2018版(人教版)高中数学选修1-1(检测):3.2 导数的计算 课时提升作业(二十一) 3.2.2 Word版含解析
- 格式:doc
- 大小:170.14 KB
- 文档页数:7
课时提升作业一命题一、选择题(每小题5分,共25分)1.(2016·石家庄高二检测)下列语句中是命题的是( )A.周期函数的和是周期函数吗B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢【解析】选B.A不是,因为它是一个疑问句,不能判断其真假,故不构成命题;B 是,因为能够判断真假,故是命题;C不是,因为不能判断其真假,故不构成命题;D 不是,不能判定真假且不是陈述句,故不构成命题.2.下列语句中命题的个数是( )①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0B.1C.2D.3【解析】选D.①③④是命题;②不能判断真假,不是命题.3.(2016·湛江高二检测)下列命题中是假命题的是( )A.若a·b=0(a≠0,b≠0),则a⊥bB.若|a|=|b|,则a=bC.若a c2>b c2,则a>bD.5>3【解析】选B.|a|=|b|只能说明a与b长度一样.a=b不一定成立.【误区警示】选项A易忽视括号中条件的作用,错认为是假命题,而选项B易忽视向量的方向,错认为是真命题.4.下列说法正确的是( )A.命题“正项等差数列的公差大于零”是真命题B.语句“最高气温30℃时我就开空调”不是命题C.“四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题【解析】选D.当a>4时,方程x2-4x+a=0的判别式Δ<0,方程无实根.5.(2016·安阳高二检测)下列命题是真命题的是( )A.有两个面互相平行,其余各面都是平行四边形的多面体是棱柱B.过点P(x0,y0)的所有直线的方程都可表示为y-y0=k(x-x0)C.已知点A(x0,y0)是圆C:x2+y2=1内一点,则直线x0x+y0y-1=0与圆C相交D.圆柱的俯视图可能为矩形【解析】选D.有两个面互相平行,其余各面都是平行四边形的多面体是棱柱,不满足棱柱的定义,所以A不正确;过点P(x0,y0)的所有直线的方程都可表示为y-y0=k(x-x0),直线的斜率不存在时,无法表示出来,所以B不正确;因为A(x0,y0)是圆C:x2+y2=1内一点,所以错误!未找到引用源。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十一)导数的运算法则(25分钟60分)一、选择题(每小题5分,共25分)1.函数y=xsinx+的导数是( )A.y=sinx+xcosx+B.y=sinx-xcosx+C.y=sinx+xcosx-D.y=sinx-xcosx-【解析】选A.因为y=xsinx+,所以y′=′=′+′=x′sinx+x·(sinx)′+=sinx+xcosx+.2.(2015·泉州高二检测)下列求导运算正确的是( )A.′=1+B.′=C.′=3x·log3eD.′=-2sinx【解析】选B.因为′=x′+′=1-,所以A选项错误;又′=,所以选项B正确;又′=3x ln3,所以选项C错误;又′=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx,所以选项D错误.3.(2015·太原高二检测)已知函数f(x)的导函数为f′(x),且满足f(x)= 2xf′(e)+lnx,则f′(e)=( )A.e-1B.-1C.-e-1D.-e 【解析】选C.因为f(x)=2xf′(e)+lnx,所以f′(x)=2f′(e)+,所以f′(e)=2f′(e)+,解得f′(e)=-=-e-1.4.已知f(x)=ax3+3x2+2,若f′(-1)= 4,则a的值是( )A. B. C. D.【解析】选D.f′(x)=3ax2+6x,因为f′(-1)=3a-6,所以3a-6=4,所以a=.5.(2015·贵阳高二检测)曲线y=xe x+1在点(0,1)处的切线方程是( )A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0【解析】选 A.y′=e x+xe x,且点(0,1)在曲线上,当x=0时,导数值为1,故所求的切线方程是y-1=x,即x-y+1=0.【补偿训练】曲线C:f(x)=sinx+e x+2在x=0处的切线方程为________.【解析】由f(x)=sinx+e x+2得f′(x)=cosx+e x,从而f′(0)=2,又f(0)=3,所以切线方程为y-3=2(x-0),即y=2x+3.答案:y=2x+3二、填空题(每小题5分,共15分)6.某物体做直线运动,其运动规律是s=t2+(t的单位:s,s的单位:m),则它在第4s末的瞬时速度应该为________m/s.【解析】因为s′=2t-,所以当t=4时,v=8-=(m/s).答案:7.(2015·鸡西高二检测)若函数f(x)=,则f′(π)=________.【解析】因为f′(x)==,所以f′(π)==.答案:8.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f′(x),若f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______________.【解析】f′(x)=3x2+2ax+(a-3),又f′(-x)=f′(x),即3x2-2ax+(a-3)=3x2+2ax+(a-3)对任意x∈R都成立,所以a=0,f′(x)=3x2-3,f′(0)=-3,曲线y=f(x)在原点处的切线方程为y=-3x.答案:y=-3x三、解答题(每小题10分,共20分)9.(2015·哈尔滨高二检测)求下列函数的导数.(1)y=.(2)y=2x cosx-3xlog2015x.(3)y=x·tanx.【解析】(1)y′===.(2)y′=(2x)′cosx+(cosx)′2x-3=2x ln2·cosx-sinx·2x-3=2x ln2·cosx-2x sinx-3log2015x-3log2015e=2x ln2·cosx-2x sinx-3log2015(ex).(3)y′=(xtanx)′=′=====.10.求过点(1,-1)与曲线y=x3-2x相切的直线方程.【解题指南】由于(1,- 1)不一定是切点,所以先设切点坐标,求出切线方程,利用切点在切线上,求出切点坐标进而求出切线方程.【解析】设P(x0,y0)为切点,y′=3x2-2,则切线斜率为k=3-2.