2019届全国新高考原创仿真试卷(三)文科数学试题
- 格式:doc
- 大小:841.28 KB
- 文档页数:16
2019届全国高考仿真试卷(三)文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
第I卷(选择题共60分)一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则A. .B.C.D.【答案】C【解析】,,则,所以故选C.2. 已知复数在复平面内对应的点关于实轴对称,若(其中是虚数单位),则复数的虚部等于A. B. C. D.【答案】A【解析】因为()的取值呈现周期性,周期为4,,,所以的虚部等于.故选A.3. 下列命题中,真命题的是A. “,”的否定是“,”B. 已知,则“”是“”的充分不必要条件C. 已知平面满足,则D. 若,则事件与是对立事件【答案】B【解析】“,”的否定是“,”,故A错误;.....................当时,与可以相交,故C错误;几何概型不满足,故D错误.故选B.4. 已知直线,直线,若,则A. B. C. D.【答案】D【解析】因为,所以,所以,所以.故选D.5. 已知双曲线的中心在原点,焦点在坐标轴上,其中一条渐近线的倾斜角为,则双曲线的离心率为A. 或B. 或C.D.【答案】B【解析】若焦点在x轴上,则方程为(),所以,则;若焦点在y轴上,则方程为(),所以,则.故选B.6. 已知定义在上的函数在上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是A. B. C. D.【答案】A【解析】是偶函数,所以,所以的图像关于对称,由得,所以,解得.故选A.7. 朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日”。
2019届全国高考仿真试卷(三)数学文科本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则()A. B. C. D.【答案】B.....................详解:集合因为全集所以所以选B点睛:本题考查了一元二次方程的解法,集合补集的基本运算,属于简单题。
2. 已知复数满足,则()A. B. C. D.【答案】C【解析】分析:先解出z==1+3i,再利用复数的代数形式的四则运算化简z,最后求模即可.详解:∵i(2﹣z)=3+i,∴z=2﹣=1+3i,∴|z|=.故选:C.点睛:本题考查复数的代数形式的四则运算及模运算,属于基础题.3. 中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期战国初年,算筹记数的方法是:个位、百位、万位的数按纵式的数码摆出;十位、千位、十万位的数按横式的数码摆出.如7738可用算筹表示为.1-9这9个数字的纵式与横式的表示数码如上图所示,则的运算结果可用算筹表示为()A. B. C. D.【答案】D【解析】分析:可先计算出的值,再根据表示数码写出相应结果.详解:,从题中所给表示数码知可用算筹表示,故选D.点睛:本题主要结合算筹计数法考查指数与对数的运算.核心关键在于能够准确计算出算式的值,并能仔细对照算筹数码,即可得正确结果.4. 现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为()A. B. C. D.【答案】C【解析】分析:根据古典概型的概率求解方法,列出4个小球所有排列的可能共有12种,则能够满足中间2个小球不都是红球的有2种情况,所以根据独立事件的概率计算方法可求出概率。
.2019 年新课标全国卷 3 数学(文科)模拟试卷一、选择题:本题共12 小题,每小题5分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M x 2 x 5 , N x log2 x 2 ,则M NA.1,2,3,4,5 B.2,3,4 C.x 0 x 5 D.x 2 x 4a b2.若a,b都是实数,且 11 i i,则a b 的值是A.-1 B.0 C.1 D.23.国家统计局统了我国近10 年(2009 年2018 年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是A.这10 年中有 3 年的GDP增速在9.00%以上B.从2010 年开始GDP的增速逐年下滑C.这10 年GDP仍保持 6.5%以上的中高速增长D.2013 年—2018 年GDP的增速相对于2009 年—2012 年,波动性较小4.已知向量 a 1,m ,b 2,3 ,且向量a,b满足 a b b,则mA.2 B.-3 C.5 D.-45.一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为A.45B.710C.35D.126.已知双曲线的左、右焦点分别为F1( c,0 ),F2( c, 0),过点F2 作x轴的垂线,与双曲线的渐近线在第一象限内的交点为P,线段PF2 的中点M 到原点的距离为2c,则双曲线的渐近线方程为A.y 2x B.1y x C.y 4x D.21y x42 27.在ABC 中,内角A,B,C满足sin B sin C cos2 A 122sin B sin C sin A 0 ,则A.78B.78C.34D.7168.如右图,执行程序框图,若输出结果为140,则判断框内应填A.n≤7? B.n>7? C.n≤6? D.n>6?9.如右图,在正方体ABCD-A1B1C1D1 中,M ,N 分别是棱B1C1,C1C 的中点,则异面直线B D1 与MN 所成的角的大小是A.30°B.45°C.60°D.90°目要求的。
19年全国3卷文数D. {0,1,2}D. 1+i 一、选择题:1. 已知集合 A = {—l,0,l,2}, 8 = {.巾2罚,则 “8=()A. {-1,0.1}B. {0.1}C. (-1.1)2. 若z (l + i ) = 2i ,则z=()A. -l-i B. -1+i C. 1-i3. 两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(A. —B. —C. 一6 4 34. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某 中学为了解本校学生阅读四大名著的情况,随机调查了 100学生,其中阅读过《西游记》或《红楼梦》的 学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5 B 0.6 C 0.7 D 0.85. 函数/⑴= 2siiu 」sin2x 在[0.2勿]的零点个数为()A. 2 B 3 C 4 D. 56. 已知各项均为正数的等比数列{%}的前4项和为15,且约=3与+4^・则闩=()A. 16B. 8C. 4D. 27. 已知曲线y = uc r +x\nx 在点(1,w )处的切线方程为y = 2x+b,则()A. a = e.h = -\B. a = e,b = \C. " = = 1D. u =广』? = 一18.如图,点N 为正方形ABCD 的中心,△£(?£)为正三角形,平面ECD ±平面ABCD.M 是线段 功的中点,则()A. BM = EN ,旦直线.可V 是相交直线c BM =EN,且直线BM.EN 是异面直线 9.执行如图所示的程序框图,如果输入的£为0.01,BM 手EN .且宜线BM,珈是相交直线 BM*EN ,且直线BM ,EN 是异而直线 则输出S 的值等于()B. 2一一r 2510.己知F 是双曲线\ = 1的一个焦点.点P 在C 上,。
