即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c .答案 a >b >c 方法五 综合分析法对于开放性的填空题,应根据题设条件的特征综合运用所学知识进行观察、分析,从而得出正确的结论.【例5】 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.解析 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f(2 013)+f(-2 014)=0正确,②函数f(x)在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f(x)的值域是(-1,1),正确.答案①③④探究提高对于规律总结类与综合型的填空题,应从题设条件出发,通过逐步计算、分析总结探究其规律,对于多选型的问题更要注重分析推导的过程,以防多选或漏选.做好此类题目要深刻理解题意,捕捉题目中的隐含信息,通过联想、归纳、概括、抽象等多种手段获得结论.【训练5】定义在R上的函数f(x)是奇函数,且f(x)=f(2-x),在区间[1,2]上是减函数.关于函数f(x)有下列结论:①图象关于直线x=1对称;②最小正周期是2;③在区间[-2,-1]上是减函数;④在区间[-1,0]上是增函数.其中正确结论的序号是________(把所有正确结论的序号都填上).解析由f(x)=f(2-x)可知函数f(x)的图象关于直线x=1对称,故①正确;又函数f(x)为奇函数,其图象关于坐标原点对称,而图象又关于直线x=1对称,故函数f(x)必是一个周期函数,其最小正周期为4×(1-0)=4,故②不正确;因为奇函数在关于原点对称的两个区间上的单调性是相同的,且f(x)在区间[1,2]上是减函数,所以其在区间[-2,-1]上也是减函数,故③正确;④因为函数f(x)关于直线x=1对称,在区间[1,2]上是减函数,而函数在关于对称轴对称的两个区间上的单调性是相反的,故函数在区间[0,1]上为增函数,又由奇函数的性质,可得函数f(x)在区间[-1,0]上是增函数,故④正确.所以正确的结论有①③④.故填①③④.答案①③④1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.规范——解答题的6个解题模板及得分说明1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写.2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点.3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分.4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题及选考不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板1 三角问题=3sin A sin B . (1)求角C ;(2)若S △ABC =3,求边c .解 (1)∵2sin 2C =3sin A sin B ,∴sin 2C =32sin A sin B ,由正弦定理得c 2=32ab ,∵a +b =3c ,∴a 2+b 2+2ab =3c 2, 由余弦定理得cos C =a 2+b 2-c 22ab =2c 2-2ab 2ab =3ab -2ab 2ab =12.∵C ∈(0,π),∴C =π3.(2)∵S △ABC =3,∴S △ABC =12ab sin C ,∵C =π3,∴ab =4,又c 2=32ab =6,∴c = 6.模板2 立体几何问题解题模板ABCD -A 1B 1C 1D 1是正方体,知F ,P 分别是AD ,DD 1(2分) 第一步 找线线:通过中位线、等腰三角形的中线或线面、面面关系【训练2】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为MO ⊂平面MOC ,VB ⊄平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点,所以OC ⊥AB . 又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,所以OC ⊥平面VAB .又OC ⊂平面MOC ,所以平面MOC ⊥平面VAB . (3)解 在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1, 所以等边三角形VAB 的面积S △VAB = 3.又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C-VAB 的体积相等,所以三棱锥V -ABC 的体积为33. 模板3 实际应用问题最小,并指明此时BC应为多长解题模板【训练3】如图,在C城周边已有两条公路l1,l2在点O处交汇.已知OC=(2+6)km,∠AOB =75°,∠AOC =45°,现规划在公路l 1,l 2上分别选择A ,B 两处为交汇点(异于点O )直接修建一条公路通过C 城.设OA =x km ,OB =y km.(1)求y 关于x 的函数关系式并指出它的定义域; (2)试确定点A ,B 的位置,使△OAB 的面积最小.解 (1)因为△AOC 的面积与△BOC 的面积之和等于△AOB 的面积,所以12x (2+6)sin 45°+12y (2+6)·sin 30°=12xy sin 75 °, 即22x (2+6)+12y (2+6) =6+24xy ,所以y =22xx -2(x >2). (2)△AOB 的面积S =12xy sin 75°=6+28xy=3+12×x 2x -2=3+12(x -2+4x -2+4)≥3+12×8=4(3+1). 当且仅当x =4时取等号,此时y =4 2.故OA =4 km ,OB =4 2 km 时,△OAB 面积的最小值为4(3+1) km 2.模板4 解析几何问题(Ⅰ)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,解此方程后易得:x 1+x 2=-2kbk 2+9,(3分) 故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.(5分) 于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的积是定值.(7分)①将直线方程与椭圆方程联立,化为一元二次方程形式得3分; ②利用求根公式表示出中点坐标得2分; ③求出斜率乘积为定值,得出结论得2分;第一步 先假定:假设结论成立. 第二步 再推理:以假设结论成立为条件,进行推理求解. 第三步 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设.【训练4】 如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为2,点P 为上顶点,圆O :x 2+y 2=b 2将椭圆C 的长轴三等分,直线l :y =mx -45(m ≠0)与椭圆C 交于A ,B 两点,PA ,PB 与圆O 交于M ,N 两点. (1)求椭圆C 的方程; (2)求证△APB 为直角三角形;(3)设直线MN 的斜率为n ,求证mn为定值.(1)解 由已知⎩⎪⎨⎪⎧2b =2,2a =6b ,解得⎩⎪⎨⎪⎧a =3,b =1,所求椭圆方程为x 29+y 2=1.(2)证明 将y =mx -45代入椭圆方程整理得(9m 2+1)x 2-725mx -8125=0.设A (x 1,y 1),B (x 2,y 2),利用求根公式求解上述一元二次方程的根,则x 1+x 2=72m5(9m 2+1),x 1x 2=-8125(9m 2+1). 又P (0,1),∴PA →·PB →=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(mx 1-95)(mx 2-95)=(m 2+1)x 1x 2-95m (x 1+x 2)+8125=-81(m 2+1)25(9m 2+1)-648m 225(9m 2+1)+8125=0, 因此PA ⊥PB ,则△APB 为直角三角形.(3)证明 由(2)知直线MN 方程为y =nx ,代入x 2+y 2=1,得(n 2+1)x 2-1=0.设M (x 3,y 3),N (x 4,y 4),则⎩⎪⎨⎪⎧x 3+x 4=0,x 3x 4=-1n 2+1,y 1-1x 1=y 3-1x 3,① y 2-1x 2=y 4-1x 4.② 两式相加整理得2m -95·x 1+x 2x 1x 2=2n ,可求得m n =15.模板5 函数与导数问题【训练5】 (2016·苏、锡、常、镇调研)设函数f (x )=ln x +x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.解 (1)由题设,当m =e 时,f (x )=ln x +e x,则f ′(x )=x -ex2(x >0), ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图), 可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞. 模板6 数列问题【训练6】 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以数列a n 的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)·22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,①4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,②①-②得:-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1.∴S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+2×8(1-4n -1)+(6n -3)×22n +19=109+(6n -5)·22n +19.回扣——回归教材,查缺补漏,清除得分障碍1.集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[回扣问题1] 集合A ={a ,b ,c }中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是________.(填等腰三角形、锐角三角形、直角三角形、钝角三角形) 答案 等腰三角形2.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集. [回扣问题2] 集合A ={x |x +y =1},B ={(x ,y )|x -y =1},则A ∩B =________. 答案 ∅3.遇到A ∩B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,不要忽略A =∅的情况.[回扣问题3] 集合A ={x |ax -1=0},B ={x |x 2-3x +2=0},且A ∪B =B ,则实数a =________. 答案 0,1,124.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为2n ,2n -1,2n -1,2n-2. [回扣问题4] 满足{1,2}M ⊆{1,2,3,4,5}的集合M 有________个.答案 75.注重数形结合在集合问题中的应用,列举法常借助Venn 图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[回扣问题5] 已知全集I =R ,集合A ={x |y =1-x },集合B ={x |0≤x ≤2},则(∁I A )∪B 等于________. 答案 [0,+∞)6.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.[回扣问题6] 已知实数a 、b ,若|a |+|b |=0,则a =b .该命题的否命题和命题的否定分别是____________________________________________________________. 答案 否命题:已知实数a 、b ,若|a |+|b |≠0,则a ≠b ; 命题的否定:已知实数a 、b ,若|a |+|b |=0,则a ≠b7.在否定条件或结论时,应把“且”改成“或”、“或”改成“且”. [回扣问题7] 若“x 2-3x -4>0,则x >4或x <-1”的否命题是_________. 答案 若x 2-3x -4≤0,则-1≤x ≤48.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[回扣问题8] 设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的________条件. 答案 充分不必要9.要注意全称命题的否定是特称命题(存在性命题),特称命题(存在性命题)的否定是全称命题.如对“a ,b 都是偶数”的否定应该是“a ,b 不都是偶数”,而不应该是“a ,b 都是奇数”.求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[回扣问题9] 若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是________________________________________________________.解析 原不等式即(x 2+x )a -2x -2>0,设f (a )=(x 2+x )a -2x -2.研究“任意a ∈[1,3],恒有f (a )≤0”.则⎩⎪⎨⎪⎧f (1)≤0,f (3)≤0,即⎩⎪⎨⎪⎧x 2-x -2≤0,3x 2+x -2≤0, 解得x ∈⎣⎢⎡⎦⎥⎤-1,23,则符合题设条件的实数x 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞ 10.复合命题真假的判断.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”. [回扣问题10] 在下列说法中:(1)“p 且q 为真”是“p 或q 为真”的充分不必要条件; (2)“p 且q 为假”是“p 或q 为真”的充分不必要条件; (3)“p 或q 为真”是“非p 为假”的必要不充分条件; (4)“非p 为真”是“p 且q 为假”的必要不充分条件. 其中正确的是________(填序号). 答案 (1)(3)2.函数与导数1. 函数是非空数集到非空数集的映射,作为一个映射,就必须满足映射的条件,“每元有象,且象唯一”只能一对一或者多对一,不能一对多.[回扣问题1] 若A ={1,2,3},B ={4,1},则从A 到B 的函数共有________个;其中以B 为值域的函数共有______个. 答案 8 62.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.若f (x )定义域为[a ,b ],复合函数f [g (x )]定义域由a ≤g (x )≤b 解出;若f [g (x )]定义域为[a ,b ],则f (x )定义域相当于x ∈[a ,b ]时g (x )的值域.[回扣问题2] 已知f (x )=-x 2+10x -9,g (x )=[f (x )]2+f (x 2)的定义域为________. 答案 [1,3]3.求函数解析式的主要方法:(1)代入法;(2)待定系数法;(3)换元(配凑)法;(4)解方程法等. [回扣问题3] 已知f (x )-4f (1x)=-15x ,则f (x )=________.答案 x +4x4.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[回扣问题4] 已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0-tan x ,0≤x <π2,则f (f (π4))=________.答案 -2 5.函数的奇偶性f (x )是偶函数⇔f (-x )=f (x )=f (|x |); f (x )是奇函数⇔f (-x )=-f (x );定义域含0的奇函数满足f (0)=0;定义域关于原点对称是函数为奇函数或偶函数的必要不充分的条件;判断函数的奇偶性,先求定义域,再找f (x )与f (-x )的关系.[回扣问题5] 函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x (1+x )+1,求f (x )的解析式.答案 f (x )=⎩⎪⎨⎪⎧x (1+x )+1,x >00,x =0-x 2+x -1,x <06.函数的周期性由周期函数的定义“函数f (x )满足f (x )=f (a +x )(a >0),则f (x )是周期为a 的周期函数”得:①函数f (x )满足-f (x )=f (a +x ),则f (x )是周期为2a 的周期函数; ②若f (x +a )=1f (x )(a ≠0)成立,则T =2a ; ③若f (x +a )=-1f (x )(a ≠0)恒成立,则T =2a . [回扣问题6] 设f (x )是R 上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (47.5)等于______. 答案 -0.5 7.函数的单调性①定义法:设x 1,x 2∈[a ,b ],x 1≠x 2那么 (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数;②导数法:注意f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在 (-∞,+∞)上单调递增,但f ′(x )≥0;∴f ′(x )>0是f (x )为增函数的充分不必要条件. ③复合函数由同增异减的判定法则来判定.④求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替. [回扣问题7] 函数f (x )=x 3-3x 的单调递增区间是________.答案 (-∞,-1),(1,+∞) 8.求函数最值(值域)常用的方法:(1)单调性法:适合于已知或能判断单调性的函数; (2)图象法:适合于已知或易作出图象的函数; (3)基本不等式法:特别适合于分式结构或两元的函数; (4)导数法:适合于可导函数; (5)换元法(特别注意新元的范围); (6)分离常数法:适合于一次分式;(7)有界函数法:适用于含有指、对数函数或正、余弦函数的式子.无论用什么方法求最值,都要考查“等号”是否成立,特别是基本不等式法,并且要优先考虑定义域. [回扣问题8] 函数y =2x2x +1(x ≥0)的值域为________.答案 ⎣⎢⎡⎭⎪⎫12,1 9.常见的图象变换 (1)平移变换①函数y =f (x +a )的图象是把函数y =f (x )的图象沿x 轴向左(a >0)或向右(a <0)平移|a |个单位得到的.②函数y =f (x )+a 的图象是把函数y =f (x )的图象沿y 轴向上(a >0)或向下(a <0)平移|a |个单位得到的. (2)伸缩变换①函数y =f (ax )(a >0)的图象是把函数y =f (x )的图象沿x 轴伸缩为原来的1a得到的.②函数y =af (x )(a >0)的图象是把函数y =f (x )的图象沿y 轴伸缩为原来的a 倍得到的. (3)对称变换①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上; ②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0(y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称. [回扣问题9] 要得到y =lgx +310的图象,只需将y =lg x 的图象________.