最新5导数及其应用(单调性极值与最值)汇总
- 格式:doc
- 大小:73.00 KB
- 文档页数:7
《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
导数与函数的单调性、极值、最值问题高考定位 高考对本内容的考查主要有:(1)导数的运算是导数应用的基础,要求是B 级,熟练掌握导数的四则运算法则、常用导数公式,一般不单独设置试题,是解决导数应用的第一步;(2)利用导数研究函数的单调性与极值是导数的核心内容,要求是B 级,对应用导数研究函数的单调性与极值要达到相等的高度.真 题 感 悟1.(2017·江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数. 又f (-x )=-x 3+2x +e -x -e x =-(x 3-2x +e x-1ex )=-f (x ),故f (x )为奇函数,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ), ∴2a 2≤1-a ,解之得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12.答案 ⎣⎢⎡⎦⎥⎤-1,122.(2017·江苏卷)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.(1)解 由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎪⎫x +a 32+b -a 23.当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:故f (x )的极值点是x 1,x 2.从而a >3. 因此b =2a 29+3a,定义域为(3,+∞).(2)证明 由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝ ⎛⎭⎪⎫362,+∞时,g ′(t )>0,从而g (t )在⎝ ⎛⎭⎪⎫362,+∞上单调递增.因为a >3,所以a a >33,故g (a a )>g (33)=3,即ba > 3.因此b 2>3a .(3)解 由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0. 记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减.因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a的取值范围为(3,6].考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f (x)在某个区间内可导,如果f ′(x)>0,则y=f (x)在该区间为增函数;如果f ′(x)<0,则y=f (x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f (x)在点x0处连续时,如果在x0附近的左侧f′(x)>0,右侧f ′(x)<0,那么f (x0)是极大值;如果在x0附近的左侧f ′(x)<0,右侧f ′(x)>0,那么f (x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f ′(x)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.热点一利用导数研究函数的单调性[命题角度1] 求解含参函数的单调区间【例1-1】(2017·全国Ⅰ卷改编)已知函数f (x)=e x(e x-a)-a2x,其中参数a≤0.(1)讨论f (x)的单调性;(2)若f (x)≥0,求a的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为 f⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2,故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0,即a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].探究提高 讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向;(2)判别式的正负,目的是讨论对应二次方程是否有解;(3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根. [命题角度2] 已知函数的单调区间求参数范围【例1-2】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数?若能,求出a 的取值范围?若不能,请说明理由.解 (1)当a =2时,f (x )=(-x 2+2x )·e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2xx +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0. 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增. 所以g (x )<g (1)=(1+1)-11+1=32.所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.(3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立.因为e x >0,所以x 2-(a -2)x -a ≥0对x ∈R 都成立.所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的.故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≥0对x ∈R 都成立,因为e x >0,所以x 2-(a -2)x -a ≤0对x ∈R 都成立.而Δ=(a -2)2+4a =a 2+4>0,故函数f (x )不可能在R 上单调递增. 综上,可知函数f (x )不可能是R 上的单调函数.探究提高 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围. (2)可导函数f (x )在某个区间D 内单调递增(或递减),转化为恒成立问题时,常忽视等号这一条件,导致与正确的解法擦肩而过,注意,这里“=”一定不能省略.【训练1】 (2017·南京、盐城模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R).(1)当a =2时,解关于x 的方程g (e x )=0(其中e 为自然对数的底数); (2)求函数φ(x )=f (x )+g (x )的单调递增区间. 解 (1)当a =2时,方程g (e x )=0,即2e x +1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x =12.