2019届全国高考仿真试卷(三)文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合,则中元素的个数是A. B. C. D.【答案】B【解析】试题分析:当时,;当时,;当时,;当时,,所以,所以,故选B.考点:集合的交集运算.2.是虚数单位,复数满足,则A. 或B. 或C.D.【答案】C【解析】试题分析:因为,所以,解得,所以,故选C.考点:1、复数的运算;2、复数的模.3. 设向量与的夹角为,且,,则=A. B. C. D.【答案】A【解析】分析:由求出,结合,利用平面向量夹角余弦公式可得结果.详解:因为向量与的夹角为,且,,,,,故选A.点睛:本题主要考查向量的坐标运算及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).4. 已知,则A. B. C. D.【答案】D【解析】试题分析:因为,所以=,故选D.考点:1、倍角公式;2、两角和与差的正切公式.【方法点睛】根据已知单角的三角函数值求和角(或差角)的三角函数,通常将结论角利用条件角来表示,有时还需借助同角三角函数间的基本关系化为相关角的三角函数后,再利用两角和与差的三角函数公式即可求解.5. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为A. B. C. D. 2【答案】B【解析】分析:仔细观察三视图,发挥空间想象力,可知该几何体是底面为斜边边长为2的等腰直角三角形、高为2的直三棱柱,进而可得结果.详解:由三视图知,该几何体是底面为斜边边长为2的等腰直角三角形、高为2的直三棱柱,所以该几何体的表面积为,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6. 已知数列满足,则“数列为等差数列”是“数列为等差数列”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 即不充分也不必要条件【答案】A【解析】分析:根据等差数列的定义,“数列为等差数列”能推出“数列为等差数列”,“数列为等差数列”不能推出“数列为等差数列”,从而可得结果.详解:若数列是等差数列,设其公差为,则,所以数列是等差数列.若数列是等差数列,设其公差为,则,不能推出数列是等差数列.所以“数列为等差数列”是“数列为等差数列”的充分不必要条件,故选A.点睛:判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7. 执行如图所示的程序框图,则输出的A. B. C. D.【答案】C【解析】分析:列举前几次循环,观察规律,进而判定循环体结束的条件和循环的次数,确定输出结果.详解:第一次循环,得;第二次循环,得;第三次循环,得,…,以此类推,知该程序框图的周期3,又知当时退出循环,此时共循环了39次,所以输出的.故选C.点睛:本题考查程序框图中的循环结构,解决此题的关键在于通过前几次循环的结果得到循环结果的周期性.8. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为A. B. C. D.【答案】C【解析】分析:先利用直线和圆的位置关系得到弦长等于该圆内接三角形的边长的直线的位置,再利用几何概型的概率公式进行求解.详解:设圆的半径为,则,则其弦长超过该圆的内接等边三角形的边长的概率为.故选C.点睛:本题考查几何概型的概率问题,几何概型的几何模型主要是长度、面积与体积,其关键是选择合适的模型,如本题中虽然涉及直线和圆的位置关系,但要注意点在圆的直径上运动,即该概率为线段的长度之比.9. 设实数满足约束条件,则的最小值为A. B. C. D.【答案】B【解析】分析:作出可行域,将转化为可行域内的点到原点距离的平方,利用数形结合思想求解即可.详解:作出表示的可行域,如图所示,因为表示区域内的点到原点距离的平方,由图知,原点到直线的距离的平方就是的最小值,.故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. 现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为A. B. C. D.【答案】A【解析】分析:当正方体的下底面在半球的大圆面上,上底面的四个顶点在球的表面上时,所得工件体积与原材料体积之比取得最大值,设此时正方体的棱长为,求出正方体及半球的体积即可的结果.详解:当正方体的下底面在半球的大圆面上,上底面的四个顶点在球的表面上时,所得工件体积与原材料体积之比取得最大值,设此时正方体的棱长为,则球的半径为,所以所求体积比为,故选A.点睛:本题主要考球的性质、多面体内接问题及球的体积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.11. 已知O为坐标原点,F是双曲线Γ:的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则Γ的离心率为()A. 3B. 2C.D.【答案】A...........................详解:易证得∽,则,即;同理∽,,所以,又,所以,整理得.故选A.点睛:解决本题的关键在利用两次相似三角形得到对应线段成比例,再利用公共线段和进行求解.12. 已知函数,则使得f(2x)>f(x+3) 成立的x的取值范围是A. (-1,3)B.C. D.【答案】D【解析】分析:先利用奇偶性的定义判断函数的奇偶性,再判断函数的单调性,将转化为进行求解.详解:因为,所以函数是偶函数,又在单调递减,在单调递增,所以,解得或.故选D.点睛:本题考查函数的奇偶性和单调性的综合运用,要注意:奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反..二、填空题:本题共4小题,每小题5分,共20分。