答案 向左平移3个单位,再向下平移1个单位 10.二次函数问题(1)处理二次函数的问题勿忘数形结合,二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)二次函数解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -h )2+k (a ≠0); ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(3)一元二次方程实根分布:先观察二次项系数、Δ与0的关系、对称轴与区间关系及有穷区间端点函数值符号,再根据上述特征画出草图.尤其注意若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[回扣问题10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的范围为________. 答案 ⎝ ⎛⎦⎥⎤-∞,1411.指、对数函数 (1)对数运算性质已知a >0且a ≠1,b >0且b ≠1,M >0,N >0,m ,n ∈R . 则log a (MN )=log a M +log a N ,log a M N=log a M -log a N ,log a M n=n log a M , 对数换底公式:log a N =log b Nlog b a.推论:log am N n=n m log a N ;log a b =1log b a.(2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y =a x的图象恒过定点(0,1),对数函数y =log a x 的图象恒过定点(1,0).[回扣问题11] 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系是________. 答案 a >b >c 12.幂函数形如y =x α(α∈R )的函数为幂函数. (1)①若α=1,则y =x ,图象是直线.②当α=0时,y =x 0=1(x ≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的. ④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y =x α是增函数,②当α<0时,在区间(0,+∞)上,函数y =x α是减函数.[回扣问题12] 函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.答案 1 13.函数与方程(1)函数y =f (x )的零点就是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.(2)y =f (x )在[a ,b ]上的图象是一条连续不断的曲线,且f (a )f (b )<0,那么f (x )在(a ,b )内至少有一个零点,即至少存在一个x 0∈(a ,b )使f (x 0)=0.这个x 0也就是方程f (x )=0的根.(3)用二分法求函数零点[回扣问题13] (判断题)函数f (x )=2x+3x 的零点所在的一个区间是(-1,0).( ) 答案 √14.导数的几何意义和物理意义(1)函数y =f (x )在点x 0处的导数的几何意义:函数y =f (x )在点x 0处的导数是曲线y =f (x )在P (x 0,f (x 0))处的切线的斜率f ′(x 0),相应的切线方程是y -y 0=f ′(x 0)(x -x 0). (2)v =s ′(t )表示t 时刻即时速度,a =v ′(t )表示t 时刻加速度. 注意:过某点的切线不一定只有一条.[回扣问题14] 已知函数f (x )=x 3-3x ,过点P (2,-6)作曲线y =f (x )的切线,则此切线的方程是________.答案 3x +y =0或24x -y -54=015.利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果f ′(x )>0,那么f (x )在该区间内为增函数;如果f ′(x )<0,那么f (x )在该区间内为减函数;如果在某个区间内恒有f ′(x )=0,那么f (x )在该区间内为常数.注意:如果已知f (x )为减函数求参数取值范围,那么不等式f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.增函数亦如此.[回扣问题15] 函数f (x )=ax 3-x 2+x -5在R 上是增函数,则a 的取值范围是________. 解析 f (x )=ax 3-x 2+x -5的导数f ′(x )=3ax 2-2x +1.由f ′(x )=3ax 2-2x +1≥0,得⎩⎪⎨⎪⎧a >0,Δ=4-12a ≤0,解得a ≥13.a =13时,f ′(x )=(x -1)2≥0,且只有x =1时,f ′(x )=0,∴a =13符合题意.答案 ⎣⎢⎡⎭⎪⎫13,+∞16.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[回扣问题16] 函数f (x )=14x 4-13x 3的极值点是________.答案 x =13.三角函数与平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r,tan α=y x,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关. [回扣问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为______. 答案 -152.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[回扣问题2] cos 4+tan ⎝ ⎛⎭⎪⎫-6+sin 21π的值为______. 答案22-333.三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点,三个平衡位置点);(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,y =tan x ,⎝ ⎛⎭⎪⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),减区间:⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z ); y =cos x 的增区间:[-π+2k π,2k π](k ∈Z ),减区间:[2k π,π+2k π](k ∈Z );y =tan x 的增区间:⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z ).(4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.[回扣问题3] 函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的递减区间是________.答案 ⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z )4.两角和与差的正弦、余弦、正切公式及倍角公式 sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2 tan α 1-tan 2α. [回扣问题4] cos(π4+x )=35,17π12<x <7π4,则sin 2x -2sin 2x1-tan x =________.答案7255.在三角恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β); α=12[(α+β)+(α-β)];α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4, α=⎝⎛⎭⎪⎫α+π4-π4.。
江苏新高考本部分内容在高考中基本年年都考,并以压轴题形式考查. ,主要考查组合计数;考复合函数求导和数学归纳法;考查计数原理为主,又涉及到数学归纳法;考查组合数及其性质等基础知识,考查考生的运算求解能力和推理论证能力;考查概率分布与期望及组合数的性质,既考查运算能力,又考查思维能力.近年高考对组合数的性质要求较高,常与数列、函数、不等式、数学归纳法等知识交汇考查.第1课时计数原理与二项式定理(能力课)[常考题型突破]计数原理的应用[例1]{1,2,3,…,3n}的子集中所有“好集”的个数为f(n).(1)求f(1),f(2)的值;(2)求f(n)的表达式.[解](1)①当n=1时,集合{1,2,3}中的一元好集有{3},共1个;二元好集有{1,2},共1个;三元好集有{1,2,3},共1个,所以f(1)=1+1+1=3.②当n=2时,集合{1,2,3,4,5,6}中一元好集有{3},{6},共2个;二元好集有{1,2},{1,5},{2,4},{3,6},{4,5},共5个;三元好集有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6},共8个;四元好集有{3,4,5,6},{2,3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4,5},共5个;五元好集有{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n +2,3n+3.故f(n+1)的组成有以下几部分:①原来的f(n)个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合, 含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合, 含有元素是3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合. 合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合.合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以f (n +1)=2f (n )+2×23n +1. 两边同除以2n +1, 得f (n +1)2n +1-f (n )2n =4n +12n +1. 所以f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n (n ≥2).又f (1)21也符合上式, 所以f (n )=2n (4n -1)3+2n-1.[方法归纳](1)深化对两个计数原理的认识,培养“全局分类”和“局部分步”的意识,并在操作中确保:①分类不重不漏;②分步要使各步具有连续性和性. 解决计数应用题的基本思想是“化归”,即由实际问题建立组合模型,再由组合数公式来计算其结果,从而解决实际问题.(2)本题是有关数论问题,其难度较大,求解关键是得出f (n +1)与f (n )的关系,求解中用到归纳法和分类讨论思想.(·苏北三市三模)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”).(1)写出f (2),f (3),f (4)的值; (2)求f (n ).解:(1)f (2)=1,f (3)=6,f (4)=25.(2)法一:设集合A 中有k 个元素,k =1,2,3,…,n -1. 则与集合A 互斥的非空子集有2n -k -1个. 于是f (n )=12∑k =1n -1C k n (2n -k -1)=12(∑k =1n -1C k n 2n -k -∑k =1n -1C kn ).因为∑k =1n -1C k n 2n -k =∑k =0nC k n 2n -k -C 0n 2n -C n n 20=(2+1)n -2n -1=3n -2n-1,∑k =1n -1C k n =∑k =0n C k n -C 0n -C n n =2n -2, 所以f (n )=12[(3n -2n -1)-(2n -2)]=12(3n -2n +1+1).法二:任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中, 则这n 个元素在集合A ,B ,C 中,共有3n 种, 其中A 为空集的种数为2n ,B 为空集的种数为2n , 所以A ,B 均为非空子集的种数为3n -2×2n +1. 又(A ,B )与(B ,A )为同一组“互斥子集”, 所以f (n )=12(3n -2n +1+1).二项式定理的应用[例2] (·--(1)求(1+x )2n-1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[解] (1)(1+x )2n-1的展开式中含x n 的项的系数为C n 2n -1,由(1+x )n -1(1+x )n =(C 0n -1+C 1n -1x +…+C n -1n -1x n -1)·(C 0n +C 1n x +…+C n nx n ), 可知(1+x )n -1(1+x )n 的展开式中含x n 的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1.(2)证明:当k ∈N *时,k C k n =k ×n !k !(n -k )!=n !(k -1)!(n -k )!=n ×(n -1)!(k -1)!(n -k )!=n C k -1n -1.所以(C 1n )2+2(C 2n )2+…+n (C n n )2=∑k =1n[k (C k n )2]=∑k =1n (k C k n C k n )=∑k =1n (n C k -1n -1C kn )=n ∑k =1n(C k -1n -1C k n )=n ∑k =1n(C n -k n -1C kn ).由(1)知C 0n -1C nn +C 1n -1C n -1n +…+C n -1n -1C 1n =C n 2n -1,即∑k =1n(C n -k n -1C k n )=C n 2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n 2n -1.[方法归纳]二项式定理中的应用主要是构造一个生成相应二项式系数的函数,通过研究函数关系证明恒等式、不等式和整除性问题.将二项式定理(a +b )n =C\o\al(0,n )a n +C\o\al(1,n )a n -1b +…+C\o\al(r ,n )a n -r b r +…+C\o\al(n ,n )b n 中的a ,b 进行特殊化就会得到很多有用的有关组合数的相关和的结果,这是研究有关组合数的和的问题的常用方法.还可以利用求函数值的思想进行赋值求解.(·南京、盐城一模)设n ∈N *,n ≥3,k ∈N *.(1)求值:①k C k n -n C k -1n -1;②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1(k ≥2);(2)化简:12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n . 解:(1)①k C k n -n C k -1n -1=k ×n !k !(n -k )!-n ×(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!-n !(k -1)!(n -k )!=0.②k 2C k n -n (n -1)C k -2n -2-n C k -1n -1=k 2×n !k !(n -k )!-n (n -1)×(n -2)!(k -2)!(n -k )!-n ×(n -1)!(k -1)!(n -k )!=k ×n !(k -1)!(n -k )!-n !(k -2)!(n -k )!-n !(k -1)!(n -k )!=n !(k -2)!(n -k )!⎝⎛⎭⎫k k -1-1-1k -1=0.(2)法一:由(1)可知,当k ≥2时,(k +1)2C k n =(k 2+2k +1)C k n =k 2C kn +2k C k n +C k n =[n (n -1)C k -2n -2+n C k -1n -1]+2n C k -1n -1+C k n =n (n -1)C k -2n -2+3n C k -1n -1+C k n .故12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =(12C 0n +22C 1n )+n (n -1)(C 0n -2+C 1n -2+…+C n -2n -2)+3n (C 1n -1+C 2n -1+…+C n -1n -1)+(C 2n +C 3n +…+C n n)=(1+4n )+n (n -1)2n -2+3n (2n -1-1)+(2n -1-n )=2n -2(n 2+5n +4).法二:当n ≥3时,由二项式定理,有(1+x )n =1+C 1n x +C 2n x 2+…+C k n x k +…+C n n x n , 两边同乘以x ,得(1+x )n x =x +C 1n x 2+C 2n x 3+…+C k n x k +1+…+C n n xn +1, 两边对x 求导,得(1+x )n +n (1+x )n -1x =1+2C 1n x +3C 2n x 2+…+(k +1)C k n x k +…+(n +1)C n n x n,两边再同乘以x ,得(1+x )n x +n (1+x )n -1x 2=x +2C 1n x 2+3C 2n x 3+…+(k +1)C k n xk +1+…+(n +1)C n n xn +1, 两边再对x 求导,得(1+x )n +n (1+x )n -1x +n (n -1)(1+x )n -2x 2+2n (1+x )n -1x =1+22C 1n x +32C 2n x 2+…+(k +1)2C k n x k +…+(n +1)2C n n x n.令x =1,得2n +n ·2n -1+n (n -1)2n -2+2n 2n -1=1+22C 1n +32C 2n +…+(k +1)2C kn +…+(n+1)2C n n ,即12C 0n +22C 1n +32C 2n +…+(k +1)2C k n +…+(n +1)2C n n =2n -2(n 2+5n +4).组合数的性质应用[例3] (·苏北四市调研)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,这个三角形数阵开头几行如图所示.(1)在杨辉三角形中是否存在某一行,且该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n ,r 为正整数,且n ≥r +3.求证:任何四个相邻的组合数C r n ,C r +1n ,C r +2n ,C r +3n不能构成等差数列.[解] (1)杨辉三角形的第n 行由二项式系数C k n , k =0,1,2,…,n 组成.如果第n 行中有C k -1nC k n =k n -k +1=34,C k nC k +1n=k +1n -k =45, 那么3n -7k =-3,4n -9k =5, 解得k =27,n =62.即第62行有三个相邻的数C 2662,C 2762,C 2862的比为3∶4∶5. (2)证明:若有n ,r (n ≥r +3),使得C r n ,C r +1n ,C r +2n ,C r +3n 成等差数列,则2C r +1n =C r n +C r +2n ,2C r +2n =C r +1n +C r +3n ,即2n !(r +1)!(n -r -1)!=n !r !(n -r )!+n !(r +2)!(n -r -2)!,2n !(r +2)!(n -r -2)!=n !(r +1)!(n -r -1)!+n !(r +3)!(n -r -3)!.所以有2(r +1)(n -r -1)=1(n -r -1)(n -r )+1(r +1)(r +2),2(r +2)(n -r -2)=1(n -r -2)(n -r -1)+1(r +2)(r +3),化简整理得,n 2-(4r +5)n +4r (r +2)+2=0, n 2-(4r +9)n +4(r +1)(r +3)+2=0. 