故切线方程为y-y0=(3-2)(x-x0). ①因为(x0,y0)在曲线上,所以y0=-2x0. ②又因为(1,-1)在切线上,所以将②式和(1,-1)代入①式得-1-(-2x0)=(3-2)(1-x0).解得x0=1或x0=-.当x0=1时,k=1,当x0=-时,k=-.故所求的切线方程为y+1=x-1或y+1=-(x-1).即x-y-2=0或5x+4y-1=0.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·西安高二检测)设a∈R,函数f(x)=e x+a·e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是,则切点的横坐标为( ) A.ln2 B.-ln2 C. D.-【解析】选A.因为f′(x)=e x-ae-x为奇函数,所以a=1,设切点横坐标为x0,则f′(x0)=-=,因为>0,所以=2,所以x0=ln2.【补偿训练】若函数f(x)=e x sinx,则此函数图象在点(4,f(4))处的切线的倾斜角为( )A. B.0 C.钝角 D.锐角【解析】选C.y′=e x sinx+e x cosx,当x=4时,y′=e4(sin4+cos4)=e4sin<0,故倾斜角为钝角.2.(2015·聊城高二检测)设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2015(x)= ( )A.sinxB.-sinxC.cosxD.-cosx【解析】选 D.f1 (x)=(sinx)′=cosx,f2(x)=(cosx)′=-sinx,f3(x)=(-sinx)′=-cosx,f4(x)=(-cosx)′=sinx,f5(x)=(sinx)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4.2015=4×503+3,所以f2015(x)=f3(x)= -cosx.【延伸探究】若将“f0(x)=sinx”改为“f0(x)=sinx+cosx,其他条件不变,则f2015(x)=________.【解析】f1(x)=f0′(x)=cosx-sinx,f2(x)=(cosx-sinx)′=-sinx-cosx,f3(x)=-cosx+sinx,f4(x)=sinx+cosx,以此类推,可得出f n(x)=f n+4(x).2015=4×503+3,所以f2015(x)=f3(x)=-cosx+sinx.答案:-cosx+sinx二、填空题(每小题5分,共10分)3.(2015·天津高考)已知函数f=axlnx,x∈,其中a为实数,f′为f的导函数,若f′=3,则a的值为______.【解析】因为f′=a,所以f′=a=3.答案:34.(2015·衡阳高二检测)若函数f(x)=x2-ax+lnx存在垂直于y轴的切线,则实数a的取值范围是________.【解析】垂直于y轴的切线,其切线的斜率为0,因为f(x)=x2-ax+lnx,所以f′(x)=x-a+.设切点横坐标为x0(x0>0),则有x0-a+=0,a=x0+≥2.答案:a≥2【补偿训练】(2015·沈阳高二检测)已知函数f(x)=x2·f′(2)+5x,则f′(2)=________.【解析】因为f′(x)=f′(2)·2x+5,所以f′(2)=f′(2)×2×2+5,所以3f′(2)=-5,所以f′(2)=-.答案:-三、解答题(每小题10分,共20分)5.函数f(x)=x3-x2-x+1的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a,使得函数f(x)的图象在x=a处的切线平行于直线AB.【解题指南】可先由A,B两点的坐标求AB的斜率,再求f(x)=x3-x2-x+1在x=a处切线的斜率,令其相等,即可求出a的值.【解析】直线AB的斜率k AB=-1,f′(x)=3x2-2x-1,令f′(a)=-1(0<a<1),即3a2-2a-1=-1,解得a=.6.(2015·天水高二检测)已知曲线C:f(x)=x3-x.(1)试求曲线C在点(1,f(1))处的切线方程.(2)试求与直线y=5x+3平行的曲线C的切线方程.【解析】(1)因为f(x)=x3-x,所以f(1)=13-1=0,即切点坐标为(1,0),又f′(x)=3x2-1.所以,切线的斜率k=f′(1)=3×12-1=2.故切线方程为y-0=2(x-1),即2x-y-2=0.(2)设切点坐标为(x0,-x0),又f′(x)=3x2-1,所以切线的斜率k=3-1.又切线与直线y=5x+3平行,所以3-1=5,解得=2,切点为或,故切线方程为:y-=5(x-)或y+=5(x+),即:5x-y-4=0或5x-y+4=0.关闭Word文档返回原板块。
3.2 导数的计算一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是A B C .3(3)3log xxx '=D .2(cos )2sin x x x x '=-【答案】BA B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,22(cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B .2.已知函数3()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)--B .(1,1)--C .(2,8)--或(2,8)D .(1,1)--或(1,1)【答案】D3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1D .e【答案】B【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B .4.曲线e x y =在点2(2,e )处的切线与坐标轴所围成的三角形的面积为AB .23eC .26eD .29e【答案】A【解析】因为e x y '=,所以切线的斜率为2e k =,切线方程为22e e (2)y x -=-,令0=x 得2e y =-;令0y =得1x =,故围成的三角形的面积为A .5ABC .1D .0【答案】C6,则(1)f '等于ABC【答案】CC .7.已知e 为自然对数的底数,曲线e x y a x =+在点(1,e1)a +处的切线与直线2e 10x y --=平行,则实数a =A BC D 【答案】B8.若2()24ln f x x x x =--,则不等式()0f x '>的解集为 A .(0,)+∞ B .(1,0)(2,)-+∞C .(2,)+∞D .