2019届全国新高考原创仿真试卷(三)数学(文科)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】D【解析】,故.故选D.2. 复数 (为虚数单位),则()A. 2B.C. 1D.【答案】C【解析】3. 的值为()A. B. C. D.【答案】B【解析】,故选:B4. 抛物线的焦点坐标为()A. B. C. D.【答案】B【解析】化为标准方程得,故焦点坐标为.故选B.5. 已知随机事件发生的概率满足条件,某人猜测事件发生,则此人猜测正确的概率为()A. 1B.C.D. 0【答案】C【解析】事件与事件是对立事件,,故选:C.6. 将函数的图像上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,则所得函数图像的解析式为()A. B.C. D.【答案】B【解析】函数经伸长变换得,再作平移变换得,故选:B.7. 某空间几何体的三视图如图所示,均为腰长为1的等腰直角三角形,则该几何体的表面积为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体在正方体内如下图所示,其表面积为8. 《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的的的值为33,则输出的的值为()A. 4B. 5C. 6D. 7【答案】C【解析】,开始执行程序框图,,再执行一行,退出循环,输出,故选C.9. 直三棱拄的各顶点都在同一球面上,若,则此球的表面积等于()A. B. C. D.【答案】B【解析】在中,可得,由正弦定理,可得外接圆半径,设此圆圆心为,球心为,在中,易得此球的表面积为,故选B.10. 已知的三个内角的对边分别为,若,且,则的面积的最大值为()A. B. C. D.【答案】B【解析】,由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.,故选.11. 设定义在上的函数的导函数满足,则()A. B.C. D.【答案】A【解析】根据题意,函数f(x)的定义域为(0,+∞),即x>0,则,........................故答案选A.12. 已知直线截圆所得的弦长为,点在圆上,且直线过定点,若,则的取值范围为()A. B.C. D.【答案】D【解析】在依题意,解得,因为直线:,故;设MN的中点为,则,.故选:D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知实数满足则的最大值为__________.【答案】1【解析】画出可行域如下图所示,由图可知,当时,取得最大值为.14. 已知向量满足,则向量在方向上的投影为__________.【答案】【解析】由,得,故在方向上的投影为.15. 已知直线过圆的圆心,则的最小值为__________.【答案】8【解析】圆心为(2,﹣1),则代入直线得:2a+2b=2,即a+b=1,则有(当且仅当时取等号)故答案为8.16. 下列结论:①若,则“”成立的一个充分不必要条件是“,且”;②存在,使得;③若函数的导函数是奇函数,则实数;④平面上的动点到定点的距离比到轴的距离大1的点的轨迹方程为.其中正确结论的序号为_________.(填写所有正确的结论序号)【答案】①②③【解析】①若,则“”成立的充要条件是故充分不必要条件是“,且”.故正确.②存在,使得,当a=1.1,x=1.21时,满足a x<log a x,故∃a>1,x>0,使得a x<log a x,故正确;③若函数的导函数是奇函数,故正确.④设P(x,y),由P到定点F(1,0)的距离为,P到y轴的距离为|x|,当x≤0时,P的轨迹为y=0(x≤0);当x>0时,又动点P到定点F(1,0)的距离比P到y轴的距离大1,列出等式:﹣|x|=1化简得y2=4x (x≥0),为焦点为F(1,0)的抛物线.则动点P的轨迹方程为y2=4x或,故选项不正确.故答案为:①②③.点睛:这个题目考查的知识点比较多,重点总结平面解析求轨迹的问题,一般是求谁设谁的坐标,然后根据题目等式直接列出数学表达式,求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设正项等比数列,,且的等差中项为.(1)求数列的通项公式;(2)若,数列的前项和为,数列满足,为数列的前项和,求.【答案】(1) (2)【解析】试题分析::(1)根据等比数列的公式得到求得基本量,进而得到通项;(2)根据第一问得到,,故,裂项求和即可.解析:(1)设等比数列的公比为,由题意,得解得所以(2)由(1)得,∴,∴18. 如图,四棱锥中,侧面底面,,.(1)求证:平面;(2)若三棱锥的体积为2,求的面积.【答案】(1)见解析(2)【解析】试题分析:(1)直接利用线面垂直和面面垂直的性质求出结果.(2)利用等体积转化法求出结果.试题解析:(1)∵平面平面,平面平面,平面,且,∴平面.又∵平面,∴.又∵,,平面,∴平面.(2)取中点,连接.∵,∴.又∵平面,平面平面,平面平面,∴平面.∴为三棱锥的高,且.又∵,,∴.∴,得..又∵平面且平面,∴.∴.19. 某地区某农产品近几年的产量统计如下表:(1)根据表中数据,建立关于的线性回归方程;(2)根据(1)中所建立的回归方程预测该地区2018年年该农产品的产量.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.【答案】(1) (2) 该地区2018年该农产品的产量估计值为7. 56万吨【解析】试题分析:根据题目中所给公式得到,,又,得,进而得到回归方程;(2)将t=7代入方程得到y值.解析:(1)由题,,,,所以,又,得,所以关于的线性回归方程为.(2)由(1)知,当时,,即该地区2018年该农产品的产量估计值为7. 56万吨.20. 已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,当时,求直线的方程.【答案】(1) (2)【解析】试题分析:(1)由题意得,,∴.①∵,∴.②联立①②得a,b,c即得椭圆的方程(2)设直线方程为:,点坐标为,点坐标为.联立得,根据韦达定理由弦长公式得,,又点到直线的距离,,解得k值,即得直线的方程.试题解析:(1)设,,则,∵,∴.①∵,∴.②联立①②得,,,.∴椭圆方程为.(2)显然直线斜率存在,设直线方程为:,点坐标为,点坐标为. 联立方程组,得,令得,,∴,,由弦长公式得,,点到直线的距离,,解得.∴的方程为:.点睛:本题考查了直线与椭圆的位置关系,考查了椭圆的几何性质,考查了弦长公式,点到直线的距离,考查了计算能力,属于中档题.21. 设函数.(1)当时,恒成立,求的范围;(2)若在处的切线为,且方程恰有两解,求实数的取值范围. 【答案】(1) (2)【解析】试题分析:(1)将参数值代入得到函数表达式,研究函数的单调性求得函数最值,使得最小值大于等于0即可;(2)根据切线得到,,方程有两解,可得,所以有两解,令,研究这个函数的单调性和图像,使得常函数y=m,和有两个交点即可.解析:由,当时,得.当时,,且当时,,此时.所以,即在上单调递増,所以,由恒成立,得,所以.(2)由得,且.由题意得,所以.又在切线上.所以.所以.所以.即方程有两解,可得,所以.令,则,当时,,所以在上是减函数.当时,,所以在上是减函数.所以.又当时,;且有.数形结合易知:.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面的公共点,求的取值范围.【答案】(1) (2)【解析】【试题分析】(1)将圆的极坐标方程展开后两边乘以转化为直角坐标方程.(2)将直线的参数方程代入圆的直角坐标方程,利用参数的几何意义求得的取值范围.【试题解析】解:(1)∵圆的极坐标方程为,∴,又∵,,∴,∴圆的普通方程为(2)设,故圆的方程,∴圆的圆心是,半径是2,将代入得,又∵直线过,圆的半径是2,∴,∴,即的取值范围是.23. 选修4-5:不等式选讲已知均为实数.(1)求证:;(2)若,求的最小值.【答案】(1)见解析(2)【解析】【试题分析】(1)利用分组分解法将原不等式变形为从而得证.(2)因为,所以.【试题解析】证明:(1)法一:,所以.法二:,所以.(2)证明:因为 (由柯西不等式得)所以,当且仅当即时,有最小值.。