两式相减得,n =2r +3,于是C r 2r +3,C r +12r +3,C r +22r +3,C r +32r +3成等差数列.而由二项式系数的性质可知C r 2r +3=C r +32r +3<C r +12r +3=C r +22r +3,这与等差数列的性质矛盾,从而要证明的结论成立.[方法归纳](1)对于组合数问题,需要熟记并能灵活运用以下两个组合数公式:C k n =C n -k n ,C k n +1=C k n+C k -1n .(2)对于二项式定理问题,需掌握赋值法和二项式系数的性质,并能将二项式系数与二项展开式系数区别开来.设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1)若n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求⎪⎪⎪⎪S m C m n -1的值.解:(1)因为a k =(-1)k C k n ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)b k =k +1n -k a k +1=(-1)k +1k +1n -k C k +1n =(-1)k +1C k n , 当1≤k ≤n -1时, b k =(-1)k +1C k n =(-1)k+1()C k n -1+C k -1n -1=(-1)k +1C k -1n -1+(-1)k +1C k n -1 =(-1)k -1C k -1n -1-(-1)k C k n -1.当m =0时,⎪⎪⎪⎪S m C m n -1=⎪⎪⎪⎪b 0C 0n -1=1.当1≤m ≤n -1时,S m =-1+∑k =1m[(-1)k -1C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)m C m n -1, 所以⎪⎪⎪⎪S mC m n -1=1.综上,⎪⎪⎪⎪S mC m n -1=1.[课时达标训练]1.设集合A ,B 是非空集合M 的两个不同子集,满足:A 不是B 的子集,且B 也不是A 的子集.(1)若M ={a 1,a 2,a 3,a 4},直接写出所有不同的有序集合对(A ,B )的个数; (2)若M ={a 1,a 2,a 3,…,a n },求所有不同的有序集合对(A ,B )的个数. 解:(1)110.(2)集合M 有2n 个子集,不同的有序集合对(A ,B )有2n (2n -1)个. 当A ⊆B ,并设B 中含有k (1≤k ≤n ,k ∈N *)个元素,则满足A ⊆B 的有序集合对(A ,B )有∑k =1nC k n (2k-1)=∑k =0nC k n 2k -∑k =0nC k n =3n -2n个. 同理,满足B ⊆A 的有序集合对(A ,B )有3n -2n 个.故满足条件的有序集合对(A ,B )的个数为2n (2n -1)-2(3n -2n )=4n +2n -2×3n . 2.(·南京、盐城二模)现有n (n +1)2(n ≥2,n ∈N *)个给定的不同的数随机排成一个下图所示的三角形数阵:******………………………………**…………**…………第1行…………第2行…………第3行…………第n 行设M k 是第k 行中的最大数,其中1≤k ≤n ,k ∈N *.记M 1<M 2<…<M n 的概率为p n . (1)求p 2的值; (2)证明:p n >C 2n +1(n +1)!.解:(1)由题意知p 2=2A 22A 33=23,即p 2的值为23.(2)证明:先排第n 行,则最大数在第n 行的概率为n n (n +1)2=2n +1;去掉第n 行已经排好的n 个数,则余下的n (n +1)2-n =n (n -1)2个数中最大数在第n -1行的概率为n -1n (n -1)2=2n;…故p n =2n +1×2n×…×23=2n -1(n +1)×n ×…×3=2n(n +1)!.由于2n =(1+1)n =C 0n +C 1n +C 2n +…+C n n ≥C 0n +C 1n +C 2n >C 1n +C 2n =C 2n +1,故2n (n +1)!>C 2n +2(n +1)!,即p n >C 2n +1(n +1)!. 3.记1,2,…,n 满足下列性质T 的排列a 1,a 2,…,a n 的个数为f (n )(n ≥2,n ∈N *).性质T :排列a 1,a 2,…,a n 中有且只有一个a i >a i +1(i ∈{1,2,…,n -1}).(1)求f (3); (2)求f (n ).解:(1)当n =3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i ∈{1,2,3},使得a i >a i +1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f (3)=4.(2)在1,2,…,n 的所有排列(a 1,a 2,…,a n )中,若a i =n (1≤i ≤n -1),从n -1个数1,2,3,…,n -1中选i -1个数按从小到大的顺序排列为a 1,a 2,…,a i -1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i -1n -1.若a n =n ,则满足题意的排列个数为f (n -1). 综上,f (n )=f (n -1)+∑i =1n -1C i -1n -1=f (n -1)+2n -1-1.从而f (n )=23(1-2n -3)1-2-(n -3)+f (3)=2n -n -1.4.(·江苏高考)(1)求7C 36-4C 47的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)·C m m +1+(m +3)C m m +2+…+n C mn -1+(n +1)C m n =(m +1)C m +2n +2.解:(1)7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2)证明:当n =m 时,结论显然成立.当n >m 时,(k +1)C mk =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n . 又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n .因此,(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n =(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)] =(m +1)C m +2n +2.5.设a n 是满足下述条件的自然数的个数:各数位上的数字之和为n (n ∈N *),且每个数位上的数字只能是1或2.(1)求a 1,a 2,a 3,a 4的值; (2)求证:a 5n -1(n ∈N *)是5的倍数.解:(1)当n =1时,只有自然数1满足题设条件,所以a 1=1; 当n =2时,有11,2两个自然数满足题设条件,所以a 2=2; 当n =3时,有111,21,12三个自然数满足题设条件,所以a 3=3; 当n =4时,有1 111,112,121,211,22五个自然数满足题设条件,所以a 4=5. 综上所述,a 1=1,a 2=2,a 3=3,a 4=5.(2)证明:设自然数X 的各位数字之和为n +2,由题设可知,X 的首位为1或2两种情形.当X 的首位为1时,则其余各位数字之和为n +1.故首位为1,各位数字之和为n +2的自然数的个数为a n +1; 当X 的首位为2时,则其余各位数字之和为n .故首位为2,各位数字之和为n +2的自然数的个数为a n .所以各位数字之和为n +2的自然数的个数为a n +1+a n ,即a n +2=a n +1+a n . 下面用数学归纳法证明a 5n -1是5的倍数.①当n =1时,a 4=5,所以a 4是5的倍数,命题成立; ②假设n =k (k ≥1,n ∈N *)时,命题成立,即a 5k -1是5的倍数. 则a 5k +4=a 5k +3+a 5k +2 =2a 5k +2+a 5k +1 =2(a 5k +1+a 5k )+a 5k +1 =3a 5k +1+2a 5k =3(a 5k +a 5k -1)+2a 5k=5a 5k +3a 5k -1.因为5a 5k +3a 5k -1是5的倍数,即a 5k +4是5的倍数.所以n =k +1时,命题成立. 由①②可知,a 5n -1(n ∈N *)是5的倍数.6.(·常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.如:考察恒等式(1+x )2n =(1+x )n (1+x )n (n ∈N *),左边x n 的系数为C n 2n ,而右边(1+x )n(1+x )n =(C 0n +C 1n x +…+C n n x n )(C 0n +C 1n x +…+C n n x n ),x n 的系数为C 0n C n n + C 1n C n -1n +…+C n n C 0n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2,因此可得到组合恒等式C n 2n =(C 0n )2+(C 1n )2+(C 2n )2+…+(C n n )2.(1)根据恒等式(1+x )m +n =(1+x )m (1+x )n (m ,n ∈N *),两边x k (其中k ∈N ,k ≤m ,k ≤n )的系数相同,直接写出一个恒等式;(2)利用算两次的思想方法或其他方法证明:第2课时数学归纳法(能力课)[常考题型突破]用数学归纳法证明等式[例1] (·苏锡常镇一模)设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2tan n θ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ;(2)求证:对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[证明] (1)因为a n =sin n π2tan n θ.当n 为偶数时,设n =2k ,k ∈N *,a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2k θ=0,a n =0.当n 为奇数时,设n =2k -1,k ∈N *,a n =a 2k -1=sin (2k -1)π2tan n θ=sin ⎝⎛⎭⎫k π-π2·tan nθ. 当k =2m ,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-π2·tan n θ=sin ⎝⎛⎭⎫-π2·tan n θ=-tan nθ, 此时n -12=2m -1,a n =a 2k -1=-tan n θ=(-1)2m -1tan n θ=(-1)n -12tan n θ.当k =2m -1,m ∈N *时,a n =a 2k -1=sin ⎝⎛⎭⎫2m π-3π2·tan n θ=sin ⎝⎛⎭⎫-3π2·tan n θ=tan nθ, 此时n -12=2m -2,a n =a 2k -1=tan n θ=(-1)2m -2·tan n θ=(-1)n -12tan n θ.综上,当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)n -12tan nθ.(2)当n =1时,由(1)得,S 2=a 1+a 2=tan θ, 等式右边=12sin 2θ(1+tan 2θ)=sin θ·cos θ·1cos 2θ=tan θ.故n =1时,命题成立,假设n =k (k ∈N *,k ≥1)时命题成立,即S 2k =12sin 2θ·[1+(-1)k +1tan 2k θ].当n =k +1时,由(1)得:S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[]1+(-1)k +1tan 2k θ+(-1)k tan 2k +1θ=12sin 2θ·1+(-1)k +1tan 2k θ+(-1)k ·2sin 2θtan 2k +1θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·-1tan 2θ +2sin 2θtan θ=12sin 2θ·1+(-1)k +2·tan 2k +2θ·⎝⎛⎭⎫-cos 2θsin 2θ+1sin 2θ =12sin 2θ·[1+(-1)k +2·tan 2k +2θ ]. 即当n =k +1时命题成立.综上所述,对任何正整数n ,S 2n =12sin 2θ·[1+(-1)n +1tan 2n θ].[方法归纳](1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.(·扬州期末)已知F n (x )=(-1)0C 0n ,f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )(n ∈N *,x >0),其中f i (x )(i ∈{0,1,2,…,n })是关于x 的函数. (1)若f i (x )=x i (i ∈N),求F 2(1),F 2 017(2)的值; (2)若f i (x )=xx +i (i ∈N),求证:F n (x )=n !(x +1)(x +2)·…·(x +n )(n ∈N *). 解:(1)因为f i (x )=x i (i ∈N),所以F n (x )=(-1)0C 0n x 0+(-1)1C 1n x 1+…+(-1)n C n n x n =(1-x )n ,所以F 2(1)=0, F 2 017(2)=(1-2)2 017=-1.(2)证明:因为f i (x )=xx +i(x >0,i ∈N), 所以F n (x )=(-1)0C 0n f 0(x )+(-1)1C 1n f 1(x )+…+(-1)n C n n f n (x )=∑i =0n⎣⎡⎦⎤(-1)i C i n x x +i (n ∈N *). ①当n =1时,F n (x )=∑i =0n =1⎣⎡⎦⎤(-1)i C i 1x x +i =1-x x +1=1x +1,所以n =1时结论成立.②假设n =k (k ∈N *)时结论成立, 即F k (x )=∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i=k !(x +1)(x +2)·…·(x +k ),则n =k +1时,F k +1(x )=∑i =0k +1 ⎣⎡⎦⎤(-1)i C i k +1x x +i=1+∑i =1k⎣⎡⎦⎤(-1)i C i k +1x x +i +(-1)k +1C k +1k +1x x +k +1 =1+∑i =1k ⎣⎡⎦⎤(-1)i (C i k +C i -1k )x x +i +(-1)k +1·C k +1k +1x x +k +1 =∑i =0k⎣⎡⎦⎤(-1)i C i k x x +i +∑i =1k +1 ⎣⎡⎦⎤(-1)i C i -1k x x +i =F k (x )-∑i =1k +1 ⎣⎡⎦⎤(-1)i -1C i -1k x x +i=F k (x )-∑i =0k ⎣⎡⎦⎤(-1)i C i k xx +i +1=F k (x )-∑i =0k⎣⎢⎡⎦⎥⎤(-1)i C ikx +1x +i +1·x x +1=F k (x )-x x +1F k (x +1)=k !(x +1)(x +2)·…·(x +k )-k !(x +2)(x +3)…(x +1+k )·xx +1=(x +1+k )·k !-x ·k !(x +1)(x +2)…(x +k )(x +1+k )=(k +1)!(x +1)(x +2)(x +3)…(x +1+k ),所以n =k +1时,结论也成立. 综合①②可知,F n (x )=n !(x +1)(x +2)…(x +n )(n ∈N *).用数学归纳法证明不等式[例2] (·南京模拟)已知数列{a n }满足a n =3n -2,函数f (n )=1a 1+1a 2+…+1a n,g (n )=f (n 2)-f (n -1),n ∈N *.(1) 求证:g (2)>13;(2) 求证:当n ≥3时,g (n )>13.[证明] (1)由题意知,a n =3n -2,g (n )=1a n +1a n +1+1a n +2+…+1a n 2,当n =2时,g (2)=1a 2+1a 3+1a 4=14+17+110=69140>13.故结论成立.(2)用数学归纳法证明: ①当n =3时,g (3)=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝⎛⎭⎫110+113+116+⎝⎛⎭⎫119+122+125>18+⎝⎛⎭⎫116+116+116+⎝⎛⎭⎫132+132+132=18+316+332>18+316+116>13, 所以当n =3时,结论成立.②假设当n =k (k ≥3,k ∈N *)时,结论成立, 即g (k )>13,则当n =k +1时,g (k +1)=g (k )+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +13(k +1)2-2-13k -2 =13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2)=13+3k 2-7k -3[3(k +1)2-2](3k -2), 由k ≥3可知,3k 2-7k -3>0,即g (k +1)>13.所以当n =k +1时,结论也成立. 综合①②可得,当n ≥3时,g (n )>13.[方法归纳](1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k (k ∈N *)成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.设实数a 1,a 2,…,a n 满足a 1+a 2+…+a n =0,且|a 1|+|a 2|+…+|a n |≤1(n ∈N *且n ≥2),令b n =a n n (n ∈N *).求证:|b 1+b 2+…+b n |≤12-12n(n ∈N *).证明:(1)当n =2时,a 1=-a 2, 所以|a 1|+|a 2|=2|a 1|≤1,即|a 1|≤12,所以|b 1+b 2|=⎪⎪⎪⎪a 1+a 22=|a 1|2≤14=12-12×2, 即当n =2时,结论成立.(2)假设当n =k (k ∈N *且k ≥2)时,结论成立,即当a 1+a 2+…+a k =0,且|a 1|+|a 2|+…+|a k |≤1时,有|b 1+b 2+…+b k |≤12-12k .则当n =k +1时,由a 1+a 2+…+a k +a k +1=0, 且|a 1|+|a 2|+…+|a k +1|≤1,可得2|a k +1|=|a 1+a 2+…+a k |+|a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1, 所以|a k +1|≤12.又a 1+a 2+…+a k -1+(a k +a k +1)=0,且|a 1|+|a 2|+…+|a k -1|+|a k +a k +1|≤|a 1|+|a 2|+…+|a k +1|≤1,由假设可得⎪⎪⎪⎪b 1+b 2+…+b k -1+a k +a k +1k ≤12-12k ,所以|b 1+b 2+…+b k +b k +1| =⎪⎪⎪⎪⎪⎪b 1+b 2+…+b k -1+a k k +a k +1k +1=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫b 1+b 2+…+b k -1+a k +a k +1k +⎝ ⎛⎭⎪⎫a k +1k +1-a k +1k ≤12-12k +⎪⎪⎪⎪⎪⎪a k +1k +1-a k +1k =12-12k +⎝⎛⎭⎫1k -1k +1|a k +1|≤12-12k +⎝⎛⎭⎫1k -1k +1×12 =12-12(k +1), 即当n =k +1时,结论成立. 