(1,0)-【答案】C【解析】要使函数有意义,则0>x ,∵2()24ln f x x x x =--,∴,若()0f x '>,则,即022>--x x ,解得2>x 或1-<x (舍去),故不等式()0f x '>的解集为(2,)+∞,故选C .二、填空题:请将答案填在题中横线上. 9.函数2sin y x x =的导函数为______________. 【答案】22sin cos x x x x +【解析】2sin y x x =,则222()sin (sin )2sin cos y x x x x x x x x '''=+=+. 10.设函数()ln f x x x =,若0()2f x '=,则0x =______________.【答案】e【解析】由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.11.已知函数()f x 的导函数为'()f x ,且满则()f x =______________.,∴12()(1)e (0)x f x f f x -''=-+,令1x =,则(1)(1)(0)1f f f '='-+,∴(0)1f =;令0x =,则1(0)(1)e f f -=',∴(1)e f '=,∴ 12.设曲线1()n y x n +*=∈N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a ++⋅⋅⋅+的值为______________. 【答案】2-三、解答题:解答应写出文字说明、证明过程或演算步骤. 13.求下列函数的导数:(1 (2(3)3e 2e x x x y =-+;(4【;(2);(3)ln 31(3e)2)ln 2(x x y'=+⋅-;(4)y '=(3)(3e )(2)e (3e 3e )((2))x x x x x x x x y''''''=-+=+-'3ln 3e 3e 2ln 2ln 31(3e)2ln 2()x x x x x x x =⋅+-=+⋅-.(414.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形的面积为定值,并求此定值. 【答案】(1(2)证明见解析,该定值为6.(2)设00(),P x y 为曲线上任一点,,知曲线在点00(),P x y 处的切线方程为令0x =得,从而得切线与直线0x =的交点坐标为 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00)2(2x x ,, 所以点00(),P x y 处的切线与直线0x =,y x =所围成的三角形的面积为故曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形的面积为定值,此定值为6.。
高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章导数及其应用3.2 导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式课时提升作业2 新人教A版选修1-1的全部内容。
几个常用函数的导数与基本初等函数的导数公式(25分钟60分)一、选择题(每小题5分,共25分)1.下列各式中正确的是( )A。
(lnx)′=x B。
(cosx)′=sinxC。
(sinx)′=cosx D.(x-8)′=-x—9【解析】选C。
因为(lnx)′=,(cosx)′=—sinx,(x-8)′=-8x-9=—,所以A,B,D均不正确,C正确。
2.若y=lnx,则其图象在x=2处的切线斜率是()A.1 B。
0 C。
2 D.【解析】选D。
因为y′=,所以当x=2时,y′=,故图象在x=2处的切线斜率为.3.(2015·西安高二检测)运动物体的位移s=3t2—2t+1,则此物体在t=10时的瞬时速度为( )A.281B.58 C。
85 D.10【解析】选B。
因为s=3t2-2t+1,所以s′=6t-2.当t=10时,s′=6×10—2=58.即此物体在t=10时的瞬时速度为58。
4。
正弦曲线y=sinx上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()A.∪B。
课时提升作业四充分条件与必要条件一、选择题(每小题5分,共25分)1.“φ=错误!未找到引用源。
”是“cosφ=0”的( )A.充分条件B.必要条件C.既是充分条件,又是必要条件D.既不是充分条件,也不是必要条件【解析】选A.当φ=错误!未找到引用源。
时,有cosφ=0,但当cosφ=0时,φ=kπ+错误!未找到引用源。
,k∈Z.2.(2016·嘉兴高二检测)设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的( )A.充分条件B.必要条件C.既是充分条件又是必要条件D.既不是充分条件也不是必要条件【解析】选C.A∪B={x∈R|x<0,或x>2},C={x∈R|x<0,或x>2},因为A∪B=C,所以x∈A∪B⇒x∈C,且x∈C⇒x∈A∪B,所以x∈A∪B是x∈C的充分条件,同时也是必要条件.3.下列各小题中,p是q的充分条件的是( )①p:m<-2,q:y=x2+mx+m+3有两个不同的零点;②p:错误!未找到引用源。
=1,q:y=f(x)是偶函数;③p:cosα=cosβ,q:tanα=tanβ.A.①B.③C.②③D.①②【解析】选D.①y=x2+mx+m+3有两个不同的零点,则Δ=m2-4(m+3)>0,得m>6或m<-2,所以p是q的充分条件;②因为错误!未找到引用源。
=1,所以f(-x)=f(x),所以f(x)为偶函数,所以p是q的充分条件;③当α=β=kπ+错误!未找到引用源。
时,tanα,tanβ无意义,所以p是q 的必要条件.4.已知q是等比数列{a n}的公比,则“q<1”是“数列{a n}是递减数列”的( )A.充分条件B.必要条件C.既是充分条件,又是必要条件D.既不是充分条件也不是必要条件【解析】选D.等比数列的单调性与首项和公比都有关系.【误区警示】本题中的等比数列易与等差数列混淆,忽略首项的作用.5.(2015·成都高二检测)已知α,β是两个不同的平面,则“平面α∥平面β”成立的一个充分条件是( )A.存在一条直线l,l⊂α,l∥βB.存在一个平面γ,γ⊥α,γ⊥βC.存在一条直线l,l⊥α,l⊥βD.存在一个平面γ,γ∥α,γ⊥β【解析】选C.A.存在一条直线l,l⊂α,l∥β,此时α,β可能相交.B.若存在一个平面γ,γ⊥α,γ⊥β,则α与β可能平行,可能相交.C.若存在一条直线l,l⊥α,l⊥β,则α∥β成立,反之不一定成立,满足条件.D.若存在一个平面γ,γ∥α,γ⊥β,则α⊥β,所以不满足题意.【补偿训练】(2015·佛山高二检测)已知p:x2-x<0,那么命题p的一个充分条件是( )A.1<x<3B.-1<x<1C.错误!未找到引用源。