故所求方程的根为x =0或x =-ln 2. (2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x -(a -1)x 2=[ax -(a -1)](x +1)x2(x >0), 当a <0时,由φ′(x )>0,解得0<x <a -1a;当a =0时,由φ′(x )>0,解得x >0; 当0<a <1时,由φ′(x )>0,解得x >0; 当a =1时,由φ′(x )>0,解得x >0; 当a >1时,由φ′(x )>0,解得x >a -1a. 综上所述,当a <0时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的单调递增区间为(0,+∞); 当a >1时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫a -1a ,+∞. 热点二 利用导数研究函数的极值【例2】 (2017·南通调研)设函数f (x )=x -2e x -k (x -2ln x )(k 为实常数,e =2.718 28…是自然对数的底数). (1)当k =1时,求函数f (x )的最小值;(2)若函数f (x )在(0,4)内存在三个极值点,求k 的取值范围. 解 (1)当k =1时,函数f (x )=e xx2-(x -2ln x )(x >0),则f ′(x )=(x -2)(e x -x 2)x3(x >0). 当x >0时,e x >x 2,理由如下:要使当x >0时,e x >x 2,只需使x >2ln x , 设φ(x )=x -2ln x ,则φ′(x )=1-2x =x -2x,所以当0<x <2时,φ′(x )<0;当x >2时,φ′(x )>0, 所以φ(x )=x -2ln x 在x =2处取得最小值φ(2)=2-2ln 2>0, 所以当x >0时,x >2ln x , 所以e x -x 2>0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,即函数f (x )在(0,2)上为减函数,在(2,+ ∞)上为增函数, 所以f (x )在x =2处取得最小值f (2)=e 24-2+2ln 2.(2)因为f ′(x )=(x -2)(e x -kx 2)x 3=(x -2)⎝ ⎛⎭⎪⎫e xx 2-k x,当k ≤0时,e xx2-k >0,所以f (x )在(0,2)上单调递减,在(2,4)上单调递增,不存在三个极值点,所以k >0. 令g (x )=e xx 2,得g ′(x )=e x ·(x -2)x 3,则g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,在x =2处取得最小值为g (2)=e 24,且g (4)=e 416,于是可得y =k 与g (x )=e xx 2在(0,4)内有两个不同的交点的条件是k ∈⎝ ⎛⎭⎪⎫e 24,e 416.设y =k 与g (x )=e xx2在(0,4)内的两个不同交点的横坐标分别为x 1,x 2,且0<x 1<2<x 2<4,导函数f ′(x )及原函数f (x )的变化情况如下:所以 f (x )在(0,x 1)上单调递减,在(x 1,2)上单调递增,在(2,x 2)上单调递减,在(x 2,4)上单调递增,所以f (x )在(0,4)上存在三个极值点.即函数f (x )在(0,4)内存在三个极值点的k 的取值范围是⎝ ⎛⎭⎪⎫e 24,e 416.探究提高极值点的个数,一般是使f ′(x)=0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.【训练2】(2017·苏、锡、常、镇调研节选)已知函数f (x)=ax2+cos x(a ∈R),记f (x)的导函数为g(x).(1)证明:当a=12时,g(x)在R上单调递增;(2)若f (x)在x=0处取得极小值,求a的取值范围.(1)证明当a=12时,f (x)=12x2+cos x,所以f ′(x)=x-sin x,令g(x)=x-sin x,所以g′(x)=1-cos x≥0,所以g(x)在R上单调递增.(2)解因为g(x)=f ′(x)=2ax-sin x,所以g′(x)=2a-cos x.①当a≥12时,g′(x)≥1-cos x≥0,所以函数f ′(x)在R上单调递增.当x>0时,则f ′(x)>f ′(0)=0;当x<0时,则f ′(x)<f ′(0)=0;所以f (x)的单调递增区间是(0,+∞),单调递减区间是(-∞,0),所以f (x)在x=0处取得极小值,符合题意.②当a≤-12时,g′(x)≤-1-cos x≤0,所以函数f ′(x)在R上单调递减.当x>0时,则f ′(x)<f ′(0)=0;当x<0时,则f ′(x)>f ′(0)=0,所以f (x)的单调递减区间是(0,+∞),单调递增区间是(-∞,0),所以f (x)在x=0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,但当x ∈(0,x 0)时,cos x >2a ,即g ′(x )<0, 所以函数f ′(x )在(0,x 0)上单调递减, 所以f ′(x )<f ′(0)=0,即函数f (x )在(0,x 0)上单调递减,不符合题意. 综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.热点三 利用导数研究函数的最值【例3】 (2017·浙江卷)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′ =⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝ ⎛⎭⎪⎫1-12x -1-x +2x -1e -x =(1-x )⎝⎛⎭⎪⎫1-22x -1e -x ⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )⎝ ⎛⎭⎪⎫1-22x -1e -x =0, 解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -12,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -52,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12.又f (x )=(x -2x -1)e -x =12(2x -1-1)2e -x ≥0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. 探究提高 含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.【训练3】 已知函数f (x )=x ln x . (1)求函数f (x )的单调区间和最小值; (2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值. 