综合(1)(2)可知,结论成立.归纳、猜想、证明[例3] (·n n n k C k n (x -k )n +…+(-1)n C nn (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.[解] (1)f 1(x )=C 01x -C 11(x -1)=x -x +1=1;f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2; f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2)猜测:f n (x )=n !. 而k Ckn=k ·n !k !(n -k )!=n !(k -1)!(n -k )!,n Ck -1n -1=n ·(n -1)!(k -1)!(n -k )!=n !(k -1)!(n -k )!,所以k C k n =n C k -1n -1.用数学归纳法证明结论成立.①当n =1时,f 1(x )=1,所以结论成立.②假设当n =k 时,结论成立,即f k (x )=C 0k x k -C 1k (x -1)k +…+(-1)k C k k (x -k )k =k !. 则当n =k +1时,f k +1(x )=C 0k +1x k +1-C 1k +1(x -1)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1 =C 0k +1x k +1-C 1k +1(x -1)k (x -1)+…+(-1)k C k k +1(x -k )k (x -k )+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k +1x k -C 1k +1(x -1)k +…+(-1)k C k k +1(x -k )k ]+[C 1k +1(x -1)k -2C 2k +1(x -2)k …+(-1)k +1k C k k +1(x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k +1 =x [C 0k x k -(C 1k +C 0k )(x -1)k +…+(-1)k (C k k +C k -1k )(x -k )k ]+(k +1)[(x -1)k -C 1k (x -2)k …+(-1)k +1C k -1k (x -k )k ]+(-1)k +1C k +1k +1(x -k -1)k (x -k -1)=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k]+(kk+1)[(x-1)k-C1k(x-2)k…+(-1)k+1C k-1(x-k)k]+x(-1)k+1C k k(x-k-1)k-(k+1)(-1)k+1(x-kk-1)k=x[C0k x k-C1k(x-1)k+…+(-1)k C k k(x-k)k]-x[C0k(x-1)k+…+(-1)k-1C k-1(x-k)k+(-k(x-k)k+(-1)k(x-k-1)k C k k(x-k-1)k]+(k+1)[C0k(x-1)k-C1k(x-2)k+…+(-1)k-1C k-1k1)k].(*)由归纳假设知(*)式等于x·k!-x·k!+(k+1)·k!=(k+1)!.所以当n=k+1时,结论也成立.综合①②,f n(x)=n!成立.[方法归纳]利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.解“归纳—猜想—证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.(·盐城模拟)记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2),f(3),f(4)的值;(2)当n≥2,n∈N*时,试猜想所有f(n)的最大公约数,并证明.解:(1)因为f(n)=(3n+2)(C22+C23+C24+…+C2n)=(3n+2)C3n+1,所以f(2)=8,f(3)=44,f(4)=140.(2)证明:由(1)中结论可猜想所有f(n)的最大公约数为4.下面用数学归纳法证明所有的f(n)都能被4整除即可.①当n=2时,f(2)=8能被4整除,结论成立;②假设n=k (k≥2,k∈N*)时,结论成立,即f(k)=(3k+2)C3k+1能被4整除,则当n=k+1时,f(k+1)=(3k+5)C3k+2=(3k+2)C3k+2+3C3k+2=(3k+2)(C3k+1+C2k+1)+(k+2)C2k+1=(3k+2)C3k+1+(3k+2)C2k+1+(k+2)C2k+1=(3k+2)C3k+1+4(k+1)C2k+1,此式也能被4整除,即n=k+1时结论也成立.综上所述,所有f(n)的最大公约数为4.[课时达标训练]1.(·南通三模)已知函数f 0(x )=cx +dax +b(a ≠0,bc -ad ≠0).设f n (x )为f n -1(x )的导数,n ∈N *.(1)求f 1(x ),f 2(x );(2)猜想f n (x )的表达式,并证明你的结论. 解:(1)f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫cx +d ax +b ′=bc -ad (ax +b )2,f 2(x )=f 1′(x )=⎣⎢⎡⎦⎥⎤bc -ad (ax +b )2′=-2a (bc -ad )(ax +b )3. (2)猜想f n (x )=(-1)n -1·a n -1·(bc -ad )·n !(ax +b )n +1,n ∈N *. 证明:①当n =1时,由(1)知结论成立, ②假设当n =k (k ∈N *且k ≥1)时结论成立, 即有f k (x )=(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1. 当n =k +1时,f k +1(x )=f k ′(x )=⎣⎢⎡⎦⎥⎤(-1)k -1·a k -1·(bc -ad )·k !(ax +b )k +1′ =(-1)k -1·a k -1·(bc -ad )·k ![(ax +b )-(k +1)]′=(-1)k ·a k ·(bc -ad )·(k +1)!(ax +b )k +2. 所以当n =k +1时结论成立.由①②得,对一切n ∈N *结论都成立.2.(·镇江模拟)证明:对一切正整数n,5n +2·3n -1+1都能被8整除. 证明:(1)当n =1时,原式等于8能被8整除, (2)假设当n =k (k ≥1,k ∈N *)时,结论成立, 则5k +2·3k -1+1能被8整除. 设5k +2·3k -1+1=8m ,m ∈N *, 当n =k +1时,5k +1+2·3k +1 =5(5k +2·3k -1+1)-4·3k -1-4 =5(5k +2·3k -1+1)-4(3k -1+1), 而当k ≥1,k ∈N *时,3k -1+1显然为偶数,设为2t ,t ∈N *,故5k +1+2·3k +1=5(5k +2·3k -1+1)-4(3k -1+1)=40m -8t (m ,t ∈N *),也能被8整除, 故当n =k +1时结论也成立;由(1)(2)可知对一切正整数n,5n +2·3n -1+1都能被8整除.3.已知S n =1+12+13+…+1n (n ≥2,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *).证明:(1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立;(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k2,则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *不等式S 2n >1+n2都成立.4.(·南京三模)已知数列{a n }共有3n (n ∈N *)项,记f (n )=a 1+a 2+…+a 3n .对任意的k ∈N *,1≤k ≤3n ,都有a k ∈{0,1},且对于给定的正整数p (p ≥2),f (n )是p 的整数倍.把满足上述条件的数列{a n }的个数记为T n .(1)当p =2时,求T 2的值;(2)当p =3时,求证:T n =13[8n +2(-1)n ].解:(1)由题意,当n =2时,数列{a n }共有6项.要使得f (2)是2的整数倍,则这6项中,只能有0项、2项、4项、6项取1,故T 2=C 06+C 26+C 46+C 66=25=32. (2)证明:T n =C 03n +C 33n +C 63n +…+C 3n 3n .当1≤k ≤n ,k ∈N *时,C 3k 3n +3=C 3k 3n +2+C 3k -13n +2=C 3k -13n +1+C 3k 3n +1+C 3k -13n +1+C 3k -23n +1 =2C 3k -13n +1+C 3k 3n +1+C 3k -23n +1=2(C 3k -13n +C 3k -23n )+C 3k -13n +C 3k 3n +C 3k -33n +C 3k -23n =3(C 3k -13n +C 3k -23n )+C 3k 3n +C 3k -33n ,于是T n +1=C 03n +3+C 33n +3+C 63n +3+…+C 3n +33n +3=C 03n +3+C 3n +33n +3+3(C 13n +C 23n +C 43n +C 53n +…+C 3n -23n +C 3n -13n )+T n -C 03n +T n -C 3n 3n=2T n +3(23n -T n ) =3×8n -T n .下面用数学归纳法证明T n =13[8n +2(-1)n ].当n =1时,T 1=C 03+C 33=2=13[81+2(-1)1],即n =1时,命题成立.假设n =k (k ≥1,k ∈N *) 时,命题成立, 即T k =13[8k +2(-1)k ].则当n =k +1时,T k +1=3×8k -T k =3×8k -13[8k +2(-1)k ]=13[9×8k -8k -2(-1)k ] =13[8k +1+2(-1)k +1], 即n =k +1时,命题也成立. 于是当n ∈N *,有T n =13[8n +2(-1)n ].5.(·扬州考前调研)在数列{a n }中,a n =cos π3×2n -2(n ∈N *). (1)试将a n +1表示为a n 的函数关系式;(2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论.解:(1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝⎛⎭⎫cos π3×2n -12-1,∴a n =2a 2n +1-1,∴a n +1=±a n +12, 又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12. (2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1;当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2;当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立.②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立,即a k <1-2k ·k !,则当n =k +1,a k +1=a k +12< 2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!. 要证a k +1<b k +1, 即证⎝⎛⎭⎪⎫1-1k ·k !2<⎣⎡⎦⎤1-2(k +1)·(k +1)!2, 即证1-1k ·k !<1-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2, 即证1k ·k !-4(k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0, 即证(k -1)2k (k +1)·(k +1)!+⎣⎡⎦⎤2(k +1)·(k +1)!2>0,显然成立. ∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1<b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .6.(·南通二调)设n ≥2,n ∈N *.有序数组(a 1,a 2,…,a n )经m 次变换后得到数组(b m,1,b m,2…,b m ,n ),其中b 1,i =a i +a i +1,b m ,i =b m -1,i +b m -1,i +1(i =1,2,…,n ),a n +1=a 1,b m -1,n +1=b m -1,1(m ≥2).例如:有序数组(1,2,3)经1次变换后得到数组(1+2,2+3,3+1),即(3,5,4);经第2次变换后得到数组(8,9,7).(1)若a i =i (i =1,2,…,n ),求b 3,5的值;(2)求证:b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .(注:当i +j =kn +t 时,k ∈N *,t =1,2,…,n ,则a i +j =a t )解:(1)当n =2,3,4时,b 3,5值不存在; 当n =5时,依题意,有序数组为(1,2,3,4,5). 经1次变换为:(3,5,7,9,6), 经2次变换为:(8,12,16,15,9), 经3次变换为:(20,28,31,24,17), 所以b 3,5=17;当n =6时,同理得b 3,5=28; 当n =7时,同理得b 3,5=45; 当n ≥8时,n ∈N *时,依题意,有序数组为(1,2,3,4,5,6,7,8,…,n ). 经1次变换为:(3,5,7,9,11,13,15,…,n +1),21 / 21 经2次变换为:(8,12,16,20,24,28,…,n +4), 经3次变换为:(20,28,36,44,52,…,n +12), 所以b 3,5=52.(2)证明:下面用数学归纳法证明对m ∈N *,b m ,i =∑j =0m a i +j C j m,其中i =1,2,…,n . ①当m =1时,b 1,i =a i +a i +1=∑j =01a i +j C j 1,其中i =1,2,…,n ,结论成立; ②假设m =k (k ∈N *)时,b k ,i =∑j =0k a i +j C j k ,其中i =1,2,…,n .则m =k +1时,b k +1,i =b k ,i +b k ,i +1=∑j =0k a i +j C j k +∑j =0k a i +j +1C j k=∑j =0k a i +j C j k +∑j =1k +1a i +j C j -1k=a i C 0k +∑j =1k a i +j (C j k +C j -1k )+a i +k +1C k k=a i C 0k +1+∑j =1k a i +j C j k +1+a i +k +1C k +1k +1=∑j =0k +1a i +j C j k +1,所以结论对m =k +1时也成立.由①②知,m ∈N *,b m ,i =∑j =0ma i +j C j m ,其中i =1,2,…,n .。
高考数学以能力立意,一是考察数学的基础知识,基本技术;二是考察基本数学思想方法,考察数学思想的深度、广度和宽度,数学思想方法是指从数学的角度来认识、办理和解决问题,是数学意识,是数学技术的升华和提升,中学数学思想主要有函数与方程思想、数形联合思想、分类与整合思想、转变与化归思想.一、函数与方程思想函数思想方程思想函数思想的本质是抛开所研究对象的非数学方程思想的本质就是将所求的量设成未知特点,用联系和变化的看法提出数学对象,数,依据题中的等量关系,列方程(组 ),经过抽象其数学特点,成立各变量之间固有的函解方程 (组 )或对方程 (组 )进行研究,以求得问数关系,经过函数形式,利用函数的相关性题的解决质,使问题获得解决函数与方程思想在必定的条件下是能够互相转变的,是相辅相成的.函数思想重在对问题进行动向的研究,方程思想则是在动中求解,研究运动中的等量关系例 1 (1)把一段长 16 的铁丝截成两段,分别围成两个正方形,则这两个正方形面积之和的最小值为 ________.(2) 已知椭圆x2y2C: a2+ b2= 1(a>b>0) 的左焦点为F,若 F 对于直线3x+ y= 0 的对称点 A 是椭圆 C 上的点,则椭圆 C 的离心率为 ________.答案 (1)8 (2) 3- 1分析(1) 设截成的铁丝此中一段长为x(0< x<16) ,则围成的两个正方形面积之和y= (x4)2+16- x 2() (0<x<16) ,4∴y=1[( x-8) 2+64] ,8故当 x = 8 时, y min = 8.即围成的两个正方形面积之和的最小值为8.(2) 设 F(- c,0), A(m , n),则n×- 3=-1,m + cA( c3m - c解得 2,2 c),3×2 +n= 0,2代入椭圆方程中,有c 2 3c 2 = 1,4a 2+ 4b 22 22 22 2所以 b c + 3a c = 4a b ,2222 2= 222所以 (a - c )c + 3a c 4a ( a - c ),42 2 4 所以 c - 8a c + 4a = 0,所以 e 4- 8e 2+ 4=0,所以 e 2= 4±2 3,所以 e = 3- 1 或 e = 3+ 1(舍去 ).即椭圆 C 的离心率为3- 1.思想升华函数与方程思想在解题中的应用(1) 函数与不等式的互相转变,对函数 y =f(x),当 y>0 时,就化为不等式 f(x)>0 ,借助于函数的图象和性质可解决相关问题,而研究函数的性质也离不开不等式.(2) 数列的通项与前 n 项和是自变量为正整数的函数,用函数的看法去办理数列问题十分重 要.(3) 分析几何中的很多问题,需要经过解二元方程组才能解决.这都波及二次方程与二次函数相关理论.(4) 立体几何中相关线段、角、面积、体积的计算,常常需要运用列方程或成立函数表达式的方法加以解决.追踪操练 1 (1) 若函数 f(x)在 R 上可导,且知足f( x)<xf ′ (x) ,则 2f(1)________ f(2) . (填“ >”“ <”“=” )(2) 如图是函数 y =Asin( ωx+φ)( 此中 A>0,ω>0,- π<φ<π)在一个周期内的图象, 则此函数的分析式是 __________________.答案(1)<(2)y= 2sin(2x+2π3)分析(1)因为 f(x)<xf′ (x),f x f′ x x-f x则 (x)′=x2>0 恒成立,f x所以x 在R上是单一递加函数,f 2 f 1∴2 > 1,即 f(2)>2 f(1).(2) 依函数图象,知y 的最大值为2,所以 A= 2.T 5πππ又 2= 12-( -12)= 2,2π所以 T=π,又ω=π,所以ω= 2,所以 y= 2sin(2x+φ).ππ将 (-12, 2)代入可得sin(-6+φ)= 1,π π故φ-6=2+ 2kπ,k∈Z,又-π<φ<π,2π所以φ=3 .y= 2sin(2x+2π所以函数的分析式为3 ).二、数形联合思想以形助数 (数题形解 )以数辅形(形题数解)借助形的生动性和直观性来论述数之间的关借助于数的精准性和规范性及严实性来说明系,把数转变为形,即以形作为手段,数作形的某些属性,即以数作为手段,形作为目为目的解决数学识题的数学思想的解决问题的数学思想数形联合思想经过“以形助数,以数辅形”,使复杂问题简单化,抽象问题详细化,能够变抽象思想为形象思想,有助于掌握数学识题的本质,它是数学的规律性与灵巧性的有机联合例 2(1)(2015 ·湖南 )若函数 f(x)= |2x- 2|- b 有两个零点,则实数 b 的取值范围是 ________.(2) 在平面直角坐标系中, O 为原点, A(- 1,0), B(0,→3), C(3,0) ,动点 D 知足 |CD|= 1,则→→→|OA+OB+ OD |的取值范围是 __________.