课时提升作业五充要条件的应用一、选择题(每小题5分,共25分)1.(2015·安徽高考)设p:x<3,q:-1<x<3,则p是q成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】选C.因为p:x<3,q:-1<x<3,所以q⇒p,但由p不能得出q,所以p 是q成立的必要不充分条件,故选C.2.(2016·长治高二检测)在下列3个结论中,正确的有( )①x2>4是x3<-8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.A.①②B.②③C.①③D.①②③【解析】选C.对于①,由x3<-8⇒x<-2⇒x2>4,但是x2>4⇒x>2或x<-2⇒x3>8或x3<-8,不一定有x3<-8,故①正确;对于②,当B=90°或C=90°时不能推出AB2+AC2=BC2,故②错;对于③,由a2+b2≠0⇒a,b不全为0,反之,由a,b不全为0⇒a2+b2≠0,故③正确.【误区警示】本题易错选②,原因是忽视了斜边、直角边的确定.3.在△ABC中,“错误!未找到引用源。
·错误!未找到引用源。
=0”是“△ABC是直角三角形”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】选B.在△ABC中,由“错误!未找到引用源。
·错误!未找到引用源。
=0”可知B为直角,则“△ABC是直角三角形”.三角形是直角三角形,不一定B=90°,所以在△ABC中,“错误!未找到引用源。
·错误!未找到引用源。
=0”是“△ABC是直角三角形”的充分不必要条件.4.(2016·四川高考)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题指南】根据不等式的性质及充分必要条件的定义求解.【解析】选A.由题意,x>1且y>1,则x+y>2,而当x+y>2时不能得出x>1且y>1,例如x=0,y=3,故p是q的充分不必要条件.5.(2016·宁德高二检测)函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( )A.m=-2B.m=2C.m=-1D.m=1【解题指南】利用二次函数的图象特点来判断.【解析】选A.当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.二、填空题(每小题5分,共15分)6.下列命题中是假命题的是.(填序号)(1)x>2且y>3是x+y>5的充要条件(2)“x>1”是“|x|>0”的充分不必要条件(3)b2-4ac<0是ax2+bx+c<0(a≠0)的解集为R的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形【解析】(1)因x>2且y>3⇒x+y>5,x+y>5x>2且y>3,故x>2且y>3是x+y>5的充分不必要条件.(2)若x>1,则|x|>0成立,若|x|>0,则x<0或x>0,不一定大于1,故“x>1”是“|x|>0”的充分不必要条件.(3)因b2-4ac<0ax2+bx+c<0的解集为R,ax2+bx+c<0的解集为R⇒a<0且b2-4ac<0,故b2-4ac<0是ax2+bx+c<0的解集为R的必要不充分条件.(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形.答案:(1)(3)7.(2016·池州高二检测)设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的条件.【解析】由错误!未找到引用源。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时达标训练1.已知f(x)=x3+3x+ln3,则f′(x)为( )A.3x2+3xB.3x2+3x·ln3+错误!未找到引用源。
C.3x2+3x·ln3D.x3+3x·ln3【解析】选C.f′(x)=3x2+3x ln3.2.函数y=错误!未找到引用源。
的导数是( )A.y′=-错误!未找到引用源。
B.y′=-sinxC.y′=-错误!未找到引用源。
D.y′=-错误!未找到引用源。
【解析】选C.y′=错误!未找到引用源。
′=错误!未找到引用源。
=错误!未找到引用源。
=-错误!未找到引用源。
.3.已知函数f(x)=x-4lnx,则曲线y=f(x)在点(1,f(1))处的切线方程为______.【解析】函数f(x)=x-4lnx,所以函数f′(x)=1-错误!未找到引用源。
,切线的斜率为-3,切点为(1,1),所以切线方程为:3x+y-4=0,答案:3x+y-4=04.已知函数f(x)=错误!未找到引用源。
,则f′错误!未找到引用源。
=________.【解析】f′(x)=错误!未找到引用源。
=错误!未找到引用源。
,则f′错误!未找到引用源。
=错误!未找到引用源。
=1.答案:15.一质点沿直线运动,如果由始点起经过t秒后的位移为s(t)=错误!未找到引用源。
t3-错误!未找到引用源。
t2+2t,那么速度为零的时刻是________.【解析】s′(t)=t2-3t+2,令s′(t)=0,得t=1或t=2.答案:t=1s或t=2s6.曲线f(x)=-错误!未找到引用源。
(x<0)与曲线g(x)=lnx公切线(切线相同)的条数为________.【解析】f(x)=-错误!未找到引用源。
的导数为f′(x)=错误!未找到引用源。
,g(x)=lnx的导数为g′(x)=错误!未找到引用源。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业三四种命题间的相互关系一、选择题(每小题4分,共12分)1.命题“若p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则qB.若q,则pC.若q,则pD.若q,则p【解题指南】利用命题的等价关系判断.【解析】选C.“若p,则q”的逆否命题是“若q,则p”,又因为互为逆否命题所以真假性相同.所以“若q,则p”一定是真命题.2.(2016·三明高二检测)下列命题中为真命题的是( )A.命题“若x>2016,则x>0”的逆命题B.命题“若xy=0,则x=0或y=0”的否命题C.命题“若x2+x-2=0,则x=1”D.命题“若x2≥1,则x≥1”的逆否命题【解析】选B.A.命题“若x>2016,则x>0”的逆命题为命题“若x>0,则x>2016”,显然命题为假;B.