解 (1)因为f ′(x )=ln x +1(x >0), 令f ′(x )≥0,即ln x ≥-1=ln e -1, 所以x ≥e -1=1e ,所以x ∈⎣⎢⎡⎭⎪⎫1e ,+∞. 同理令f ′(x )≤0,可得x ∈⎝ ⎛⎦⎥⎤0,1e .所以 f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫1e ,+∞,单调递减区间为⎝ ⎛⎦⎥⎤0,1e .由此可知 f(x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .(2)由F (x )=x ln x -a x ,得F ′(x )=x +ax 2,当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32, 所以a =-32∉[0,+∞),舍去.当a <0时,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增. ①当a ∈(-1,0),F (x )在[1,e]上单调递增, F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去.②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减, 在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,a =-e ∈[-e ,-1];③若a ∈(-∞,-e),F (x )在[1,e]上单调递减,F (x )min =F (e)=1-a e=32,所以a =-e2∉(-∞,-e),舍去.综上所述,a =- e.1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f (x),“f (x)在x=x0处的导数f ′(x0)=0”是“f (x)在x=x处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.一、填空题1.已知函数f (x)=4ln x+ax2-6x+b(a,b为常数),且x=2为f (x)的一个极值点,则a的值为________.解析由题意知,函数f (x)的定义域为(0,+∞),∵f ′(x)=4x+2ax-6,∴f ′(2)=2+4a-6=0,即a=1,经验证符合题意. 答案 12.(2017·苏州调研)函数f (x)=12x2-ln x的单调递减区间为________.解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x<0,解得0<x <1,所以函数f (x )的单调递减区间为(0,1). 答案 (0,1)3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10, 即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或 ⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23.答案 -234.(2017·南京模拟)若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为________.解析 由f (x )在区间[a ,a +1]上单调递增,得f ′(x )=e x (-x 2+a +2)≥0,x ∈[a ,a +1]恒成立,即(-x 2+a +2)min ≥0,x ∈[a ,a +1].当a ≤-12时,-a 2+a +2≥0,则-1≤a ≤-12;当a >-12时,-(a +1)2+a +2≥0,则-12<a ≤-1+52,所以实数a 的取值范围是-1≤a ≤-1+52,a 的最大值是-1+52. 答案-1+525.(2017·浙江卷改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________(填序号).解析 利用导数与函数的单调性进行验证.f ′(x )>0的解集对应y =f (x )的增区间,f ′(x )<0的解集对应y =f (x )的减区间,验证只有④符合. 答案 ④6.(2017·泰州期末)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.解析 f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0, ∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增; 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值. 答案 (0,1)7.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是________.解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根, 所以Δ=4a 2-12>0, 解得a >3或a <- 3.答案 (-∞,-3)∪(3,+∞)8.(2016·北京卷)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 解析 (1)当a =0时,f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1). 由f ′(x )>0得x <-1, 由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增,在(-1,0]上单调递减, ∴f (x )最大值为f (-1)=2.若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0. 综上,f (x )最大值为2.(2)函数y =x 3-3x 与y =-2x 的图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2. 所以a <-1.答案 (1)2 (2)(-∞,-1) 二、解答题9.(2017·北京卷)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1,f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0),即y =1. (2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2sin x ·e x≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.10.(2016·全国Ⅱ卷)(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x3=x +2x 3(f (x )+a ). 