2019届全国高考仿真试卷(三)文科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】B【解析】分析:将集合中的元素,逐一验证是否属于集合即可.详解:因为集合,所以,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.2. 复数满足,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:先利用复数模的公式求得,然后两边同乘以,利用复数运算的乘法法则化简,即可得结果详解:,,,在复平面内对应的点,在第四象限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3. 已知,,则()A. B.C. D.【答案】C【解析】分析:根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,结合函数的单调性,从而可得结果.详解:由指数函数的性质可得,,由对数函数的性质可得,,,又,在上递增,所以,故选C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.4. 如图所示的风车图案中,黑色部分和白色部分分别由全等的等腰直角三角形构成.在图案内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】B【解析】分析:设小黑色三角形面积为,则整个在图案面积为,黑色部分总面积为,根据几何概型概率公式可得结果.详解:设小黑色三角形面积为,则整个在图案面积为,黑色部分总面积为,由几何概型概率公式可得,在点取自黑色部分的概率是,故选B.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.5. 等差数列的公差为1,成等比数列,则的前10项和为()A. 50B.C. 45D.【答案】A【解析】分析:根据成等比数列列方程可求得首项,利用等差数列求和公式可得结果.详解:等差数列的公差为1,成等比数列,,即,解得,,故选A.点睛:本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.6. 已知拋物线的焦点为,过的直线与曲线交于两点,,则中点到轴的距离是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:将点到焦点的距离转化为到准线的距离,可得,从而求出中点横坐标,进而可得结果.详解:由,得,设,等于点到准线的距离,同理,等于到准线的距离,,,中点横坐标为,中点到轴的距离是,故选B.点睛:与抛物线焦点、准线有关的问题,一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决7. 如图,在正方体中,分别是的中点,则下列命题正确的是()A. B. C. 平面 D. 平面【答案】C【解析】分析:取中点,连接,可证明平面平面,进而可得结果. 详解:取中点,连接,由三角形中位线定理可得,面,由四边形为平行四边形得,面,平面平面,面,平面,故选C.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.8. 如图是为了计算的值,则在判断框中应填入()A. B. C. D.【答案】A【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到输出,即可得到输出条件.详解:由程序框图可知,判断框中,若填,则输出,若填或,直接输出,应填,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9. 函数的周期为,,在上单调递减,则的一个可能值为()A. B. C. D.【答案】D【解析】分析:由函数的周期为,求得,由结合在上单调递减,即可得结果.详解:由函数的周期为,得,,,或,令,或,,在不是单调函数,不合题意,故,故选D.点睛:本题主要通过已知三角函数的性质求解析式考查三角函数的性质,属于中档题.利用最值求出 ,用周期公式求出,利用特殊点求出,正确求是解题的关键.10. 设函数若恒成立,则实数的取值范围为()A. B. C. D.【答案】A【解析】分析:函数恒成立等价于是的最小值,根据分段函数的性质列不等式可得结果.详解:若恒成立,是的最小值,由二次函数性质可得对称轴,由分段函数性质得,得,综上,,故选A.....................................11. 已知某正三棱锥的侧棱长大于底边长,其外接球体积为,三视图如图所示,则其侧视图的面积为()A. B. 2 C. 4 D. 6【答案】D【解析】分析:根据正三棱锥的性质可得球心在正三棱锥的高上,由正棱锥的性质可得顶点在底面的射影是正三角形的中心,列方程可解得棱锥的高,从而可得结果.详解:设正三棱锥外接球的半径为,则,由三视图可得底面边长为,底面正三角形的高为,底面三角形外接圆半径为,由勾股定理得,得,侧视图面积为,故选D.点睛:本题主要考查三棱锥外接球问题,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接设出球心和半径,列方程求解.12. 设函数,直线是曲线的切线,则的最小值是()A. B. 1 C. D.【答案】C【解析】分析:设切点是,求出切线方程,可得,利用导数研究函数的单调性,根据单调性求出的最小值即可的结果.详解:设切点是,由是切线斜率,切线方程为,整理得,,记,当,递减;当,递增;故,即的最小值是故选C.点睛:本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与最值,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量与的夹角为,,则__________.【答案】【解析】分析:将平方,把,代入化简,再开平方即可得结果.详解:向量与的夹角为,,,,,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14. 已知满足约束条件则的最小值为__________.【答案】2【解析】分析:画出可行域,化为,平移直线,由图可得当直线经过时,有最小值,从而可得结果.详解:画出表示可行域,如图,由,可得,平行直线,由图知,当直线经过时,直线在轴上截距最小,此时最小为,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 若双曲线的渐近线与圆无交点,则的离心率的取值范围为__________.【答案】【解析】分析:根据圆心到直线的距离大于半径,列不等式,结合可得离心率的取值范围.详解:曲线的渐近线与圆无交点,圆心到直线的距离大于半径,即,,,,即的离心率的取值范围为,故答案为.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离大于圆半径构造出关于的不等式,最后解出的范围.16. 