答案(1)(0,2) (2)[ 7- 1,7+1]分析(1)由 f(x)=|2x- 2|-b= 0,得 |2x- 2|= b.在同一平面直角坐标系中画出y= |2x- 2|与 y= b 的图象,如图所示.则当0<b<2 时,两函数图象有两个交点,从而函数f(x)= |2x- 2|- b 有两个零点.→(2)设 D(x, y),则由 |CD |= 1, C(3,0) ,得 (x- 3)2+y2=1.→→→又∵ OA+ OB+OD = (x- 1, y+ 3),∴→→→x- 12+ y+2 |OA+ OB+ OD |=3 .∴→→→P(1,-22上点之间的距离,由 |PC| |OA+ OB+ OD |的几何意义是点3)与圆 (x- 3) + y= 1=→→→1+7,最小值是 7- 1. 7知, |OA+ OB+ OD|的最大值是思想升华数形联合思想在解题中的应用(1)建立函数模型并联合其图象求参数的取值范围或解不等式.(2)建立函数模型并联合其图象研究方程根或函数的零点的范围.(3)建立分析几何模型求最值或范围.(4)建立函数模型并联合其图象研究量与量之间的大小关系.追踪操练 2 (1) 已知奇函数 f(x)的定义域是 { x|x≠ 0, x∈R} ,且在 (0,+∞ )上单一递加,若f(1)= 0,则知足 x·f(x)<0 的 x 的取值范围是 ________.(2)已知 P 是直线 l: 3x+ 4y+ 8= 0 上的动点, PA、 PB 是圆 x2+ y2- 2x- 2y+ 1= 0 的两条切线, A、B 是切点, C 是圆心,则四边形PACB面积的最小值为________.答案(1)(- 1,0)∪ (0,1)(2)22分析(1)作出切合条件的一个函数图象草图即可,由图可知 x ·f(x)<0 的 x 的取值范围是 (-1,0)∪ (0,1).(2) 如图,1 S Rt △PAC = 2PA ·AC1= 2PA , 当 CP ⊥ l 时,|3× 1+ 4× 1+ 8|PC = =3,223 + 4∴ 此时 (PA) min = PC 2-AC 2=2 2. ∴ (S 四边形 PACB )min = 2(S △PAC )min = 2 2.三、分类与整合思想分类与整合思想是将一个较复杂的数学识题分解( 或切割 )成若干个基础性问题,经过对基础性问题的解答来实现解决原问题的思想策略.对问题推行分类与整合, 分类标准等于增添一个已知条件,实现了有效增设,将大问题(或综合性问题 ) 分解为小问题 (或基础性问题 ),优化解题思路,降低问题难度;分类研究后还要对议论结果进行整合.2x -1- 2, x ≤ 1,例 3(1) 已知函数 f(x)=且 f(a)=- 3,则 f(6- a)= ________.- log 2 x + 1 ,x>1 ,(2) 设x 2F 1, F 2 为椭圆 92 +y 4 =1 的两个焦点, P 为椭圆上一点.已知P , F 1, F 2 是一个直角三角形的三个极点,且PF 1 >PF 2,则 PF 1的值为 PF 2 ________.答案(1)- 7 (2)2 或74 2分析(1)因为 f(a)=- 3,① 若 a ≤ 1,则 2a -1-2=- 3,整理得 2a-1=- 1.因为 2x>0,所以 2a-1=- 1 无解;②若 a>1,则- log 2(a+ 1)=- 3,解得 a+ 1= 8, a=7,所以 f(6- a)= f(-1)= 2-1-1-2=-7 4.7综上所述, f(6-a)=-4.(2)若∠PF2F1=90°,则 PF21= PF22+ F1F22,∵PF1+ PF2= 6,F1F2= 2 5,14 4 PF17 解得PF1=3, PF2=3,∴PF2=2.若∠ F2PF1= 90°,则 F1F22= PF21+ PF22= PF21+ (6- PF1 )2,PF 1解得 PF1= 4, PF2= 2,∴=2.综上所述,PF1= 2 或7. PF22思想升华分类与整合思想在解题中的应用(1)由数学看法惹起的分类.有的看法自己是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制惹起的分类议论.有的定理、公式、性质是分类给出的,在不一样的条件下结论不一致,如等比数列的前n 项和公式、函数的单一性等.(3)由数学运算和字母参数变化惹起的分类.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的限制,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确立性惹起的分类议论.有的图形种类、地点需要分类:如角的终边所在的象限;点、线、面的地点关系等.追踪操练3(1)若m 是 2 和 8 的等比中项,则圆锥曲线y2x2+ m= 1 的离心率是____________.(2) 设等比数列{ a n} 的公比为q ,前n 项和S n>0( n= 1,2,3, ) ,则q 的取值范围是________________ .答案(1)3或 5 (2)(-1,0)∪(0,+∞)2分析(1)因为 m 是 2 和 8 的等比中项,所以 m2=2× 8= 16,所以 m=±4.2当 m= 4 时,圆锥曲线y4+ x2= 1 是椭圆,c 3其离心率 e=a=2;2当 m=- 4 时,圆锥曲线x2-y4=1 是双曲线,c 5其离心率 e=a=1= 5. (2)因为 { a n} 是等比数列,S n>0,可得 a1= S1>0, q≠ 0.当 q= 1 时, S n= na1>0;a1 1- q n当 q≠ 1 时, S n=>0,1- q1- q n即>0( n= 1,2,3, ),则有1-q 1- q<0,或②1- q n<0.1- q>0,①1- q n>0,由①得- 1<q<1,由②得 q>1.故 q 的取值范围是(-1,0)∪ (0,+∞ ).四、转变与化归思想转变与化归思想,就是在研究和解决相关数学识题时采纳某种手段将问题经过变换使之转化,从而获得解决的一种方法.一般老是将复杂的问题经过变换转变为简单的问题,将难解的问题经过变换转变为简单求解的问题,将未解决的问题经过变换转变为已解决的问题.例 4 (1) 若函数f(x)= x3- tx2+ 3x 在区间 [1,4] 上单一递减,则实数t 的取值范围是__________ .(2) 定义运算: (a b)? x= ax2+bx+ 2,若对于 x 的不等式 (a b)? x<0 的解集为 { x|1<x<2} ,则对于 x 的不等式 (b a)? x<0 的解集为 __________ .51-∞,-2答案(1)[8,+∞ )(2)3∪(1,+∞ )分析(1)f′ (x) = 3x2- 2tx+ 3,因为 f(x)在区间 [1,4] 上单一递减,则有f′ (x)≤ 0 在 [1,4] 上恒23131成立,即 3x- 2tx+3≤ 0,即 t≥2(x+x)在 [1,4] 上恒成立,因为y=2(x+x) 在[1,4] 上单一递3 1 51 增,所以 t≥2(4 +4)=8 .(2)1,2 是方程 ax2+ bx+ 2= 0的两实根,b2a= 1,1+ 2=-a, 1× 2=a,解得b=- 3,由 (- 3 1)? x=- 3x2+ x+ 2<0,得 3x2- x-2>0 ,2解得 x<-3或 x>1.思想升华转变与化归思想在解题中的应用(1)在三角函数中,波及到三角式的变形,一般经过转变与化归将复杂的三角问题转变为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用 )、角度的转变、函数的转变等.(2)换元法:是将一个复杂的或陌生的函数、方程、不等式转变为简单的或熟习的函数、方程、不等式的一种重要的方法.(3)在解决平面向量与三角函数、平面几何、分析几何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、分析几何语言进行转变.(4)在解决数列问题时,常将一般数列转变为等差数列或等比数列求解.(5)在利用导数研究函数问题时,常将函数的单一性、极值 (最值 )、切线问题,转变为其导函数 f′( x)组成的方程、不等式问题求解.(6)在解决分析几何、立体几何问题时,常常在数与形之间进行转变.追踪操练4(1)若对于随意t∈ [1,2] ,函数g(x) =x3+ (m2+ 2)x2- 2x 在区间(t,3)上总不为单一函数,则实数 m 的取值范围是 __________.2(2) 已知 a 为正常数, 若不等式1+ x ≥ 1+ x - x对全部非负实数x 恒成立, 则 a 的最大值为2 2a________ .答案(1)(-37,- 5) (2)43分析(1)g ′ (x)= 3x 2+ (m + 4)x - 2,若 g(x) 在区间 (t,3) 上总为单一函数,则 ① g ′ (x)≥ 0 在(t,3)上恒成立,或 ② g ′ (x)≤ 0 在(t,3)上恒成立.由 ① 得 3x 2+ (m + 4)x - 2≥0,2即 m + 4≥ x -3x 在 x ∈ (t,3)时恒成立,所以 m + 4≥2t - 3t (t ∈ [1,2] )恒成立,则 m + 4≥ - 1,即 m ≥ - 5;2由 ② 得 m + 4≤ x - 3x 在 x ∈(t,3)时恒成立,2则 m + 4≤ 3-9,即 m ≤ - 37.所以函数 g(x)在区间 (t,3)上总不为单一函数的m 的取值范围为 (- 37,- 5).3 3x2≥ 1+ x(2) 原不等式即 2a2- 1+ x (x ≥ 0), (*)令 1+ x =t , t ≥ 1,则 x = t 2- 1,t 2- 1 2 t 2- 1所以 (*) 式可化为≥ 1+2 - t2at 2- 2t + 1 t -1 2 = = 对 t ≥ 1 恒成立,2 22t + 1所以≥1 对 t ≥ 1 恒成立,又 a 为正常数,a所以 a ≤ [(t + 1)2] min = 4,故 a 的最大值是 4.A 组专题通关1.在区间 (-∞,t]上存在 x,使得不等式x2-4x+ t≤ 0 成立,则实数 t 的取值范围是 ________.答案[0,4]分析由二次函数图象知:当t≤ 2时, t2- 4t+ t ≤0? 0≤ t≤ 3,即0≤ t≤ 2;当t>2时, 22-4× 2+ t≤ 0? t≤ 4,即 2<t≤ 4.综上实数 t 的取值范围是 [0,4] .log 2 x+ 1 , x>3,2.已知函数 f( x)=x- 3知足 f(a)= 3,则 f(a- 5)的值为 ________.2+ 1,x≤ 3答案32a≤ 3,分析分两种状况剖析,①2a-3+ 1= 3或许a>3,②log 2 a+ 1 = 3.①无解,由②得, a= 7,233所以 f( a- 5)= 2 -+ 1=2.3. (2015 ·标全国课Ⅱ改编 )已知等比数列{ a n} 知足a1= 3, a1+ a3+ a5= 21,则 a3+a5+ a7=________.答案42分析设等比数列{ a n} 的公比为q,则由a1= 3, a1+ a3+ a5= 21 得3(1+ q2+ q4)= 21,解得q2=- 3(舍去 )或 q2= 2,于是 a3+ a5+a7=q2( a1+ a3+a5 )= 2×21= 42.4.已知 F 为双曲线x2y2a2- b2=1(a>0, b>0) 的左焦点,定点G(0, c).若双曲线上存在一点P知足 PF= PG,则双曲线的离心率的取值范围是答案( 2,+∞ )__________ .分析由题意知线段FG的中垂线y=- x与双曲线x2y2a2- b2= 1(a>0, b>0) 有公共点,联立方程,由Δ≥0 化简可得b≥ a,所以e≥2,可是当e=2时,双曲线是等轴双曲线,此时线段FG的中垂线与双曲线的渐近线y=- x 重合,明显不合题意.5.在平面直角坐标系中,O 为坐标原点,直线l:x-ky+ 1= 0 与圆C:x2+ y2= 4 订交于A,【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题八数学思想方法(含答案分析)→→→B 两点, OM =OA+ OB.若点 M 在圆C 上,则实数 k= ________.答案0分析设 A(x1,y12,y22+ y2=4,整理得 (k2+ 1)y2- 2ky- 3= 0,),B(x) ,将直线方程代入C:x所以, y1+ y2=2k- 2→→ →- 22k2, x1+ x2=k(y1+ y2)- 2=2,OM=OA+OB=(2,2) .k + 1k+1k + 1k+ 1因为 M 点在圆 C 上,所以 (- 222k 2) + () =4,k2+ 1k2+ 1解得 k= 0.x2+ bx+c, x≤ 0,若 f(-4)= f(0), f(- 2)=- 2,则对于 x 的方程 f(x)= x 6.设函数 f(x)=2, x>0 ,的解的个数为 ________.答案3分析由 f(- 4)= f(0) , f(- 2)=- 2,解得 b= 4, c= 2,∴f(x)=x2+ 4x+2, x≤ 0,2,x>0.作出函数y= f( x)及 y=x 的函数图象如下图,由图可得交点有 3 个.x≥ 0,.已知变量x, y 知足的不等式组 y≥2x,表示的是一个直kx- y+1≥ 0角三角形围成的平面地区,则实数k= ________.1答案-或 0x≥ 0,分析不等式组y≥ 2x,表示的可行域如图(暗影部分 )所示,由图可知若不等式组kx- y+ 1≥ 0x≥ 0,y≥ 2x,表示的平面地区是直角三角形,只有直线 y= kx+1 与直线 y= 0 垂直 (如图kx- y+1≥ 0① )或直线 y=kx+ 1 与直线 y= 2x 垂直 (如图② )时,平面地区才是直角三角形.1由图形可知斜率k 的值为 0 或-2.8.等比数列 { a n} 中, a3= 7,前 3 项之和 S3= 21,则公比q 的值是 ________.答案 1 或-12a1 1- q3分析当公比 q= 1 时,a1= a2= a3= 7,S3=3a1=21,切合要求.当 q≠1 时,a1q2= 7,1- q = 21,11解得 q=-2或 q= 1(舍去 ).综上可知,q= 1 或-2.9.(2015 ·标全国课Ⅱ改编 )设函数 f′( x)是奇函数f(x)( x∈R)的导函数, f(- 1)= 0,当 x>0 时,xf′ (x)- f(x)<0,则使得 f(x)>0 成立的 x 的取值范围是 __________ .答案(-∞,- 1)∪ (0,1)分析因为 f(x)(x∈R )为奇函数, f(- 1)= 0,所以 f(1)=- f(- 1)= 0.当 x≠ 0时,令 g(x)=f x,x则 g(x)为偶函数,且 g(1)= g(- 1)= 0.则当 x> 0xf′ x - f x时, g′ (x)=f x′=x2< 0,故xg(x)在 (0,+∞ )上为减函数,在 (-∞, 0)上为增函数.所以在(0,+∞ )上,当 0<x< 1 时,g(x)> g(1) = 0? f x> 0? f(x)> 0;在 (-∞,0)上,当 x<- 1时, g(x)<g(-1)= 0?f x< 0? x xf(x)> 0.综上,使得 f(x)> 0 成立的 x 的取值范围是 (-∞,- 1)∪ (0,1).π10.将函数 y= sin(4x-3)的图象向左平移 m(m>0) 个单位长度后,所获得的图象对于y 轴对称,则 m 的最小值为 ________.答案5π24分析πm 个单位长度后,获得 y= sin[4( x+ m)-把 y= sin(4x- ) 的图象上全部的点向左平移3ππ3]= sin(4 x+ 4m-3) 的图象,而此图象对于y 轴对称,则π π4m - = k π+2(k ∈ Z ),31 5π解得 m = 4k π+ 24(k ∈ Z ),又 m>0 ,5π 所以 m 的最小值为 24.|lg x|, 0<x ≤10,11.已知函数f(x)=1x + 6, x>10, 若 a ,b , c 互不相等,且f(a)= f(b)= f(c),则-2abc 的取值范围是 __________. 答案 (10,12)分析作出 f(x)的大概图象.由图象知,要使f(a)= f(b)= f(c) ,不如设 a<b<c ,1则- lg a = lg b =- 2c + 6.∴ lg a + lg b = 0, ∴ab = 1, ∴ abc = c.由图知 10<c<12 , ∴abc ∈ (10,12) .12.对随意 x , y ∈R ,不等式 x 2+ y 2 + xy ≥ 3(x + y - a)恒成立,则实数 a 的取值范围为__________ . 答案 [1,+∞ )分析不等式 x 2+ y 2+ xy ≥ 3(x +y - a)恒成立 ? 不等式 x 2+ (y - 3)x + y 2 -3y + 3a ≥ 0 恒成立 ?= (y - 3)2 - 4(y 2- 3y + 3a)=- 3y 2+ 6y + 9- 12a =- 3(y - 1)2+ 12(1- a)≤ 0,要使得上式恒成立,则有 1- a ≤0 成立,故 a ≥ 1.13.要制作一个容积为 4m 3,高为 1 m 的无盖长方体容器.已知该容器的底面造价是每平方米 20 元,侧面造价是每平方米 10 元,则该容器的最低总造价是________元.答案 160分析设该长方体容器的长为 x m ,则宽为4m .又设该容器的造价为 y 元,则 y = 20× 4+x44 44 42(x + x )× 10,即 y = 80+≥2 x ·20(x + x )(x>0).因为 x + x x = 4(当且仅当 x = x ,即 x = 2 时取“ =”),所以 y min = 80+20× 4= 160(元 ) .B 组 能力提升14.已知函数 f(x)的导函数为 f ′ (x),e 为自然对数的底数, 若函数 f(x) 知足 xf ′ (x) +f(x)= ln x x,且 f(e)=1e ,则不等式 f(x)- x>1e - e 的解集是 __________.答案(0, e)ln x分析设 g(x)= xf(x),则 g ′ (x)= xf ′ (x)+ f(x)= x ,g(x)=ln x2 2+ a,+ a , f(x) =ln x22xx1 + a =1? a = 1,f(e)= 2e e e2f(x)= ln x 2 12x + 2x ,ln x 2- 2x 2+ 1 令 h(x) =f(x)- x = 2x ,- 2 ln x 2+ 4ln x - 4x 2-2h ′ (x)= 4x 2<0,h(x)递减,原不等式转变为, h(x)>h(e), 0<x<e.15. (2015 福·建改编 )若 a , b 是函数 f(x)= x 2- px + q(p > 0,q > 0)的两个不一样的零点,且a ,b ,- 2 这三个数可适合排序后成等差数列, 也可适合排序后成等比数列,则 p +q = ________.答案9分析由题意知: a + b = p , ab = q ,∵ p > 0, q > 0, ∴a > 0, b >0.在 a , b ,- 2 这三个数的 6 种排序中,成等差数列的状况有 a , b ,- 2; b , a ,- 2;- 2,a , b ;- 2, b , a ;成等比数列的状况有: a ,- 2, b ; b ,- 2, a.ab = 4,ab = 4,a = 4,a = 1,∴或解得或2b = a - 22a = b - 2,b = 1b = 4.∴ p = 5, q = 4, ∴ p + q = 9.1 n + 116.已知数列 { a n } 的前 n 项和为 S n ,且 a 1= 2, a n +1= 2n a n .(1) 证明:数列 { a n n} 是等比数列;(2) 求通项 a n 与前 n 项的和 S n .(1) 证明因为 a 1=1, a n + 1= n + 1a n ,2 2n当 n ∈ N *时,ann≠ 0.a 1 1 a n + 1 a n 1*又 1= 2,n + 1∶ n = 2(n ∈ N )为常数,a n 11所以 { n } 是以 2为首项,2为公比的等比数列.(2) (1) a n= 1 (1)n -1,解由得·n 2 21 n所以 a n = n ·( ) .2∴ S n = 1 1 2 1 3 1 n ,1·+ 2·( ) + 3·( ) + + n ·( )222211 2 + 1 31 n 1 n 1 ,2 S n = 1·( ) 2·( ) + + (n - 1)( 2 ) + n ·( ) +2 2 2∴12S n = 12+ (12)2+ (12)3+ + (12)n -n ·(12)n + 111 n +12-21 n + 1=1- n ·(,2)1- 2∴ S n = 2- ( 1 n 11 n)-- n ·( )221= 2- (n + 2) ·( )n . 21 n1 n 综上, a n = n ·( , S n = 2- (n + 2) ·(2)2) .17.已知函数 f(x)= x +a- ln x - 3,此中 a ∈ R ,且曲线 y = f(x)在点 (1,f(1)) 处的切线垂直于4 x 21直线 y =2x.(1) 求 a 的值;(2) 求函数 f(x)的单一区间与极值.1 a 1解 (1)对 f(x)求导得 f ′ ( x)= 4- x 2- x ,由 f(x)在点 (1,f(1)) 处的切线垂直于直线y=1=-3- a=- 2,解得 a=52x 知 f′ (1)44.x53(2) 由 (1)知 f(x)=4+4x- ln x-2,x2- 4x- 5则 f′ ( x)=2.4x令 f′ ( x)= 0,解得 x=- 1 或 x=5.因为 x=- 1 不在 f(x)的定义域 (0,+∞ )内,故舍去.当 x∈ (0,5) 时, f′ (x)<0 ,故 f(x)在 (0,5) 内为减函数;当 x∈ (5,+∞ )时, f′ (x)>0,故 f(x)在 (5,+∞ )内为增函数.由此知函数f(x)在 x=5 时获得极小值f(5) =- ln 5.。