由(1)知f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2], 使得f (x a )+a =0,即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )= e x a -a (x a +1)x 2a=e x a +f (x a )(x a +1)x 2a=e x ax a +2.于是h (a )=e xax a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e x x +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.11.设函数f (x )=e xx 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞). 因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时, 当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减.x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎨⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e <k <e 22, 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎪⎫e ,e 22.。
知识要点1. 导数的定义:一般地,函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,我们称它为函数)(x f y =在0x x =处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.2. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点),(00y x 处的切线的斜率,也就是说,曲线)(x f y =在点),(00y x P 处的切线的斜率是)(0'x f ,切线方程为).)((00'0x x x f y y -=-导数的物理意义:位移的导数是速度,速度的导数是加速度。
导数的几何意义:导数就是切线斜率。
3.基本初等函数的导数公式:0'=C (C 为常数) x x cos )(sin '= 1')(-=n n nx x (R n ∈) x x sin )(cos '-= )0(ln )('>=a a a a x x x x e e =')()1,0(ln 1)(log '≠>=a a ax x a x x 1)(ln '=4.导数运算法则:[])()()()('''x g x f x g x f ±=±[])()()()()()('''x g x f x g x f x g x f +=∙[])0)(()()()()()()()(2'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f 注:)()(x g x f 、必须是可导函数.5.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
对于函数 y = f(x),其在点 x = x₀处的导数定义为:f'(x₀) = limₕ→₀ f(x₀+ h) f(x₀) / h导数的几何意义是函数曲线在该点处的切线斜率。
如果导数存在,则函数在该点处可导。
二、函数的极值1、极值的定义函数在某区间内的极大值和极小值统称为极值。
极大值是指在该区间内比其附近的函数值都大的函数值;极小值则是指在该区间内比其附近的函数值都小的函数值。
2、极值点的判别方法(1)导数为零的点:若函数 f(x) 在点 x₀处可导,且 f'(x₀) = 0,则 x₀可能是极值点。
(2)导数不存在的点:函数在某些点处导数不存在,但也可能是极值点。
3、第一导数判别法设函数 f(x) 在点 x₀的某个邻域内可导,且 f'(x₀) = 0。
(1)如果当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x) 在 x₀处取得极大值。
(2)如果当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x) 在 x₀处取得极小值。
4、第二导数判别法设函数 f(x) 在点 x₀处具有二阶导数,且 f'(x₀) = 0,f''(x₀) ≠ 0。
(1)若 f''(x₀) < 0,则函数 f(x) 在 x₀处取得极大值。
(2)若 f''(x₀) > 0,则函数 f(x) 在 x₀处取得极小值。
三、函数的最值1、最值的定义函数在某个区间内的最大值和最小值分别称为函数在该区间内的最值。
2、求最值的步骤(1)求函数在给定区间内的导数。
(2)找出导数为零的点和导数不存在的点。
(3)计算这些点以及区间端点处的函数值。
(4)比较这些函数值,最大的即为最大值,最小的即为最小值。
利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。
本文将重点讨论如何利用导数来求解函数的单调性及最值问题。
1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。
它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。
2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。
因此,我们可以利用导数的正负性来判断函数的单调性。
例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。
我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。
因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。
3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。
因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。
最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。
例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。
这两个点即为函数f(x)的极值点。
我们还需要判断它们是否是函数的最值点。
当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。
导数的应用-单调性、极值与最值10大题型导数与函数是高中数学的核心内容,高考中经常在函数、导数与不等式等模块的知识交汇处命题,形成层次丰富的各类题型,常涉及的问题有利用导数解决函数的单调性、极值和最值;与不等式、数列、方程的根(或函数的零点),三角函数等问题。
