量子力学 第五章 例题
- 格式:doc
- 大小:63.50 KB
- 文档页数:3
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。
第五章 对称性对称性是一个体系最重要的性质。
前面求解一维Schroedinger 方程时,我们看到,利用体系相互作用的左右对称性,导致态有确定的宇称,可以大大简化方程的求解。
1.守恒量若力学量的平均值不随时间变化0d Fdt=, 则称力学量为守恒量。
F 由 ˆF F ψψ= 和Schrodinger 方程 ˆi H tψψ∂=∂ , 有ˆˆˆˆ1ˆˆ,d FF F Fdt t t tF F H t i ψψψψψψ∂∂∂=++∂∂∂∂⎡⎤=+⎣⎦∂若不显含时间, ˆFt 1ˆˆ,d F F H dt i ⎡⎤=⎣⎦ 若与ˆFˆH 对易,则为守恒量。
ˆF 例如:a )对于自由粒子体系,2ˆˆ2p H m =,动量不显含时间t ,且ˆp ˆˆ,p H ⎡⎤0=⎣⎦,有动量守恒; b )对于一般体系,()2ˆˆ2p H V x m=+ˆˆ,0p H ⎡⎤,≠⎣⎦,动量不守恒; c )对于中心场体系,()()22222ˆˆˆ222p L H V r r V m mr r r mr∂∂⎛⎞=+=−++⎜⎟∂∂⎝⎠2r ,轨道角动量算符2ˆL ,均不显含时间,且,有轨道角动量及其任意分量守恒; ˆi L t 2ˆˆˆˆ,,i L H L H ⎡⎤⎡⎤=⎣⎦⎢⎥⎣⎦0=d )若ˆH 不显含时间,,有能量守恒。
t ˆˆ,H H ⎡⎤=⎣⎦0故一个力学量是否为守恒量,由体系的性质,即ˆH的性质来决定。
守恒量的性质:a )在任意态的平均值与时间无关(定义);b )在任意态的取值几率与时间无关 证明:,,ˆˆ,0F H ⎡⎤=⎣⎦ˆF ˆH 有共同完备本征矢n , ˆn F n F n =,ˆnH n E n = 对于任一态 ()()n nt C t ψ=∑n , ()()n C t n t ψ=,ˆF 取值为的几率为 n F 2()nC t 。
因为1ˆ()()()()()n n n nE E d C t n t n H t n t C t dt t i i i ψψψ∂====∂, 故 ()(0)n i E t n n C t C e−=,2()(0)n n C t C =2与时间无关。
第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ* 将此平均值求时间导数,可得以下式(推导见课本§5.1)⎰⎰⎰-≡=ττψψd A H H A i H A i dt A d )ˆˆˆˆ(*1]ˆ,ˆ[1 (1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p xˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x p p p xˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x p i p i pi =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xVx i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p r z y x ∂∂+∂∂+∂∂+++=⋅ μ}ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6) (2)在定态ψ之下求不显含时间t 的力学量A ˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7)但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem ) T V n 2= 式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。