命题“若xy=0,则x=0或y=0”的逆命题为“若x=0或y=0,则xy=0”,显然命题为真,则原命题的否命题也为真;C.解x2+x-2=0得x=1或x=-2.所以命题“若x2+x-2=0,则x=1”为假;D.x2≥1⇒x≤-1或x≥1.所以命题“若x2≥1,则x≥1”是假命题,则其逆否命题也为假命题.3.(2016·泰安高二检测)已知命题“若a,b,c成等比数列,则b2=ac”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A.0B.1C.2D.3【解析】选B.若a,b,c成等比数列,则b2=ac,为真命题,逆命题:若b2=ac,则a,b,c成等比数列,为假命题,否命题:若a,b,c不成等比数列,则b2≠ac,为假命题,逆否命题:若b2≠ac,则a,b,c不成等比数列,为真命题,在它的逆命题、否命题、逆否命题中为真命题的有1个.【补偿训练】已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3B.2C.1D.0【解析】选B.易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.二、填空题(每小题4分,共8分)4.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是.【解析】原命题为假命题,逆否命题也为假命题,逆命题也是假命题,否命题也是假命题.故假命题个数为3.答案:35.给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m>1,则mx2-2(m+1)x+m+3>0的解集为R”的逆命题.其中真命题是.(把你认为正确命题的序号都填在横线上)【解析】原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx2-2(m+1)x+m+3>0的解集为R,由⇒⇒m>1.故⑤正确.答案:②③⑤三、解答题6.(10分)(教材P8练习改编)证明:若a2-4b2-2a+1≠0,则a≠2b+1.【证明】“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.因为a=2b+1,所以a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0,所以命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,结论正确.【补偿训练】求证:若p2+q2=2,则p+q≤2.【证明】该命题的逆否命题为若p+q>2,则p2+q2≠2.p2+q2=[(p+q)2+(p-q)2]≥(p+q)2.因为p+q>2,所以(p+q)2>4,所以p2+q2>2,即p+q>2时,p2+q2≠2成立.所以由原命题与逆否命题具有相同的真假性可知,结论正确.即若p2+q2=2,则p+q≤2.一、选择题(每小题5分,共10分)1.(2015·厦门高二检测)给出命题:已知a,b为实数,若a+b=1,则ab≤.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3B.2C.1D.0【解题指南】四种命题中原命题与逆否命题真假性一致,逆命题与否命题真假性一致,因此要判断一个命题的真假可判断其逆否命题的真假.【解析】选C.由ab≤得:a+b=1,则有ab≤,原命题是真命题,所以逆否命题是真命题;逆命题:若ab≤,则a+b=1不成立,反例a=b=0满足ab≤但不满足a+b=1,所以逆命题是假命题,否命题也是假命题.2.(2016·惠州高二检测)已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】选D.函数f(x)=e x-mx在(0,+∞)上是增函数等价于f′(x)=e x-m≥0在(0,+∞)上恒成立,即m≤e x在(0,+∞)上恒成立,而e x>1,故m≤1,所以命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【补偿训练】命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题( )A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题【解析】选D.原命题显然为真,原命题的逆命题为“若△ABC的三内角成等差数列,则△ABC有一内角为”,它是真命题.二、填空题(每小题5分,共10分)3.(2016·衡阳高二检测)在“a,b是实数”的大前提之下,已知原命题是“若不等式x2+ax+b≤0的解集是非空数集,则a2-4b≥0”,给出下列命题:①若a2-4b≥0,则不等式x2+ax+b≤0的解集是非空数集;②若a2-4b<0,则不等式x2+ax+b≤0的解集是空集;③若不等式x2+ax+b≤0的解集是空集,则a2-4b<0;④若不等式x2+ax+b≤0的解集是非空数集,则a2-4b<0;⑤若a2-4b<0,则不等式x2+ax+b≤0的解集是非空数集;⑥若不等式x2+ax+b≤0的解集是空集,则a2-4b≥0.其中是原命题的逆命题、否命题、逆否命题的命题的序号依次是(按要求的顺序填写).【解题指南】根据四种命题间的关系确定【解析】“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,题目的答案是①③②.答案:①③②4.命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为,是命题(填“真”或“假”).【解题指南】求原命题的等价命题即为原命题的逆否命题,只需把原命题的条件与结论既交换又否定即可.【解析】命题“已知不共线向量e1,e2,若λe1+μe2=0,则λ=μ=0”的等价命题为“已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0”,是真命题.答案:已知不共线向量e1,e2,若λ,μ不全为0,则λe1+μe2≠0真三、解答题5.(10分)(2016·益阳高二检测)写出命题:“若+(y+1)2=0,则x=2且y=-1”的逆命题,否命题,逆否命题,并判断它们的真假.【解析】逆命题:若x=2且y=-1,则+(y+1)2=0,真命题;否命题:若+(y+1)2≠0,则x≠2或y≠-1,因为逆命题为真,所以否命题为真;逆否命题:若x≠2或y≠-1,则+(y+1)2≠0,显然原命题为真命题,所以逆否命题为真命题.关闭Word文档返回原板块。