此类问题体现了分类讨论、数形结合、转化与化归等数学思想,重点考查学生的数形结合能力,处理综合性问题的能力和运算求解能力。
本题考试难度大,除了方法与技巧的训练,考生在复习中要注意强化基础题型的解题步骤,提高解题熟练度。
一、导数与函数的单调性相关问题及解决方法1、求函数单调区间的步骤(1)确定函数()f x 的定义域;(2)求()f x '(通分合并、因式分解);(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.2、已知函数的单调性求参数(1)函数()f x 在区间D 上单调增(单减)⇒)(00)(≤≥'x f 在区间D 上恒成立;(2)函数()f x 在区间D 上存在单调增(单减)区间⇒)(00)(<>'x f 在区间D上能成立;(3)已知函数()f x 在区间D 内单调⇒)(x f '不存在变号零点(4)已知函数()f x 在区间D 内不单调⇒)(x f '存在变号零点3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。
二、利用导数求函数极值的方法步骤(1)求导数()f x ';(2)求方程()0f x '=的所有实数根;(3)观察在每个根x 0附近,从左到右导函数()f x '的符号如何变化.①如果()f x '的符号由正变负,则0()f x '是极大值;②如果由负变正,则0()f x '是极小值.③如果在()0f x '=的根x =x 0的左右侧()f x '的符号不变,则不是极值点.三、函数的最值与极值的关系1、极值是对某一点附近(即局部)而言,最值时对函数的定义区间[,]a b 的整体而言;2、在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);3、函数()f x 的极值点不能是区间的端点,而最值点可以是区间的端点;4、对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得。
专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础学问融会贯穿1.函数的单调性(1)单调函数的定义(2)单调区间的定义假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件(1)对于随意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于随意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【学问拓展】函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ]. (3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间) 命题点1 给出详细解析式的函数的单调性 【典型例题】下列函数中,值域为R 且在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =2x +1C .y =x 3+1D .y =(x ﹣1)|x |【解答】解:依据题意,依次分析选项:对于A ,y =x 2+2x =(x +1)2﹣1,其值域为[﹣1,+∞),不符合题意; 对于B ,y =2x +1,其值域为(0,+∞),不符合题意;对于C ,y =x 3+1,值域为R 且在区间(0,+∞)上单调递增,符合题意; 对于D ,y =(x ﹣1)|x |,在区间(0,1)上为减函数,不符合题意;故选:C .【再练一题】已知函数f (x )=ln ,则( )A .f (x )是奇函数,且在(﹣∞,+∞)上单调递增B .f (x )是奇函数,且在(﹣∞,+∞)上单调递减C .f (x )是偶函数,且在(0,+∞)上单调递增D .f (x )是偶函数,且在(0,+∞)上单调递减【解答】解:依据题意,函数f (x )=ln,其定义域为R ,有f(﹣x)=ln ln f(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2 解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k 的取值范围是()A.(﹣∞,﹣2] B.[2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:依据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,] C.[,] D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满意0<a<1,依据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1] B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得微小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再视察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.(5)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.【题型三】函数单调性的应用命题点1 比较大小【典型例题】已知函数,若,则a、b、c之间的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.b<a<c【解答】解:依据题意,函数,其定义域为R,则f(﹣x)=|ln(x)|=|ln|=|﹣ln(x)|=|ln(x)|=f (x),即函数f(x)为偶函数,设g(x)=ln(x)=ln,有g(0)=ln1=0,设t,则y=lnt,当x≥0时,t为减函数且t>0,而y=lnt在(0,+∞)为增函数,则g(x)=ln(x)=ln在[0,+∞)上为减函数,又由g(0)=0,则在区间[0,+∞)上,g(x)≤0,又由f(x)=|g(x)|,则f(x)在区间[0,+∞)上为增函数,a=f()=f(log94),b=f(log52)=f(log254),又由log254<log94<1<1.80.2,则有b<a<c;故选:D.【再练一题】已知函数f(x)=x•ln,a=f(),b=f(),c=f(),则以下关系成立的是()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【解答】解:,,;∵;∴;∴c<a<b.故选:A.命题点2 解函数不等式【典型例题】已知函数f(x)=e x﹣e﹣x,则关于x的不等式f(x)+f(x2﹣2)<0的解集为()A.