专题八数学思想方法教师用书理第1讲函数与方程思想、数形结合思想高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一函数与方程思想的应用[微题型1] 不等式问题中的函数(方程)法【例1-1】 (1)f(x)=ax3-3x+1对于x∈[-1,1],总有f(x)≥0成立,则a=________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________.解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x -1x.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x4, 所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减,因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4. 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4, 从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )·g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )·g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同,所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 答案 (1)4 (2)(-∞,-3)∪(0,3)探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 数列问题的函数(方程)法【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ·3n(n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n ,证明:b n ≤49.(1)解 由a 1=3,a n +1=a n +p ·3n, 得a 2=3+3p ,a 3=a 2+9p =3+12p . 因为a 1,a 2+6,a 3成等差数列, 所以a 1+a 3=2(a 2+6), 即3+3+12p =2(3+3p +6),得p =2,依题意知,a n +1=a n +2×3n. 当n ≥2时,a 2-a 1=2×31,a 3-a 2=2×32,…, a n -a n -1=2×3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2×3×(1-3n -1)1-3=3n-3,所以a n =3n(n ≥2).又a 1=3符合上式,故a n =3n. (2)证明 因为a n =3n,所以b n =n 23n .所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32, 即当n ≥2时,有b n +1<b n , 又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解.(3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 解析几何问题的方程(函数)法【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点. (1)若ED →=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x+2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2, 得x 0=21+2k. 所以21+2k =1071+4k 2,化简得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又AB =22+12=5, 所以四边形AEBF 的面积为S =12·AB ·(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 热点二 数形结合思想的应用[微题型1] 利用数形结合思想讨论方程的根或函数零点【例2-1】 (1)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. (2)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为________. 解析 (1)由f (x )=|2x-2|-b 有两个零点, 可得|2x-2|=b 有两个不等的实根,从而可得函数y =|2x-2|的图象与函数y =b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2,故填(0,2).(2)根据题意,函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=cos πx .再根据函数性质画出⎣⎢⎡⎦⎥⎤-12,32上的图象,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 (1)(0,2) (2)6探究提高 用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数. [微题型2] 利用数形结合思想解不等式或求参数范围【例2-2】 (1)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.解析 (1)如图,分别作出直线y =k (x +2)-2与半圆y =9-x 2.由题意,知直线在半圆的上方,由b -a =2,可知b =3,a =1,所以直线y =k (x +2)-2过点(1,22),则k = 2.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.答案 (1) 2 (2)⎝⎛⎦⎥⎤-∞,12 探究提高 求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答. [微题型3] 利用数形结合思想求最值【例2-3】 (1)已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值为________. (2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC =12PA ·AC=12PA 越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形PACB 应有唯一的最小值,此时PC =|3×1+4×1+8|32+42=3, 从而PA =PC 2-AC 2=2 2.所以(S 四边形PACB )min =2×12×PA ×AC =2 2.(2)设双曲线的左焦点为F 1,连接PF 1,根据双曲线的定义可知PF =2+PF 1,则△APF 的周长为PA +PF +AF =PA +2+PF 1+AF =PA +PF 1+AF +2,由于AF +2是定值,要使△APF 的周长最小,则PA +PF 1最小,即P ,A ,F 1三点共线,如图所示.由于A (0,66),F 1(-3,0), 直线AF 1的方程为:x -3+y66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为2 6.所以S △APF =S △AFF 1-S △PFF 1=12×6×66-12×6×26=12 6.答案 (1)2 2 (2)12 6探究提高 破解圆锥曲线问题的关键是画出相应的图形,注意数形结合的相互渗透,并从相关的图形中挖掘对应的信息加以分析与研究.直线与圆锥曲线的位置关系的转化有两种,一种是通过数形结合建立相应的关系式,另一种是通过代数形式转化为二元二次方程组的解的问题进行讨论.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m =________. 解析 圆的方程(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m |3+1=3⇒|3+m |=23⇒m =3或m =-3 3.答案 -33或 32.已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是________.解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象, 则交点个数即为解的个数. 由图象可知共9个交点.答案 93.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________.解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1. 答案 (-1,+∞)4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2. 答案25.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________.解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞). 答案 (-∞,1]∪[2,+∞)6.(2015·全国Ⅱ卷改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________.解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°, ∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin ∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (2a ,3a )的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a=a 2+b 2a 2= 2. 答案27.已知e 1,e 2是平面内两个相互垂直的单位向量,若向量b 满足|b |=2,b ·e 1=1,b ·e 2=1,则对于任意x ,y ∈R ,|b -(x e 1+y e 2)|的最小值为________.解析 |b -(x e 1+y e 2)|2=b 2+x 2e 21+y 2e 22-2x b ·e 1-2y b ·e 2+2xy e 1·e 2=4+x 2+y 2-2x -2y =(x -1)2+(y -1)2+2≥2,当且仅当x =1,y =1时,|b -(x e 1+y e 2)|2取得最小值2,此时|b -(x e 1+y e 2)|取得最小值 2. 答案28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________. 解析 设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2), 把直线l 的方程代入抛物线方程y 2=4x 并整理得y 2-4ty -4m =0,则Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m ,那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m ,则线段AB 的中点M (2t 2+m ,2t ).由题意可得直线AB 与直线MC 垂直,且C (5,0). 当t ≠0时,有k MC ·k AB =-1, 即2t -02t 2+m -5·1t=-1,整理得m =3-2t 2, 把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3.由于圆心C 到直线AB 的距离等于半径, 即d =|5-m |1+t2=2+2t21+t2=21+t 2=r ,所以2<r <4,此时满足题意且不垂直于x 轴的直线有两条. 当t =0时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5. 综上,可得若这样的直线恰有4条,则2<r <4. 答案 (2,4) 二、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.解 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22, 所以a =1,b =c =22. 故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1.(2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0, Δ=(2km )2-4(k 2+2)(m 2-1) =4(k 2-2m 2+2)>0,(*)解上述方程后易得:x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2.所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22. 所以3(x 1+x 2)2+4x 1x 2=0.所以3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m -1,由(*)式,得k 2>2m 2-2, 又k ≠0,所以k 2=2-2m24m 2-1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行.(1)求b 的值; (2)若函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞), (1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x⇒g ′(1)=2b -1, 依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x<0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x>0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈ (-1,0)时,f ′(x )>0, 即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a ,又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0, 即f (x )在(-∞,-1)上单调递增,x ∈(-1,0)时,f ′(x )<0,即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a . 又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a ,得22<a <2, 所以,实数a 的取值范围是⎝⎛⎭⎪⎫22,2. 第2讲 分类讨论思想、转化与化归思想高考定位 分类讨论思想,转化与化归思想近几年高考每年必考,一般体现在解析几何、函数与导数及数列解答题中,难度较大.1.中学数学中可能引起分类讨论的因素(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根被开方数为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等. 2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. (8)类比法:运用类比推理,猜测问题的结论,易于确定. (9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 获得原问题的解决,体现了正难则反的原则.热点一 分类讨论思想的应用[微题型1] 由性质、定理、公式的限制引起的分类【例1-1】 (1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3,求数列{a n }的通项a n =________.(2)(2016·苏北四市调研)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析 (1)由2S n =3n+3得:当n =1时,2S 1=31+3=2a 1,解得a 1=3;当n ≥2时,a n =S n -S n -1=12[(3n +3)-(3n -1+3)]=3n -1,由于n =1时,a 1=3不适合上式.∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)当a >0时,1-a <1,1+a >1, 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去;当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案 (1)⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2(2)-34探究提高 由性质、定理、公式的限制引起的分类整合法往往是因为有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致的情况下使用,如等比数列的前n 项和公式、函数的单调性等.[微题型2] 由数学运算要求引起的分类【例1-2】 (1)(2016·苏、锡、常、镇调研改编)不等式|x |+|2x +3|≥2的解集是________. (2)已知m ∈R ,求函数f (x )=(4-3m )x 2-2x +m 在区间[0,1]上的最大值为________. 解析 (1)原不等式可转化为⎩⎪⎨⎪⎧x <-32,-x -(2x +3)≥2,或⎩⎪⎨⎪⎧-32≤x ≤0,-x +(2x +3)≥2或⎩⎪⎨⎪⎧x >0,x +(2x +3)≥2. 解得x ≤-53或-1≤x ≤0或x >0,故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-53∪[-1,+∞). (2)①当4-3m =0,即m =43时,函数y =-2x +43,它在[0,1]上是减函数,所以y max =f (0)=43.②当4-3m ≠0, 即m ≠43时,y 是二次函数.当4-3m >0,即m <43时,二次函数y 的图象开口向上,对称轴方程x =14-3m >0,它在[0,1]上的最大值只能在区间端点取得(由于此处不涉及最小值,故不需讨论区间与对称轴的关系).f (0)=m ,f (1)=2-2m ,当m ≥2-2m ,又m <43,即23≤m <43时,y max =m .