已知数列满足,,是递增数列,是递减数列,则__________.【答案】【解析】分析:先判断,可得,,根据等差数列的通项公式可得结果.详解:是递增数列,,,,,又成立,由是递减数列,,同理可得,,,是首项为,公差为的等差数列,故,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,.(1)求;(2)若,的周长为,求的面积.【答案】(1)(2)【解析】分析:(1)由,根据正弦定理得,可得所以,从而可得结果;(2)由,可得,可求得,由此以,根据周长为可求得,从而可得结果.详解:(1)因为,由正弦定理得所以所以,且所以.(2)因为,所以,所以,,或解得:或因为,所以所以,所以因为,所以所以.点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18. 在如图所示的四棱锥中,底面为菱形,,为正三角形.(1)证明:;(2)若,四棱锥的体积为16,求的长.【答案】(1)见解析(2)【解析】分析:(1)由正三角形的性质可得,,根据线面垂直的判定定理可得平面,由线面垂直的性质可得结论;(2)根据勾股定理,,结合可得,平面,设,利用棱锥的体积公式列方程解得,由勾股定理可得的长.详解:(1)证明:取中点为,连接∵底面为菱形,,∴为正三角形,∴又∵为正三角形,∴又∵平面,平面,∴平面,∵平面,∴.(2)法一:设,则,在正三角形中,,同理,∴,∴,又∵,平面,平面,∴平面,∴,∴,∵∴∴.法二:设,则,在正三角形中,,同理,∴,∴,又∵,平面,平面,∴平面,∴,∴,连接,∵在中,,∴由余弦定理得,∴在中,.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 为提高玉米产量,某种植基地对单位面积播种数与每棵作物的产量之间的关系进行研究,收集了 11块实验田的数据,得到下表:技术人员选择模型作为与的回归方程类型,令,相关统计量的值如下表:由表中数据得到回归方程后进行残差分析,残差图如图所示:(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);(2)剔除可疑数据后,由最小二乘法得到关于的线性回归方程中的,求关于的回归方程;(3)利用(2)得出的结果,计算当单位面积播种数为何值时,单位面积的总产量的预报值最大?(计算结果精确到0.01)附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,,.【答案】(1)10(2)(3)【解析】分析:(1)可疑数据为第10组 ; (2)根据平均数公式可求出与的值,从而可得样本中心点的坐标,结合样本中心点的性质可得,进而可得关于的回归方程;(3)根据(2)的结果并结合条件,可得单位面积的总产量的预报值,变形后利用均值不等式求解即可.详解:(1)可疑数据为第10组 ;(2)剔除数据后,在剩余的10组数据中,,,所以,所以关于的线性回归方程为则关于的回归方程为;(3)根据(2)的结果并结合条件,单位面积的总产量的预报值当且仅当时,等号成立,此时,即当时,单位面积的总产量的预报值最大,最大值是1.83.点睛:求回归直线方程的步骤:①依据样本数据,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 过椭圆的右焦点作两条互相垂直的直线,直线与交于两点,直线与交于两点.当直线的斜率为0时,.(1)求椭圆的方程;(2)求四边形面积的取值范围.【答案】(1)(2)【解析】分析:(1)由得:,由,所以,从而可得椭圆的方程;(2)直线的方程为,则直线的方程为.设由,得,根据韦达定理、弦长公式求出的值,三角形面积公式可得,结合,利用函数的单调性求解即可.详解:(1)由已知得:将代入得,所以,所以所以椭圆;(2)①当直线—条的斜率为0,另一条的斜率不存在时,.②当两条直线的斜率均存在时,设直线的方程为,则直线的方程为.设由,得,(或:,)用取代得∴又,当且仅当取等号所以所以综上:四边形面积的取值范围是.点睛:本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.21. 已知函数,.(1)讨论函数的单调性;(2)当时,恒成立,求实数的取值范围.【答案】(1)见解析(2)【解析】分析:(1) 求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)原不等式可化为,即,记,只需即可,分三种情况讨论,分别利用导数研究函数的单调性,利用单调性求出函数的最大值,利用最大值不大于零列不等式即可得结果. 详解:(1)依题意,①当时,,所以在上单调递增;②当时,,,且,令得,令得或,此时在上单调递增;在上单调递减综上可得,①时,在上单调递增;②当时,在上单调递增;在上单调递减(2)法一:原不等式可化为,即记,只需即可.①当时,由可知,,所以,命题成立.②当时,显然在上单调递减,所以所以在上单调递减,从而,命题成立.③当时,显然在上单调递减,因为,所以在内,存在唯一的,使得,且当时,即当时,,不符合题目要求,舍去.综上所述,实数的取值范围是.法二:原不等式可化为,即记,只需即可.可得,令,则所以在上单调递减,所以.时,,从而,所以,所以在上单调递减,所以,原不等式成立②当时,,,所以存在唯一,使得,且当时,,此时,在上单调递增,从而有,不符合题目要求,舍去.综上所述,实数的取值范围是.点睛:本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系中,曲线,曲线(为参数).以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.【答案】(1),;(2)【解析】分析:(1)将曲线,曲线消去参数可得普通方程,然后利用即可得的极坐标方程;(2)将分别代入的极坐标方程可得,,,换元后,结合三角函数的有界性,利用二次函数的性质求解即可.详解:(1),∵,故的极坐标方程:.的直角坐标方程:,∵,故的极坐标方程:.(2)直线分别与曲线联立,得到,则,,则,∴令,则所以,即时,有最大值.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.23. 已知函数,其中.(1)求函数的值域;(2)对于满足的任意实数,关于的不等式恒有解,求的取值范围.【答案】(1);(2)【解析】分析:(1)将函数,写成分段函数形式,判断函数的单调性,利用单调性可得函数的值域;(2)先利用作差法证明,再由,利用基本不等式可得,结合(1)可得,从而可得结果.详解:(1)∵,∴∴故.(2)∵,∴,∵,∴,∴.当且仅当时,,∴关于的不等式恒有解即,故,又,所以.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,将“任意实数,关于的不等式恒有解”转化为“”是解题的关键.。