(﹣2,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【解答】解:依据题意,函数f(x)=e x﹣e﹣x,有f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,又由f′(x)=e x+e﹣x>0,则函数f(x)在R上为增函数,f(x)+f(x2﹣2)<0⇒f(x)<﹣f(x2﹣2)⇒f(x)<f(2﹣x2)⇒x<2﹣x2,即x2+x﹣2<0,解可得﹣2<x<1,即其解集为(﹣2,1);故选:A.【再练一题】设定义在R上的奇函数f(x)满意f(x)=x3﹣8(x>0),则{x|f(x﹣2)≥0}=()A.[﹣2,0)∪[2,+∞)B.(﹣∞﹣2]∪[2,+∞)C.[0,2)∪[4,+∞)D.[0,2]∪[4,+∞)【解答】解:∵f(x)是R上的奇函数,且x>0时,f(x)=x3﹣8;∴f(0)=f(2)=f(﹣2)=0,且f(x)在(0,+∞),(﹣∞,0)上都单调递增;∴①x=2时,满意f(x﹣2)≥0;②x>2时,由f(x﹣2)≥0得,f(x﹣2)≥f(2);∴x﹣2≥2;∴x≥4;③x<2时,由f(x﹣2)≥0得,f(x﹣2)≥f(﹣2);∴x﹣2≥﹣2;∴x≥0;∴0≤x<2;综上得,f(x﹣2)≥0的解集为[0,2]∪[4,+∞).故选:D.命题点3 求参数范围【典型例题】若函数f(x)在R上是增函数,则a的取值范围为()A.(﹣∞,1] B.(0,2)C.(0,1] D.[1,2)【解答】解:∵f(x)在R上是增函数;∴;解得0<a≤1;∴a的取值范围为:(0,1].故选:C.【再练一题】若(a≠1),在定义域(﹣∞,+∞)上是单调函数,则a的取值范围是()A.B.C.D.【解答】解:f(x)在定义域(﹣∞,+∞)上是单调函数时,①函数的单调性是增函数时,可得当x=0时,(a2﹣1)e ax≤ax2+1=1,即a2﹣1≤1,解之得a∵x≥0时,y=ax2+1是增函数,∴a>0又∵x<0时,(a2﹣1)e ax是增函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:1<a②函数的单调性是减函数时,可得当x=0时,(a2﹣1)e ax≥ax2+1=1,即a2﹣1≥1,解之得a或a.∵x≥0时,y=ax2+1是减函数,∴a<0又∵x<0时,(a2﹣1)e ax是减函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:a综上所述,得a∈故选:C.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f”符号脱掉,转化为详细的不等式求解,应留意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需留意若函数在区间[a,b]上是单调的,则该函数在此区间的随意子集上也是单调的;③分段函数的单调性,除留意各段的单调性外,还要留意连接点的取值.基础学问训练1.若,则下列不等式正确的是()A.B.C.D.【答案】D【解析】∵,对A选项,变形为log a x3<log a y2,而函数y=是单调递减函数,x3<y2,∴log a x3>log a y2,故A不正确;对B选项,,函数y=cosx是单调递减函数,∴,故B不正确;对C选项,y=是单调递减函数,∴, 故C不正确;而D选项,幂函数y=是单调递增函数,∴,故应选D.2.已知函数且满意,则的取值范围为()A.B.C.D.【答案】C【解析】因为,所以,所以函数为定义在R上的偶函数;又时,单调递减,所以由偶函数的对称可得:时,单调递增,所以由可得,解得.故选C3.已知函数,则函数有()A.最小值,无最大值 B.最大值,无最小值C.最小值1,无最大值 D.最大值1,无最小值【答案】D【解析】∵函数f(x)的定义域为(﹣∞,]设t,则t,且x,∴f(x)=g(t)t2+t(t﹣1)2+1,t,∴g(t)≤g(1)即g(t)≤1∴函数f(x)的最大值1,无最小值.故选D.4.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A.16 B.17 C.32 D.33【答案】B【解析】函数f(x)=log2(x2-2x+a)的最小值为4,可得y= x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.5.高斯是德国闻名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】A【解析】.∴当时,;当时,;∴函数的值域是.故选A.6.已知函数的最小值为8,则A.B.C.D.【答案】B【解析】函数的最小值为8,可得,明显的最小值不为8;时,由对数函数的性质可得当时,的最小值为,由题意可得,设递增,,可得,故选:B.7.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. B. C. D.【答案】A【解析】由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x),①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满意条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,故f(a)+f(b)>2.再由f(a)+f(b)>f(c)恒成立,可得2≥t,结合大前提t﹣1>0,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得 2t≥1,解得1>t.综上可得,t≤2,故选:A.8.奇函数单调递减,若,则满意的取值范围是()A.B.C.D.[1,3]【答案】D【解析】因为奇函数单调递减,所以函数单调递减,且为奇函数,所以,因为,所以,所以,解得,即满意的取值范围是,故选D.9.假如对定义在R上的奇函数,对随意两个不相邻的实数,全部,则称函数为“H函数”,下列函数为H函数的是A.B.C.D.【答案】D【解析】依据题意,对于全部的不相等实数,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.10.已知定义在上的函数,对随意,有,且时,有,设,则()A.B.C.D.【答案】A【解析】因为对随意,所以,因为时,有,所以函数在区间上是增函数,因为,所以,即,所以,故选A.11.已知定义在R上的函数f(x)=-1(m为实数)为偶函数,记a=f(log0.53),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【答案】B【解析】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选:B.12.已知t为常数,函数在区间上的最大值为2,则t的值为A.B.C.D.【答案】A【解析】令上的增函数.当,即时,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意.当,解得.当时,,不符合题意.当时,符合题意.故.所以选A.13.假如奇函数在区间上是减函数,值域为,那么______.【答案】12【解析】由f(x)在区间上是递减函数,且最大值为5,最小值为-2,得f(3)=5,f(7)=-2,∵f(x)是奇函数,∴.