当m <2-2m ,又m <43,即m <23时,y max =2(1-m ).当4-3m <0,即m >43时,二次函数y 的图象开口向下,又它的对称轴方程x =14-3m <0,所以函数y 在[0,1]上是减函数,于是y max =f (0)=m .由①、②可知,这个函数的最大值为y max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23.答案 (1)⎝⎛⎦⎥⎤-∞,-53∪[-1,+∞)(2)y max=⎩⎪⎨⎪⎧2-2m ,m <23,m ,m ≥23探究提高 由数学运算要求引起的分类整合法,常见的类型有除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数问题,含有绝对值的不等式求解,三角函数的定义域等,根据相应问题中的条件对相应的参数、关系式等加以分类分析,进而分类求解与综合. [微题型3] 由参数变化引起的分类【例1-3】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).探究提高 由参数的变化引起的分类整合法经常用于某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.热点二 转化与化归思想 [微题型1] 换元法【例2-1】 已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 令b =x ,c =y ,则x +y =-a ,x 2+y 2=1-a 2. 此时直线x +y =-a 与圆x 2+y 2=1-a 2有交点, 则圆心到直线的距离d =|a |2≤1-a 2,解得a 2≤23,所以a 的最大值为63. 答案63探究提高 换元法是一种变量代换,也是一种特殊的转化与化归方法,是用一种变数形式去取代另一种变数形式,是将生疏(或复杂)的式子(或数),用熟悉(或简单)的式子(或字母)进行替换;化生疏为熟悉、复杂为简单、抽象为具体,使运算或推理可以顺利进行. [微题型2] 特殊与一般的转化 【例2-2】 已知f (x )=33x+3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x+33x+3=1,∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016. 答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. [微题型3] 常量与变量的转化【例2-3】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12,即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12. 答案 ⎝⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的参数,将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的. [微题型4] 正与反的相互转化【例2-4】 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________.解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数,则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t ,3)上恒成立,∴m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t ,3)上恒成立,则m +4≤23-9,即m ≤-373.∴函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围为-373<m <-5.答案 ⎝⎛⎭⎪⎫-373,-5探究提高 否定性命题,常要利用正反的相互转化,先从正面求解,再取正面答案的补集即可,一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”、“至少”及否定性命题情形的问题中.1.分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有: (1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论;函数y =ax2+bx +c 有时候分a =0和a ≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论. (4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论. (6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等. 2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q =21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12. 答案 1或-122.过双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q两点,则PR →·PQ →的值为________.解析 当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a . 答案 a 23.方程sin 2x +cos x +k =0有解,则k 的取值范围是________. 解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=⎝⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 4.若数列{a n }的前n 项和S n =3n-1,则它的通项公式a n =________. 解析 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2×3n -1,∴数列{a n }的通项公式为a n =2×3n -1.答案 2×3n -15.已知a 为正常数,若不等式1+x ≥1+x2-x 22a对一切非负实数x 恒成立,则a 的最大值为________.解析 原不等式即x 22a ≥1+x2-1+x (x ≥0),(*)令1+x =t ,t ≥1,则x =t 2-1,所以(*)式可化为(t 2-1)22a ≥1+t 2-12-t =t 2-2t +12=(t -1)22对t ≥1恒成立,所以(t +1)2a≥1对t ≥1恒成立,又a 为正常数,所以a ≤[(t +1)2]min =4, 故a 的最大值是4. 答案 46.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数k 使得CA →+CB →=kCM →成立,则k 等于________.解析 ∵MA →+MB →+MC →=0,∴M 为已知△ABC 的重心,取AB 的中点D , ∴CA →+CB →=2CD →=2×32CM →=3CM →,∵CA →+CB →=kCM →,∴k =3. 答案 37.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且PF 1>PF 2,则PF 1PF 2的值为________. 解析 若∠PF 2F 1=90°, 则PF 21=PF 22+F 1F 22,∵PF 1+PF 2=6,F 1F 2=25, 解得PF 1=143,PF 2=43,∴PF 1PF 2=72.若∠F 2PF 1=90°, 则F 1F 22=PF 21+PF 22 =PF 21+(6-PF 1)2, 解得PF 1=4,PF 2=2, ∴PF 1PF 2=2. 综上所述,PF 1PF 2=2或72. 答案 2或728.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),任意的x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围是________. 解析 依题意,问题等价于f (x 1)min ≥g (x 2)max ,f (x )=ln x -14x +34x-1(x >0),所以f ′(x )=1x -14-34x 2=4x -x 2-34x2. 由f ′(x )>0,解得1<x <3,故函数f (x )单调递增区间是(1,3),同理得f (x )的单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,所以f (x 1)min =f (1)=-12.函数g (x 2)=-x 22+2bx 2-4,x 2∈[1,2]. 当b <1时,g (x 2)max =g (1)=2b -5; 当1≤b ≤2时,g (x 2)max =g (b )=b 2-4; 当b >2时,g (x 2)max =g (2)=4b -8. 故问题等价于⎩⎪⎨⎪⎧b <1,-12≥2b -5或⎩⎪⎨⎪⎧1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8.。
【创新设计】(江苏专用)2016高考数学二轮复习专题八数学思想方法考点整合理第1讲函数与方程思想、数形结合思想高考定位函数与方程思想、数形结合思想都是重要的数学思想,高考对函数与方程思想的考查,一般是通过函数与导数试题,三角函数试题、数列试题或解析几何试题进行考查,重点是通过构造函数解决最大值或者最小值问题,通过方程思想求解一些待定系数等,对数形结合思想的考查,一般体现在填空题中.1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.3.数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:(1)借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;(2)借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.数学中的知识,有的本身就可以看作是数形的结合.热点一 函数与方程思想的应用[微题型1] 运用函数与方程思想解决函数、方程、不等式问题【例1-1】 设函数f (x )=cos 2x +sin x +a -1,已知不等式1≤f (x )≤174对一切x ∈R 恒成立,求a 的取值范围. 解 f (x )=cos 2x +sin x +a -1 =1-sin 2x +sin x +a -1 =-⎝⎛⎭⎪⎫sin x -122+a +14. 因为-1≤sin x ≤1,所以当sin x =12时,函数有最大值f (x )max =a +14,当sin x =-1时,函数有最小值f (x )min =a -2. 因为1≤f (x )≤174对一切x ∈R 恒成立,所以f (x )max ≤174且f (x )min ≥1,即⎩⎪⎨⎪⎧a +14≤174,a -2≥1,解得3≤a ≤4, 所以a 的取值范围是[3,4].探究提高 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.[微题型2] 运用函数与方程思想解决数列问题【例1-2】 已知数列{a n }满足a 1=3,a n +1=a n +p ²3n(n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列.(1)求p 的值及数列{a n }的通项公式;(2)设数列{b n }满足b n =n 2a n ,证明:b n ≤49.(1)解 由a 1=3,a n +1=a n +p ²3n, 得a 2=3+3p ,a 3=a 2+9p =3+12p . 因为a 1,a 2+6,a 3成等差数列,所以a 1+a 3=2(a 2+6), 即3+3+12p =2(3+3p +6), 得p =2,依题意知,a n +1=a n +2³3n. 当n ≥2时,a 2-a 1=2³31,a 3-a 2=2³32,…,a n -a n -1=2³3n -1.将以上式子相加得a n -a 1=2(31+32+…+3n -1),所以a n -a 1=2³3³(1-3n -1)1-3=3n-3,所以a n =3n(n ≥2).又a 1=3符合上式,故a n =3n. (2)证明 因为a n =3n,所以b n =n 23n .所以b n +1-b n =(n +1)23n +1-n 23n =-2n 2+2n +13n +1(n ∈N *), 若-2n 2+2n +1<0,则n >1+32, 即当n ≥2时,有b n +1<b n , 又因为b 1=13,b 2=49,故b n ≤49.探究提高 数列最值问题中应用函数与方程思想的常见类型:(1)数列中的恒成立问题,转化为最值问题,利用函数的单调性或不等式求解.(2)数列中的最大项与最小项问题,利用函数的有关性质或不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1求解.(3)数列中前n 项和的最值:转化为二次函数,借助二次函数的单调性或求使a n ≥0(a n ≤0)成立时最大的n 值即可求解.[微题型3] 运用函数与方程的思想解决解析几何中的问题【例1-3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E 、F 两点. (1)若ED →=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2; 由D 在AB 上知x 0+2kx 0=2, 得x 0=21+2k. 所以21+2k =1071+4k 2,化简得24k 2-25k +6=0, 解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2), h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2). 又|AB |=22+1=5, 所以四边形AEBF 的面积为S =12AB (h 1+h 2)=12²5²4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k1+4k2≤22, 当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 热点二 数形结合思想的应用[微题型1] 运用数形结合思想解决函数、方程问题【例2-1】 已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8,设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值),记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =________. 解析 H 1(x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).H 2(x )=min{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ).由f (x )=g (x )⇒x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 解得x 1=a -2,x 2=a +2.而函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8的图象的对称轴恰好分别为x =a +2,x =a -2.可见二者图象的交点正好在它们的顶点处,如图1所示,因此H 1(x ),H 2(x )的图象分别如图2,图3所示(图中实线部分)可见,A =H 1(x )min =f (a +2)=-4a -4,B =H 2(x )max =g (a -2)=12-4a .从而A -B =-16. 答案 -16探究提高 (1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.(2)数形结合思想在解决函数性质有关问题时常有以下几种类型:①研究函数的单调性与奇偶性:画出函数的图象,从图象的变化趋势看函数的单调性,从图象的对称看函数的奇偶性.②研究函数的对称性:画出函数的图象,可从图象的分布情况看图象的对称性.③比较函数值的大小:对于比较没有解析式的函数值大小,可结合函数的性质,画出函数的草图,结合图象比较大小. [微题型2] 运用数形结合思想解决不等式中的问题【例2-2】 若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________.解析 如图,分别作出直线y =k (x +2)-2与半圆y =9-x 2. 由题意,知直线在半圆的上方,由b -a =2,可知b =3,a =1, 所以直线y =k (x +2)-2过点(1,22),则k = 2.答案2探究提高 不等式的解可转化为两个函数图象的一种相对位置关系,故利用数形结合将问题转化为对两个函数图象位置关系的研究,利用函数图象的几何特征,准确而又快速地求出参数的值或不等式的解集.[微题型3] 运用数形结合思想解决解析几何中的问题【例2-3】 已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值为________.解析 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt△PAC =12PA ²AC =12PA 越来越大,从而S四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形PACB 应有唯一的最小值,此时PC =|3³1+4³1+8|32+42=3, 从而PA =PC 2-AC 2=2 2.所以(S 四边形PACB )min =2³12³|PA |³|AC |=2 2.答案 2 2探究提高 在几何的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.1.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.2.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解. 3.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.4.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.5.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.6.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.一、填空题1.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m =________. 解析 圆的方程(x -1)2+y 2=3,圆心(1,0)到直线的距离等于半径⇒|3+m |3+1=3⇒|3+m |=23⇒m =3或m =-3 3.答案 -33或 32.(2014²江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1³22=4. 答案 43.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.解析 作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.答案 ⎝⎛⎦⎥⎤-∞,124.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )²(b -c )=0,则|c |的最大值为________.解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →, ∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2. 