2019年新课标全国Ⅲ卷仿真卷文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2,1,0,1,2,3---=A ,{}32≤=x x B ,则=B A I ( )A .{}2,0B .{}1,0,1-C .{}1,0D .{}2,1,0,1,2,3---2.设i 是虚数单位,若复数z 满足i i z 94-=⋅,则其共轭复数=z ( )A .i 49--B .i 49+-C .i 49-D .i 49+3.《诗•小雅•车舝》中有一句:“高山仰止,景行行止”高山:比喻道德崇高;景行:大路,比喻行为正大光明。
指值得效法的崇高德行。
现有四张识字卡片,分别写有“景”、“行”、“行”、“止”,将这四张卡片随机排序,则能组成景行行止的概率( )A .21B .61C .121D .2414.在高二下学期的会考当中,同学们要参加语文、数学、英语和通用技术四门考试,金沙中学随机调查了100位学生,其中数学或者英语过关的有99位,英语过关的有96位,英语过关且数学过关的有95位,则预估该校的数学过关率为( )A .0.96B .0.97C .0.98D . 0.99 5.函数()x x x f 2cos sin -=在[]π2,0的零点个数为( )A .2B .3C .4D .56.设n S 为等比数列{}n a 的前n 项和,已知234-=a S n ,2332-=a S ,则公比=q ( ) A .3B .4C .5D .67.若直线x y =与曲线mx e y +=(R m ∈,e 为自然对数的底数)相切,则=m ( )A .1B .2C .2-D .1-8.如图所示中,表示直线a 与b 平行的是( )A BCD9.如果执行如图所示的框图,输入5N =,则输出的S 等于( ) A .54 B .45 C .65 D .5610.已知双曲线C :12222=-by a x (0,0>>b a )的右焦点为F ,P 为双曲线C 右支上一点,若OPF ∆为等边三角形,则双曲线C 的离心率( )A .2B .213C .5D .13+11.设()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤-+≥≥=Ω04211,y x y x y x ,有下面两个命题p :()Ω∈∃y x ,,()()1312+≤+x y ;q :()Ω∈∀y x ,,32-≥-y x ,则为真命题是( ) A .q p ∧B .q p ∧⌝C .q p ⌝∧D .p ⌝12.已知函数()x f 的图像向左平移一个单位后关于y 轴对称,112>>x x 时,()()[]()01212<-⋅-x x x f x f 恒成立,设⎪⎭⎫⎝⎛=21log 3f a , ⎪⎪⎭⎫ ⎝⎛=322f b ,()8log 2f c =,则( ) A .c b a << B .c a b << C .b a <<c D .a b c << 二、填空题:本题共4小题,每小题5分,共20分。
2019届全国新高考原创仿真试卷(三)数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本大题共12小题,每小题5分,共60分.1. 已知全集,集合,,则().A. B. C. D.【答案】C【解析】试题分析:由题意得,所以,故选C.考点:集合的运算.2. 下图分别为集合到集合的对应,其中,是从到的映射的是().A. ()()B. ()()()C. ()()()D. ()()()()【答案】A【解析】()()中的每一元素满足在中有唯一确定的元素和它们相对应,故()是映射,()中元素在中有两个元素和它对应,不满意映射定义,故()不是映射,()中元素在中有两个元素和它对应,且元素无元素和它对应,故()不是映射.故选.3. 函数的零点所在的区间是().A. B. C. D.【答案】B【解析】试题分析:解:∵函数f(x)=2x+3x是R上的连续函数,且单调递增,f(-1)=2-1+3×(-1)=-<0,f(0)=20+0=1>0,∴f(-1)f(0)<0.∴f(x)=2x+3x的零点所在的一个区间为(-1,0),故答案为(-1,0).选B.考点:函数零点点评:本题主要考查函数零点的概念与零点定理的应用,属于容易题。
2019年普通高等学校招生全国统一考试(全国Ⅲ)数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)【2017年全国Ⅲ,文1,5分】已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中的元素的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】B【解析】集合A 和集合B 有共同元素2,4,则{}2,4A B =I 所以元素个数为2,故选B .(2)【2017年全国Ⅲ,文2,5分】复平面内表示复数i(2i)z =-+的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】化解i(2i)z =-+得22i i 2i 1z =-+=--,所以复数位于第三象限,故选C . (3)【2017年全国Ⅲ,文3,5分】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )(A )月接待游客量逐月增加 (B )年接待游客量逐年增加 (C )各年的月接待游客量高峰期大致在7,8月(D )各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .(4)【2017年全国Ⅲ,文4,5分】已知4sin cos ,3αα-=,则sin2α=( )(A )79- (B )29- (C )29(D )79【答案】A【解析】()2167sin cos 12sin cos 1sin 2,sin 299αααααα-=-=-=∴=-,故选A .(5)【2017年全国Ⅲ,文5,5分】设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( ) (A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,3【答案】B【解析】由题意,画出可行域,端点坐标()0,0O ,()0,3A ,()2,0B .在端点,A B 处分别取的最 小值与最大值. 所以最大值为2,最小值为3-,故选B .(6)【2017年全国Ⅲ,文6,5分】函数1()sin()cos()536f x x x ππ=++-的最大值为( )(A )65 (B )1 (C )35 (D )15【答案】A【解析】11113()sin()cos()(sin cos cos sin sin 5365225f x x x x x x x x xππ=++-=⋅++⋅=6sin()53x π=+,故选A .(7)【2017年全国Ⅲ,文7,5分】函数2sin 1xy x x=++的部分图像大致为( ) (A )(B )(C )(D ) 【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .(8)【2017年全国Ⅲ,文8,5分】执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )(A )5 (B )4 (C )3 (D )2 【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .(9)【2017年全国Ⅲ,文9,5分】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A )π (B )3π4(C )π2 (D )π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==22314V r h πππ==⨯⨯=⎝⎭,故选B . (10)【2017年全国Ⅲ,文10,5分】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )(A )11A E DC ⊥ (B )1A E BD ⊥ (C )11A E BC ⊥ (D )1A E AC ⊥ 【答案】C【解析】11A B ⊥平面11BCC B 111A B BC ∴⊥,11BC B C ⊥又1111B C A B B =,1BC ∴⊥平面11A B CD ,又1A E ⊂平面11A B CD 11A E BC ∴⊥,故选C .(11)【2017年全国Ⅲ,文11,5分】已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )(A(B(C(D )13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a =选A .(12)【2017年全国Ⅲ,文12,5分】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( ) (A )12- (B )13 (C )12 (D )1【答案】C【解析】()()11220x x f x x a e e --+'=-+-=,得1x =,即1x =为函数的极值点,故()10f =,则1220a -+=,12a =,故选C . 二、填空题:本大题共4小题,每小题5分,共20分.(13)【2017年全国Ⅲ,文13,5分】已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =______. 【答案】2【解析】因为a b ⊥0a b ∴⋅=,得630m -+=,2m ∴=.(14)【2017年全国Ⅲ,文14,5分】双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =__ ____. 【答案】5【解析】渐近线方程为by x a=±,由题知3b =,所以5a =.(15)【2017年全国Ⅲ,文15,5分】ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A _______. 【答案】075【解析】根据正弦定理有:3sin 60=sin B ∴,又b c > 045=∴B 075=∴A . (16)【2017年全国Ⅲ,文16,5分】设函数1,0,()2,0,xx x f x x +≤⎧=⎨>⎩,则满足1()()12f x f x +->的x 的取值范围是_______.【答案】1(,)4-+∞【解析】由题意得:当12x >时12221x x-+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞. 三、解答题:共70分。
2019届全国新高考原创仿真试卷(三)文科数学本试题卷共8页,23题(含选考题),分选择题和非选择题两部分。
全卷满分150分,考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】B【解析】,选B.2. 已知是虚数单位,复数满足,则的虚部是()A. B. C. D.【答案】D【解析】因为,所以,所以的虚部是,选D.3. “”是“” 的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案】A【解析】因为,所以,所以“”是“” 的充要条件,选A.4. 函数的最小正周期和最大值分别是()A. 和B. 和C. 和D. 和【答案】A【解析】最小正周期为,最大值为,选A.5. 已知是抛物线上一点,是抛物线的焦点,若,是抛物线的准线与轴的交点,则()A. 45°B. 30°C. 15°D. 60°【答案】A【解析】因为,所以,所以 ,选A.6. 已知,函数的图象关于直线对称,则的值可以是()A. B. C. D.【答案】D【解析】因为,所以因为函数的图象关于直线对称,所以的值可以是,选D.7. 函数的图象大致为()A. B. C.D.【答案】D【解析】因为,所以舍去A;因此选D.8. 若函数,则下列选项的命题为真命题的是()A. B.C. D.【答案】C【解析】所以A错;,所以B错;C对;D错;选C.9. 一块硬质木料的三视图如图所示,正视图是边长为的正方形,俯视图是的矩形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】A【解析】由题意得最大球的半径为直角三角形(直角边长为3和4)内切圆的半径,所以,选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.10. 在区间上任取两个数且,则使的概率是()A. B. C. D.【答案】C【解析】为几何概型,测度为面积,概率是,选C.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11. 已知双曲线,过其左焦点作轴的垂线,交双曲线于两点,若双曲线的右顶点在以为直径的圆外,则双曲线离心率的取值范围是()A. B. C. D.【答案】B【解析】由题意得,选B.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 某地为了调查去年上半年和两种农产品物价每月变化情况,选取数个交易市场统计数据进行分析,用和分别表示和两的当月单价均值(元),下边流程图是对上述数据处理的一种算法(其中),则输出的值分别是()A. B.C. D.【答案】D【解析】流程图功能为求方差:,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 等差数列满足,则_____________【答案】9【解析】14. 已知均为单位向量,它们的夹角为,则_____________【答案】【解析】15. 已知实数满足,则的最大值是______________.【答案】7【解析】作可行域,如图,则过点A(1,5)时取最大值7点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.16. 已知,函数若,则实数的取值范围为__________.【答案】(0,+∞)【解析】试题分析:当时,函数单调递增,且,当时,函数单调递增,且,即函数在上单调递增,由,得,解得,则由,得,即;故填.考点:1.分段函数;2.函数的单调性.【技巧点睛】本题考查分段函数的单调性以及利用函数的单调性解不等式,属于中档题;解决本题的技巧在于,此题没有直接按分段不等式进行求解,二是先通过研究三角函数和二次函数的单调性,得出分段函数是单调递增,避免了分段讨论,也灵活避开了对参数的讨论,起到的“事半功倍”的效果.三、解答题17. 