故答案为:12.14.已知函数,若上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=上单调递减,故只需满意,解得:k∈[,0)故答案为:[,0)15.设函数f(x)=|x-1|在x∈[t,t+4](t∈R)上的最大值为M(t),则M(t)的最小值为______.【答案】2【解析】作出函数f(x)=|x-1|的图象,如图所示,当t+4≤1即t≤-3时,f(x)在[t,t+4]递减,可得最大值M(t)=f(t)=|t-1|=1-t,由M(t)在t≤-3递减,可得M(t)≥4,即最小值为4;当t≥1时,f(x)在[t,t+4]递增,可得最大值M(t)=f(t+4)=|t+3|=t+3,由M(t)在t≥1递增,可得M(t)≥4,即最小值为4;当t<1<t+4,即-3<t<1时,f(x)在(t,1)递减,在(1,t+4)递增,可得f(x)的最小值为0;当t=-1时,f(t)=f(t+4)=2;当-1<t<1时,f(t)<f(t+4),f(x)的最大值M(t)=f(t+4)=t+3,且M(t)∈(2,4);当-3<t<-1时,f(t)>f(t+4),f(x)的最大值M(t)=f(t)=1-t,且M(t)∈(2,4);综上可得M(t)的最小值为2.故答案为:2.16.已知函数,若当时,都有,则a的取值范围为______.【答案】【解析】①当时,即②当时,若,即时,若,即时,③当时,综上所述,17.对于区间,若函数同时满意:上是单调函数;函数的值域是,则称区间为函数的“保值”区间.求函数的全部“保值”区间.函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.【答案】(1);(2)函数存在“保值”区间,此时m的取值范围是.【解析】因为函数的值域是,且的值域是,所以,所以,从而函数在区间上单调递增,故有,解得,又,所以,所以函数的“保值”区间为;若函数存在“保值”区间,若,由可得函数的“保值”区间为;若,此时函数在区间上单调递减,可得,消去m得,整理得,因为,所以,即,即有,因为,可得;若,此时函数在区间上单调递增,可得,消去m得,整理得.因为,所以,可得,可得.由,即有.综合得,函数存在“保值”区间,此时m的取值范围是.18.已知函数常数.证明上是减函数,在上是增函数;时,求的单调区间;对于中的函数和函数,若对随意,总存在,使得成立,求实数a的值.【答案】(1)见解析;(2)见解析;(3)【解析】证明::设,且,,,,当时,即,当时,即,时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故上是减函数,在上是增函数;时,,,设,则,,由可知上是减函数,在上是增函数;,即,即上是减函数,在上是增函数;由于为减函数,故又由(2)得由题意,的值域为的值域的子集,从而有,解得.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.【答案】(1)见解析;(2).【解析】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为;,由在区间上是单调减函数,可得,解得.即a的范围是.20.已知函数.判定并证明函数的单调性;是否存在实数m,使得不等式对一切都成立?若存在求出m;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】函数上R上的单调递增函数.证明如下:设,,,且,,函数上R上的单调递增函数.函数,,是R上的奇函数,不等式对一切都成立,,对一切都成立,是R上的增函数,,对一切都成立,.存在实数,使得不等式对一切都成立.实力提升训练1.已知是自然对数的底数),,则的大小关系是( ) A.B.C.D.【答案】A【解析】记,可得x=e可知:上单调递增,又∴,即故选:A2.若函数,设,则的大小关系A.B.C.D.【答案】D【解析】依据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,则有,则;故选:D.3.已知函数,若的最小值为,则实数m的值为A. B. C.3 D.或3【答案】C【解析】函数,即,当时,不成立;当,即时,递减,可得取得最小值,且,解得成立;当,即时,递增,可得取得最小值,且,不成立;综上可得.故选:.4.若函数上的最大值与最小值的差为2,则实数的值为( ).A.2 B.-2 C.2或-2 D.0【答案】C【解析】解:①当a=0时,y=ax+1=1,不符合题意;②当a>0时,y=ax+1在[1,2]上递增,则(2a+1)﹣(a+1)=2,解得a=2;③当a<0时,y=ax+1在[1,2]上递减,则(a+1)﹣(2a+1)=2,解得a=﹣2.综上,得a=±2,故选C.5.已知直线分别与函数的图象交于两点,则两点间的最小距离为()A. B. C. D.【答案】D【解析】依据题意得到PQ两点间的距离即两点的纵坐标的差值,设t+1=u,t=u-1>0,原式等于依据均值不等式得到当且仅当u=1,t=0是取得最值.故答案为:D.6.已知函数的值域为()A. B. C. D.【答案】C【解析】由题意,设,则,又由指数函数的性质,可知函数为单调递减函数,所以函数的值域为,故选C.7.已知函数的定义域为(1)试推断的单调性;(2)若,求的值域;(3)是否存在实数,使得有解,若存在,求出的取值范围;若不存在,说明理由. 【答案】(1)单调递增(2)(3)存在,且取值范围为【解析】解:(1)设单调递增.(2)令的值域为(3)由而当时,令,所以的取值范围为8.已知函数(1)设的两根,且,试求的取值范围(2)当时,的最大值为2,试求【答案】(1)(2)【解析】(1)由题意可得的两根,且,解得故(2)当时,的最大值为2,由,可知抛物线开口向上,对称轴为①若,则当时取得最大值,即,解得②若,则当时取得最大值,即,解得故9.已知函数.(1)若,求a的值.(2)推断函数的奇偶性,并证明你的结论.(3)求不等式的解集.【答案】(1);(2)奇函数;(3).【解析】,则,得,即,则.函数的定义域为R,,即函数是奇函数.由不等式,,在R上是增函数,不等式等价为,即,即,得.即不等式的解集为.10.已知函数.(Ⅰ)推断并证明的单调性;(Ⅱ)设,解关于的不等式.【答案】(Ⅰ)上单调递增;(Ⅱ).【解析】解:(Ⅰ)的定义域为,由是奇函数;任取,则,上单调递增;又由(Ⅰ)知,上的奇函数,上单调递增;上单调递增.(Ⅱ),由是奇函数;又由(Ⅰ)知上单调递增,上单调递增,等价于,可得:,解得:不等式的解集是.。