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十三)函数的极值与导数(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·天津高二检测)函数y=f(x)是定义在R上的可导函数,则下列说法不正确的是( )A.若函数在x=x0时取得极值,则f′(x0)=0B.若f′(x0)=0,则函数在x=x0处取得极值C.若在定义域内恒有f′(x)=0,则y=f(x)是常数函数D.函数f(x)在x=x0处的导数是一个常数【解析】选B.f′(x0)=0是函数在x=x0处取得极值的必要不充分条件,故B错误,A,C,D均正确.2.设函数f(x)=xe x,则( )A.x=1为f(x)的极大值点B.x=-1为f(x)的极大值点C.x=1为f(x)的极小值点D.x=-1为f(x)的极小值点【解析】选D.f′(x)=e x+xe x,令f′(x)=0得x=-1,当x<-1时,f′(x)<0;当x>-1时,f′(x)>0,故x=-1时取极小值.【补偿训练】设函数f(x)=错误!未找到引用源。
+lnx,则( )A.x=错误!未找到引用源。
为f(x)的极大值点B.x=错误!未找到引用源。
为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【解析】选D.f′(x)=-错误!未找到引用源。
+错误!未找到引用源。
=错误!未找到引用源。
,令f′(x)=0得,x=2,当x<2时,f′(x)<0;当x>2时,f′(x)>0,故x=2时取极小值.3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>6【解析】选D.f′(x)=3x2+2ax+a+6,函数f(x)有极大值和极小值,则f′(x)=3x2+2ax+a+6=0有两不相等的实数根,即有Δ=(2a)2-12(a+6)>0,解得a<-3或a>6.4.(2015·济宁高二检测)已知f(x)=x3-px2-qx的图象与x轴切于(1,0),则f(x)的极值情况是( )A.极大值为f错误!未找到引用源。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
人教A版高中数学选修1-1课时提升作业(二十三) 3.3.2 函数的极值与导数探究导学课型 Word版含答案课时提升作业(二十三)函数的极值与导数(25分钟60分)一、选择题(每小题5分,共25分)1. (2019·惠州高二检测)函数y=x3-6x的极大值为( )A.4B.3C.-3D.-4【解析】选 A.y′=3x2-6,令y′>0,得x>或x<-,令y′<0,得-<x<.所以函数y=x3-6x在(-∞,-),(,+∞)上递增,在(-,)上递减,所以当x=-时,函数取得极大值4.【补偿训练】函数f(x)=2-x2-x3的极值情况是( )A.有极大值,没有极小值B.有极小值,没有极大值C.既无极大值也无极小值D.既有极大值又有极小值【解析】选D.f′ (x)=-2x-3x2,令f′(x)=0有x=0或x=-.当x<-时,f′(x)<0;当-<x<0时,f′(x)>0;当x>0时,f′(x)<0,从而在x=0时,f(x)取得极大值,在x=-时,f(x)取得极小值.2. 下列说法正确的是( )A.函数在闭区间上的极大值一定比极小值大B.函数在闭区间上的极大值一定比极小值小C.函数f(x)=|x|只有一个极小值D.函数y=f(x)在区间(a,b)上一定存在极值【解析】选 C.函数的极大值与极小值之间无确定的大小关系,单调函数在区间(a,b)上没有极值,故A,B,D错误,C正确,函数f(x)=|x|只有一个极小值为0.3.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x) ( )A.无极大值点、有四个极小值点B.有一个极大值点、两个极小值点C.有两个极大值点、两个极小值点D.有四个极大值点、无极小值点【解题指南】可依据极大值、极小值的定义判定.【解析】选 C.设f′(x)与x轴的4个交点,从左至右依次为x1,x2,x3,x4,当x<x1时,f′(x)>0,f(x)为增函数,当x1<x<x2时,f′(x)<0,f(x)为减函数,则x=x1为极大值点,同理,x=x3为极大值点,x=x2,x=x4为极小值点.【规律方法】给出图象研究函数性质问题的解题方法(1)要分清给的是f(x)的图象还是f′(x)的图象.(2)若给的是f(x)的图象,应先找出f(x)的单调区间及极值点,若给的是f′(x)的图象,应先找出f′(x)的正负区间及由正变负还是由负变正.(3)结合题目特点分析求解,可依据极大值、极小值的定义判定.4.设f(x)=x(ax2+bx+c),其中a≠0,并且在x=1或x=-1处均有极值,则下列点中一定在x轴上的是( )A.(a,b)B.(a,c)C.(b,c)D.(a+b,c)【解析】选 A.因为f(x)=ax3+bx2+cx,所以f′(x)=3ax2+2bx+c.又因为在x=1或x=-1处f(x)有极值,所以x=1或x=-1是方程3ax2+2bx+c=0的两根.所以-=0,b=0.所以点(a,b)一定在x轴上.5.(2019·沈阳高二检测)若函数f(x)=x2-2bx+3a在区间(0,1)内有极小值,则实数b的取值范围是( )A.(-∞,1)B.(1,+∞)C.(0,1)D.【解析】选C.f′(x)=2x-2b=2(x-b),令f′(x)=0,解得x=b.由于函数f(x)在区间(0,1)内有极小值,则有0<b<1,当0<x<b时,f′(x)<0;当b<x<1时,f′(x)>0,符合题意.所以实数b的取值范围是(0,1).二、填空题(每小题5分,共15分)6.(2019·哈尔滨高二检测)已知函数f(x)=ax3+bx2+c,其导数f′(x)的图象如图所示,则函数的极小值是________.【解析】由图象可知,当x<0时,f′(x)<0,当0<x<2时,f′(x)>0,故x=0时函数f(x)取极小值f(0)=c.答案:c7.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(-2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③x=2时,f(x)取到极大值;④在x=3时,f(x)取到极小值.其中正确的是________(将你认为正确的序号填在横线上).【解题指南】给出了y=f′(x)的图象,应观察图象找出使f′(x)>0与f′(x)<0的x的取值范围,并区分f′(x)的符号由正到负和由负到正,再进行判断.【解析】由f′(x)的图象可知在和(2,4)上f′(x)<0,f(x)单调递减,在和(4,+∞)上f′(x)>0,f(x)单调递增,所以只有③正确.