答案25.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为________.解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2³(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1. 答案 (-1,+∞)6.已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数为________.解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象, 则交点个数即为解的个数. 由图象可知共9个交点.答案 97.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析 如图所示,结合图形:为使l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,又k PA =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴-1≤k ≤1. 又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 [-1,1] ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π8.满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是________. 解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x 1-cos 2B , 由余弦定理计算得cos B =4-x24x ,代入上式得S △ABC =x1-⎝ ⎛⎭⎪⎫4-x 24x 2=128-(x 2-12)216.由⎩⎨⎧2x +x >2,x +2>2x ,得22-2<x <22+2.故当x =23时,S △ABC 的最大值为2 2. 答案 2 2 二、解答题9.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值. 解 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2. 所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.10.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1(a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22,所以a =1,b =c =22.故椭圆C 的方程为y 2+x 212=1.即y 2+2x 2=1. (2)当直线l 的斜率不存在时,由题意求得m =±12;当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +m 2-1=0,Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*)x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3 PB →,所以-x 1=3x 2.所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22. 所以3(x 1+x 2)2+4x 1x 2=0.所以3²⎝ ⎛⎭⎪⎫-2km k 2+22+4²m 2-1k 2+2=0.整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+(2m 2-2)=0.当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1,由(*)式,得k 2>2m 2-2,又k ≠0, 所以k 2=2-2m24m -1>0.解得-1<m <-12或12<m <1.综上,所求m 的取值范围为⎝⎛⎦⎥⎤-1,-12∪⎣⎢⎡⎭⎪⎫12,1. 11.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行.(1)求b 的值;(2)若函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞),(1)f ′(x )=3ax 2-3a ⇒f ′(1)=0,g ′(x )=2bx -1x⇒g ′(1)=2b -1,依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x<0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x>0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减,x ∈(-1,0)时,f ′(x )>0,即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a , 又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0,即f (x )在(-∞,-1)上单调递增,x ∈(-1,0)时,f ′(x )<0,即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a . 又f (0)=0,所以F (x )的图象如图(2)所求,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a ,所以,实数a 的取值范围是⎝⎛⎭⎪⎫22,2. 第2讲 分类讨论思想、转化与化归思想高考定位 分类讨论思想、转化与化归思想近几年高考每年必考,一般都在解答题中体现,难度较大.1.在解某些数学问题时,我们常常会遇到这样一种情况:解到某一步之后,发现问题的发展是按照不同的方向进行的.当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类讨论法.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.2.中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.3.转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性.4.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.常见的转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:运用类比推理,猜测问题的结论,易于确定.(9)参数法:引进参数,使原问题转化为熟悉的形式进行解决.(10)补集法:如果正面解决原问题有困难,可把原问题的结果看做集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A获得原问题的解决,体现了正难则反的原则.热点一分类讨论思想的应用[微题型1] 运用分类讨论思想解决数列问题【例1-1】求和:1+2x+3x2+…+nx n-1.解记S n=1+2x+3x2+…+nx n-1当x =1时,S n =1+2+3+…+n =n (n +1)2,当x ≠0,x ≠1时,S n =1+2x +3x 2+…+nx n -1,①xS n =x +2x 2+3x 3+…+(n -1)x n -1+nx n .②①-②得:(1-x )S n =1+x +x 2+…+x n -1-nx n=1-x n1-x-nx n . ∴S n =1-x n(1-x )2-nxn1-x. 综上,S n=⎩⎪⎨⎪⎧1,x =0,n (n +1)2,x =1,1-x n(1-x )-nxn1-x ,x ≠0且x ≠1.探究提高 利用等比数列的前n 项和公式时,需要分公比q =1和q ≠1两种情况进行讨论,这是由等比数列的前n 项和公式决定的.一般地,在应用带有限制条件的公式时要小心,根据题目条件确定是否进行分类讨论.[微题型2] 运用分类讨论思想解决导数中的参数问题【例1-2】 已知函数f (x )=m ⎝⎛⎭⎪⎫x -1x +2ln x (m ∈R ).(1)若m =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.解 (1)当m =1时,函数f (x )=x -1x+2ln x ,函数的定义域为(0,+∞),且f ′(x )=x 2+2x +1x 2,所以f (1)=0,f ′(1)=4,所以曲线y =f (x )在点(1,f (1))处的切线方程为4x -y -4=0. (2)函数的定义域为(0,+∞),且f ′(x )=mx 2+2x +mx 2.(ⅰ)当m ≥0时,f ′(x )>0对x ∈(0,+∞)恒成立,所以f (x )在(0,+∞)上单调递增.若m ≤-1,f ′(x )≤0对x ∈(0,+∞)恒成立,所以f (x )在(0,+∞)上单调递减. 若-1<m <0,由f ′(x )=0,得x 1=-1+1-m 2m ,x 2=-1-1-m2m,且0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (f (x )在⎝ ⎛⎭⎪⎫-1+1-m 2m ,-1-1-m 2m 上单调递增.综上所述:当m ≥0时,f (x )在(0,+∞)上单调递增.当m ≤-1时,f (x )在(0,+∞)上单调递减,当-1<m <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1+1-m 2m 和⎝ ⎛⎭⎪⎫-1-1-m 2m ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-1+1-m 2m ,-1-1-m 2m 上单调递增.探究提高 分类讨论思想在解决导数中的参数问题时的常见类型:1.含参数的函数的单调性问题:对于含参数的不等式,应注意分类讨论的原因、标准、顺序.如一元二次不等式,应按“开口方向→相应方程有无实根→根的大小”进行讨论.2.含参数的函数的极值(最值)问题:常在以下情况下需要分类讨论:①导数为零时自变量的大小不确定需要讨论;②导数为零的自变量是否在给定的区间内不确定需要讨论;③端点处的函数值和极值大小不确定需要讨论;④参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.3.含参数的函数的零点个数问题:常需要根据参数与极值的大小关系分类讨论. [微题型3] 运用分类讨论思想解决圆锥曲线中的参数问题【例1-3】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,1),离心率为22.(1)求椭圆C 的方程;(2)过点Q (1,0)的直线l 与椭圆C 相交于A ,B 两点,点P (4,3),记直线PA ,PB 的斜率分别为k 1,k 2,当k 1²k 2最大时,求直线l 的方程.解 (1)由已知可得c 2a 2=a 2-b 2a 2=12,所以a 2=2b 2,又点M (2,1)在椭圆C 上,所以2a 2+1b 2=1,联立方程组⎩⎪⎨⎪⎧a 2=2b 2,2a 2+1b2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=2.故椭圆C的方程为x 24+y 22=1.(2)(ⅰ)当直线l 的斜率为0时,则k 1k 2=34-2³34+2=34;(ⅱ)当直线l 的斜率不为0时,设A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +1,与椭圆x 24+y 22=1联立,整理得:(m 2+2)y 2+2my -3=0.则y 1+y 2=-2m m 2+2,y 1y 2=-3m 2+2, 又x 1=my 1+1,x 2=my 2+1,所以k 1k 2=3-y 14-x 1³3-y 24-x 2=(3-y 1)(3-y 2)(3-my 1)(3-my 2)=9-3(y 1+y 2)+y 1y 29-3m (y 1+y 2)+m 2y 1y 2 =9-3³-2m m 2+2+-3m 2+29-3m ²-2m m 2+2+m 2²-3m 2+2=3m 2+2m +54m 2+6=34+4m +18m 2+12, 令t =4m +1,则k 1k 2=34+2t t 2-2t +25,当t =0,即m =-14时,k 1k 2=34;当t ≠0时,k 1k 2=34+2tt 2-2t +25=34+2t +25t-2, 当t <0时,k 1k 2显然不能取最大值,当t >0时. 当且仅当t =5,即m =1时,k 1k 2取得最大值1. 所以直线l 的方程为x -y -1=0.探究提高 与圆锥曲线有关的参数问题中应用分类讨论思想的常见类型:1.判断曲线的类型:判断曲线的类型,常依据二元方程对其参数进行分类讨论,分类标准一般考虑二次项系数的正负、大小关系.2.参数方程、不等式的求解:如求离心率、渐近线方程时对圆锥曲线焦点位置的讨论,或者对方程系数的讨论,或者求解过程中分母是否为0的讨论.3.直线与圆锥曲线位置关系的判定:对于含参数的直线与圆锥曲线位置关系问题的求解,如对直线斜率存在与否的讨论、消元后二次项系数是否为0的讨论,判别式与0的大小关系的讨论等.热点二 转化与化归思想的应用 [微题型1] 特殊与一般的转化 【例2-1】 已知f (x )=33x+3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x+33x+3=1,∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016. 答案 2 016探究提高 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. [微题型2] 常量与变量的转化【例2-2】 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0.解得7-12<x <3+12, 即实数x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12.答案 ⎝⎛⎭⎪⎫7-12,3+12探究提高 在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的.[微题型3] 换元转化问题【例2-3】 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是1?若存在,则求出对应的a 的值;若不存在,则说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-⎝⎛⎭⎪⎫cos x -a 22+a 24+58a -12. ∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12,0≤t ≤1.当a2>1,即a >2时,函数y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a2≤1,即0≤a ≤2时,t =a2函数有最大值,y max =a 24+58a -12=1, 解得a =32或a =-4(舍去);当a2<0,即a <0时,函数y =-⎝ ⎛⎭⎪⎫t -a 22+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a-12=1, 解得a =125>0(舍去),综上所述,存在实数a =32使得函数在⎣⎢⎡⎦⎥⎤0,π2上有最大值1.探究提高 换元法的特点是通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,把条件与结论联系起来,把陌生的形式转变为熟悉的形式.高中数学中主要换元法有整体换元、三角换元、对称换元、均值换元等等.换元法应用广泛,如解方程、解不等式、证明不等式、求函数的值域、求数列的通项与和等,在解析几何中也有广泛的应用.解题过程中要注意换元后新变量的取值范围.1.分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机→确定分类的标准→逐类进行讨论→归纳综合结论→检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“确定对象的全体,明确分类的标准,分类不重复、不遗漏”的分析讨论. 常见的分类讨论问题有: (1)集合:注意集合中空集∅讨论.(2)函数:对数函数或指数函数中的底数a ,一般应分a >1和0<a <1的讨论;函数y =ax 2+bx +c 有时候分a =0和a ≠0的讨论;对称轴位置的讨论;判别式的讨论.(3)数列:由S n 求a n 分n =1和n >1的讨论;等比数列中分公比q =1和q ≠1的讨论. (4)三角函数:角的象限及函数值范围的讨论.(5)不等式:解不等式时含参数的讨论,基本不等式相等条件是否满足的讨论. (6)立体几何:点线面及图形位置关系的不确定性引起的讨论;(7)平面解析几何:直线点斜式中k 分存在和不存在,直线截距式中分b =0和b ≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等. 2.转化与化归思想遵循的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.一、填空题1.若数列{a n }的前n 项和S n =3n-1,则它的通项公式a n =________. 解析 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2³3n -1;当n =1时,a 1=S 1=2,也满足式子a n =2³3n -1,∴数列{a n }的通项公式为a n =2³3n -1.答案 2³3n -12.过双曲线x 2a 2-y 2b2=1上任意一点P ,引与实轴平行的直线,交两渐近线于R ,Q 两点,则PR →²PQ→的值为________.解析 当直线PQ 与x 轴重合时,|PR →|=|PQ →|=a . 答案 a 23.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为________. 解析 当公比q =1时,a 1=a 2=a 3=7,S 3=3a 1=21,符合要求.当q ≠1时,a 1q 2=7,a 1(1-q 3)1-q =21,解之得,q =-12或q =1(舍去).综上可知,q =1或-12. 答案 1或-124.方程sin 2x +cos x +k =0有解,则k 的取值范围是________. 解析 求k =-sin 2x -cos x 的值域. k =cos 2x -cos x -1=⎝⎛⎭⎪⎫cos x -122-54. 当cos x =12时,k min =-54,当cos x =-1时,k max =1,∴-54≤k ≤1.答案 ⎣⎢⎡⎦⎥⎤-54,1 5.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC 等于________.解析 ∵S △ABC =12AB ²BC ²sin B =12³1³2sin B =12,∴sin B =22,∴B =π4或3π4.当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ²BC ²cos B =1+2+2=5,所以AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ²BC ²cos B =1+2-2=1,所以AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5. 答案56.在△ABC 中,AB =3,AC =4,BC =5.点D 是边BC 上的动点,AD →=xAB →+yAC →,当xy 取最大值时,|AD →|的值为________. 解析 ∵AB =3,AC =4,BC =5, ∴△ABC 为直角三角形.。