5导数及其应用(单调性极值与最值)补讲:导数及其应用(单调性、极值与最值)一.选择题:(1) 已知函数«Skip Record If...»在区间«Skip Record If...»内可导,且«Skip Record If...»,则«Skip Record If...» ( )(A)«Skip Record If...» (B)«Skip Record If...» (C)«Skip Record If...» (D)«Skip Record If...»(2) 函数«Skip Record If...»在区间 ( )(A) «Skip Record If...»上单调递减 (B) «Skip Record If...»上单调递减(C) «Skip Record If...»上单调递减 (D) «Skip Record If...»上单调递增(3) 函数«Skip Record If...»在«Skip Record If...»上的最大值和最小值依次是( )(A) «Skip Record If...» (B) «Skip Record If...» (C) «Skip Record If...» (D) «Skip Record If...»(4) 已知函数«Skip Record If...»有极大值和极小值,则实数«Skip Record If...»的取值范围是 ( )(A)«Skip Record If...» (B)«Skip Record If...»(C)«Skip Record If...»或«Skip Record If...» (D)«Skip Record If...»或«Skip Record If...»(5) 设点«Skip Record If...»是曲线«Skip Record If...»上的任意一点,«Skip Record If...»点处切线倾斜角为«Skip Record If...»,则角«Skip Record If...»的取值范围是( )(A) «Skip Record If...»(B)«Skip Record If...»(C) «Skip Record If...»(D) «Skip Record If...»(6) 方程«Skip Record If...»的实根个数是 ( )(A) «Skip Record If...» (B) «Skip Record If...» (C) «Skip Record If...» (D) «Skip Record If...»二.填空题:(7) 函数«Skip Record If...»在«Skip Record If...»处有极大值,则实数«Skip Record If...»(8) 已知曲线«Skip Record If...»,直线«Skip Record If...»,若«Skip Record If...»与«Skip Record If...»相切于点«Skip Record If...»,则切点坐标是(9) 函数«Skip Record If...»«Skip Record If...»在区间«Skip Record If...»上单调递增,且关于«Skip Record If...»的方程«Skip Record If...»的根都在区间«Skip Record If...»内,则实数«Skip Record If...»的取值范围是(10) 已知«Skip Record If...»«Skip Record If...»在«Skip Record If...»上有最小值«Skip Record If...»,则在«Skip Record If...»上, «Skip Record If...»的最大值是三.解答题:(11) 函数«Skip Record If...»«Skip Record If...»的极大值为6,极小值为2,求实数«Skip Record If...»的值.(12) 已知函数«Skip Record If...».①求函数«Skip Record If...»的单调区间;②若«Skip Record If...»,证明:«Skip Record If...».(13) (全国卷Ⅱ)设a为实数,函数«Skip Record If...»(Ⅰ)求«Skip Record If...»的极值.(Ⅱ)当a在什么范围内取值时,曲线«Skip Record If...»轴仅有一个交点.14 ( 全国卷III)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?«Skip Record If...»(15) 设«Skip Record If...»是函数«Skip Record If...»«Skip Record If...»的两个极值点,且«Skip Record If...».①证明:«Skip Record If...»②证明:«Skip Record If...»③若函数«Skip Record If...»,证明:当«Skip Record If...»且«Skip Record If...»时,«Skip Record If...».16.(山东卷)已知«Skip Record If...»是函数«Skip Record If...»的一个极值点,其中«Skip Record If...»,(I)求«Skip Record If...»与«Skip Record If...»的关系式;(II)求«Skip Record If...»的单调区间;(III)当«Skip Record If...»时,函数«Skip Record If...»的图象上任意一点的切线斜率恒大于3«Skip Record If...»,求«Skip Record If...»的取值范围.(全国卷Ⅱ)设a为实数,函数«Skip Record If...»(Ⅰ)求«Skip Record If...»的极值.(Ⅱ)当a在什么范围内取值时,曲线«Skip Record If...»轴仅有一个交点.解:(I)«Skip Record If...»=3«Skip Record If...»-2«Skip Record If...»-1若«Skip Record If...»=0,则«Skip Record If...»==-«Skip Record If...»,«Skip Record If...»=1变化情况如下表:(II)函数«Skip Record If...»由此可知,取足够大的正数时,有«Skip Record If...»>0,取足够小的负数时有«Skip Record If...»<0,所以曲线«Skip Record If...»=«Skip Record If...»与«Skip Record If...»轴至少有一个交点结合«Skip Record If...»的单调性可知:当«Skip Record If...»的极大值«Skip Record If...»<0,即«Skip Record If...»时,它的极小值也小于0,因此曲线«Skip Record If...»=«Skip Record If...»与«Skip Record If...»轴仅有一个交点,它在(1,+∞)上。
当«Skip Record If...»的极小值«Skip Record If...»-1>0即«Skip Record If...»«Skip Record If...»(1,+∞)时,它的极大值也大于0,因此曲线«Skip Record If...»=«Skip Record If...»与«Skip Record If...»轴仅有一个交点,它在(-∞,-«Skip Record If...»)上。