已知数列的前项和为,且,(1)求数列的通项公式;(2)记,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)根据和项与通项关系得项之间递推关系,再结合等比数列定义以及等比数列通项公式求结果(2)先将数列裂项成相邻两项之差,再根据裂项相消法求和试题解析:解:(1)时,,得时,有,所以,即:,满足时,,所以是公比为2,首项为1的等比数列故通项公式为:(2)点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 (其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.18. 如图,四棱锥中,底面是平行四边形,, 平面底面,且是边长为的等边三角形,,是中点.(1)求证:平面平面;(2)证明:,且与的面积相等.【答案】(1)见解析(2)见解析【解析】试题分析:(1)由正三角形性质得PM⊥AD,再根据面面垂直性质定理得PM⊥底面ABCD,即得PM⊥BM,利用勾股定理得BM⊥AD,最后根据线面垂直判定定理得BM⊥平面PAD,由面面垂直判定定理得结论(2)利用余弦定理求两角余弦值,结合余弦函数单调性确定两角大小,根据三角形面积公式计算面积,可证相等试题解析:解:(1)△PAD是边长为2的等边三角形, M是AD中点PM⊥AD, PM平面PAD又平面PAD⊥底面ABCD PM⊥底面ABCD平面PAD∩底面ABCD=AD又BM底面ABCD, PM⊥BM, △PMB是直角三角形在等边△PAD中,PM=,又PB=, MB=∠BAD=60○, 在△ABM中, 由余弦定理:MB2 = AM2+AB2-2AM×AB×cos60○得:AB2 - AB -2=0, 即AB=2,△ABD也是等边三角形,BM⊥AD平面PAD∩底面ABCD=AD BM⊥平面PADBM底面ABCD BM平面PMB 平面PMB⊥平面PAD(Ⅱ)由(Ⅰ)知底面ABCD是菱形. 连接CM, 在△DMC中,∠MDC=120○,由余弦定理:MC2 = MD2+CD2-2MD×CD×cos120○ =12+ 22-2×1×2×=7得: MC=,在直角形△PMC中,:PC2 =PM2+MC2=在△PDC中,由余弦定理:在△PAB中,由余弦定理:, ,余弦函数在是减函数∠PDC >∠PAB,而,,即△PDC与△PAB面积相等.(注:没有通过计算出面积,能够说明面积相等原因的,仍然是满分)19. 据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院研究发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到 0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;(2)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,求两个月恰好在不同季度的概率P.参考数据:,(说明:以上数据为3月至7月的数据)回归方程中斜率和截距的最小二乘估计公式分别为:,【答案】(1) y=0.06x+0.75, 1.47(2)【解析】试题分析:(1)以此计算,,,代入公式求方程系数即可;(2)根据题意,的可能取值为1,2,3,分别求出相应的概率,由此能求出的分布列和. 试题解析:(1)计算可得:,,,所以,,所以从3月份至6月份关于的回归方程为.将2016年的12月份代入回归方程得:,所以预测12月份该市新建住宅销售均价约为1.47万元/平方米.(2)根据题意,的可能取值为1,2,3,,,所以的分布列为因此,的数学期望.20. 已知椭圆的左焦点与抛物线的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆于两点,点,且为定值.(1)求椭圆的方程;(2)求面积的最大值.【答案】(1)(2)【解析】试题分析:(1)由抛物线焦点可得c,再根据离心率可得a,即得b(2)先设直线方程x=ty+m,根据向量数量积表示,将直线方程与椭圆方程联立方程组,结合韦达定理代入化简可得为定值的条件,解出m;根据点到直线距离得三角形的高,利用弦公式可得底,根据面积公式可得关于t的函数,最后根据基本不等式求最值试题解析:解:(1)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.(2)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.要使•为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积s==.∴当t=0,△OAB面积的最大值为.21. 已知函数,(其中为常数).(1)求的最大值;(2)若在区间上的最大值为,求的值;【答案】(1)(2)a=﹣e2.【解析】试题分析:(1)求导数,确定导函数零点,列表分析可得函数单调性,根据单调性确定函数最值(2)先求导数,根据a的大小讨论导数零点情况,根据零点情况讨论函数单调性,根据单调性确定函数最值,根据最大值为,解得的值试题解析:(1)定义域(0,+∞);,,得,当时,,在上是增函数;当时,,在上是减函数;(2)=ax+lnx∵.①若,则f′(x)≥0,从而f(x)在(0,e]上是增函数,∴f(x)max=f(e)=ae+1≥0,不合题意,②若,则由,即由,即,从而f(x)在(0,﹣)上增函数,在(﹣,e]为减函数∴令,则,∴a=﹣e2.22. 选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)设点,直线与圆相交于两点,求的值.【答案】(1) x+y﹣7=0.x2+(y﹣3)2=9;(2)【解析】试题分析:(1)有直线参数方程写出直线的普通方程为. 由得圆的直角坐标方程为;(2)把直线的参数方程(为参数),代入圆的直角坐标方程,得,得到韦达定理,则.试题解析:(1)由直线的参数方程为(为参数),得直线的普通方程为.又由得圆的直角坐标方程为.(2)把直线的参数方程(为参数),代入圆的直角坐标方程,得,设是上述方程的两实数根,所以,,∴,所以.23. 选修4-5:不等式选讲已知函数.(1)解不等式;(2)若关于的方程的解集为空集,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)先根据绝对值定义将函数化为分段函数,求对应函数值域,即得f(x)﹣4的取值范围,根据倒数性质可得取值范围,最后根据方程解集为空集,确定实数的取值范围试题解析:解:(1)解不等式|x﹣2|+|2x+1|>5,x≥2时,x﹣2+2x+1>5,解得:x>2;﹣<x<2时,2﹣x+2x+1>5,无解,x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,故不等式的解集是(﹣∞,﹣)∪(2,+∞);(2)f(x)=|x﹣2|+|2x+1|=,故f(x)的最小值是,所以函数f(x)的值域为[,+∞),从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].点睛:含绝对值不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。