答案:③8.(2019·陕西高考)函数y=xe x在其极值点处的切线方程为________.【解析】依题意得y′=e x+xe x,令y′=0,可得x=-1,所以y=-.因此函数y=xe x在其极值点处的切线方程为y=-.答案:y=-三、解答题(每小题10分,共20分)9.(2019·银川高二检测)已知函数f(x)=x3-x2-2x+c,(1)求函数f(x)的极值.(2)求函数f(x)的单调区间.【解析】f′(x)=3x2-x-2.(1)令f′(x)=3x2-x-2=0,即(3x+2)(x-1)=0,所以x=-或x=1.当x变化时,f(x)与f′(x)的变化情况如表,x - 1 (1,+∞) f′(x) + 0 - 0 +f(x) 单增极大值单减极小值单增从表中可以看出当x=-时,f(x)有极大值,极大值为+c;当x=1时,f(x)有极小值,极小值为c-.(2)由(1)可知f(x)的递增区间为和(1,+∞),递减区间为.10.已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值.(2)讨论f(x)的单调性,并求f(x)的极大值.【解析】(1)f′(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4,故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4e x(x+1)-x2-4x,f′(x)=4e x(x+2)-2x-4=4(x+2).令f′(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).(20分钟40分)一、选择题(每小题5分,共10分)1.函数f(x)=ax3+bx在x=1处有极值-2,则a,b的值分别为( )A.1,-3B.1,3C.-1,3D.-1,-3【解析】选 A.f′(x)=3ax2+b,由题意知f′(1)=0,f(1)=-2,所以所以a=1,b=-3.2.(2019·陕西高考)对二次函数f(x)=ax2+bx+c(a为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上【解析】选 A.若选项A错误,则选项B,C,D正确.f′(x)=2ax+b,因为1是f(x)的极值点,3是f(x)的极值,所以,即,解得,因为点(2,8)在曲线y=f(x)上,所以4a+2b+c=8,即4a+2×(-2a)+a+3=8,解得:a=5,所以b=-10,c=8,所以f(x)=5x2-10x+8,因为f(-1)=5×1-10×(-1)+8=23≠0,所以-1不是f(x)的零点,所以选项A 错误,选项B、C、D正确.二、填空题(每小题5分,共10分)3.(2019·南昌高二检测)函数f(x)=(a∈R)的极大值为________.【解析】f′(x)=,令f′(x)=0,得x=,当x<时,f′(x)>0;当x>时,f′(x)<0,所以函数的极大值为f()==.答案:4.若函数y=-x3+6x2+m的极大值为13,则实数m等于________.【解题指南】先依据函数解析式求出其极大值,再结合已知条件得出关于m的方程,解方程即可.【解析】y′=-3x2+12x=-3x(x-4),由y′=0,得x=0或4.且当x∈(-∞,0)∪(4,+∞)时,y′<0;x∈(0,4)时,y′>0.所以当x=4时取到极大值.故-64+96+m=13,解得m=-19.答案:-19三、解答题(每小题10分,共20分)5.(2019·广州高二检测)若a≠0,试求函数f(x)=-ax3-x2+a2x2+2ax的单调区间与极值. 【解析】因为f(x)=-ax3-x2+a2x2+2ax,所以f′(x)=-2ax2-2x+2a2x+2a=-2(ax2+x-a2x-a)=-2(x-a)(ax+1).令f′(x)=0,可得x=-或x=a.若a>0,当x变化时,f′(x),f(x)的变化情况如下表:x - a (a,+∞)f′(x) - 0 + 0 -f(x) 单调递减极小值单调递增极大值单调递减所以f(x)在区间(-∞,-),(a,+∞)上单调递减,在区间上单调递增.函数f(x)在x=-处取得极小值f=-1-,在x=a处取得极大值f(a)=a2+a4.若a<0,当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,a) a -f′(x) + 0 - 0 +f(x) 单调递增极大值单调递减极小值单调递增所以f(x)在区间(-∞,a),上单调递增,在区间上单调递减.函数f(x)在x=a处取得极大值f(a)=a2+,在x=-处取得极小值f=-1-.6.(2019·梅州高二检测)已知函数f(x)=x3-bx2+2cx的导函数的图象关于直线x=2对称.(1)求b的值.(2)若函数f(x)无极值,求c的取值范围.【解析】(1)f′(x)=3x2-2bx+2c,因为函数f′(x)的图象关于直线x=2对称,所以-=2,即b=6.(2)由(1)知,f(x)=x3-6x2+2cx,f′(x)=3x2-12x+2c=3(x-2)2+2c-12,当2c-12≥0,即c≥6时,f′(x)≥0恒成立,此时函数f(x)无极值.【补偿训练】设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值.(2)若对于任意的x∈,都有f(x)<c2成立,求c的取值范围.【解析】(1)f′(x)=6x2+6ax+3b.因为函数f(x)在x=1及x=2时取得极值,则有f′(1)=0,f′(2)=0,即解得(2)由(1)可知,f(x)=2x3-9x2+12x+8c,所以f′(x)=6x2-18x+12=6(x-1)(x-2),当x∈(0,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,3)时,f′(x)>0.所以当x=1时,f(x)取得极大值,f(1)=5+8c.又f(0)=8c,f(3)=9+8c,则当x∈时,f(x)的最大值为f(3)=9+8c,所以对于任意的x∈,有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,因此,c的取值范围为(-∞,-1)∪(9,+∞).关闭Word文档返回原板块。
课时提升作业(二十一)
导数的运算法则
(25分钟60分)
一、选择题(每小题5分,共25分)
1.(2015·泉州高二检测)函数f(x)=π2x2的导数是( )
A.f′(x)=4πx
B.f′(x)=2πx
C.f′(x)=2π2x
D.f′(x)=2πx2+2π2x
【解析】选C.f′(x)=(π2x2)′=2π2x.
【补偿训练】设f(x)=-,则f′(1)等于( )
A.-
B.
C.-
D.
【解析】选B.因为f(x)=-=-.
所以f′(x)=-+,
所以f′(1)=-+=.
2.(2014·广东高考改编)曲线y=-5e x+3在点(0,-2)处的切线方程为( )
A.5x+y+2=0
B.5x-y+2=0
C.x+5y+2=0
D.x-5y+2=0
【解析】选A.因为y′=-5e x,y′|x=0=-5,即在点(0,-2)处的切线斜率为-5,所以切线方程为y-(-2)=-5(x-0),5x+y+2=0.
【补偿训练】曲线y=xe x+1在点(0,1)处的切线方程是( )
A.x-y+1=0
B.2x-y+1=0
C.x-y-1=0
D.x-2y+2=0
【解析】选A.y′=e x+xe x,当x=0时,导数值为1,故所求的切线方程是y=x+1,
即x-y+1=0.
3.若函数f(x)=e x sinx,则此函数图象在点(4,f(4))处的切线的倾斜角为( )
A. B.0 C.钝角 D.锐角
【解题指南】求出函数图象在点(4,f(4))处的切线的斜率即导数后求倾斜角.
【解析】选 C.y′|x=4=(e x sinx+e x cosx)|x=4=e4(sin4+cos4)=e4sin<0,
故倾斜角为钝角,选C.
4.已知f(x)=ax3+9x2+6x-7,若f′(-1)=4,则a的值等于( )
A. B. C. D.
【解析】选B.因为f′(x)=3ax2+18x+6,
所以由f′(-1)=4得,3a-18+6=4,即a=.
5.设f(x)=ax2-bsinx,且f′(0)=1,f′=,则a+b= ( )
A.0
B.-1
C.1
D.2
【解析】选B.f′(x)=2ax-bcosx,由条件知
,所以
二、填空题(每小题5分,共15分)
6.(2015·全国卷Ⅰ)已知函数f=ax3+x+1的图象在点处的切线过点,则a= .
【解析】因为f′(x)=3ax2+1,所以图象在点处的切线的斜率k=3a+1,所以切线方程为y-7=(3a+1)(x-2),即y=(3a+1)x-6a+5,又切点为,
所以f(1)=3a+1-6a+5=-3a+6,又f(1)=a+2,所以-3a+6=a+2,解得a=1.
答案:1
7.(2015·汉中高二检测)已知f(x)=lnx+cosx,则f′= . 【解析】f′(x)=-sinx,故f′=-sin=-1.
答案:-1
【补偿训练】已知f(x)=x2+2xf′(1),则f′(0)等于.
【解析】f′(x)=2x+2f′(1),f′(1)=2+2f′(1),所以f′(1)=-2.
所以f′(0)=2f′(1)=-4.
答案:-4
8.已知函数f(x)=ax+be x图象上在点P(-1,2)处的切线与直线y=-3x平行,则函数f(x)的解析式是.
【解析】由题意可知,f′(x)|x=-1=-3,
所以a+be-1=-3,又f(-1)=2,
所以-a+be-1=2,解之得a=-,b=-e,
故f(x)=-x-e x+1
答案:f(x)=-x-e x+1
三、解答题(每小题10分,共20分)
9.求下列函数的导数:
(1)y=x.(2)y=(+1)(-1).
(3)y=sin4+cos4.
【解析】(1)因为y=x=x3+1+,
所以y′=3x2-.
(2)因为y=(+1)=-+,
所以y′=--=-.
(3)因为y=sin4+cos4
=-2sin2cos2
=1-sin2=1-·=+cosx,
所以y′=-sinx.
10.(2015·济南高二检测)函数f(x)=x3-x2-x+1的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a,使得函数f(x)的图象在x=a处的切线平行于直线AB.
【解析】直线AB的斜率k AB=-1,f′(x)=3x2-2x-1,
令f′(a)=-1(0<a<1),
即3a2-2a-1=-1,解得a=.
(20分钟40分)
一、选择题(每小题5分,共10分)
1.已知函数f(x)=x4+ax2-bx,且f′(0)=-13,f′(-1)=-27,则a+b等于( )
A.18
B.-18
C.8
D.-8
【解析】选A.因为f′(x)=4x3+2ax-b,
由⇒
所以所以a+b=5+13=18.
2.设函数f(x)=x3+x2+tanθ,其中θ∈,则导数f′(1)的取值范围是( )
A.[-2,2]
B.[,]
C.[,2]
D.[,2]
【解析】选D.由已知f′(x)=sinθ·x2+cosθ·x,
所以f′(1)=sinθ+cosθ=2sin,
又θ∈.所以≤θ+≤,
所以≤sin≤1,所以≤f′(1)≤2.
二、填空题(每小题5分,共10分)
3.(2015·全国卷Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线
y=ax2+(a+2)x+1相切,则a= .
【解析】y′=1+,则曲线y=x+lnx在点(1,1)处的切线斜率为k=y′
=1+1=2,故切线方程为y=2x-1.因为y=2x-1与曲线y=ax2+(a+2)x+1
相切,联立得ax2+ax+2=0,显然a≠0,所以由Δ=a2-8a=0⇒a=8.
答案:8
4.(2015·太原高二检测)已知函数f(x)的导函数为f′(x),且满足f(x)=
2xf′(e)+lnx则f′(e)= .
【解析】因为f(x)=2xf′(e)+lnx,
所以f′(x)=2f′(e)+,所以f′(e)=2f′(e)+,
解得f′(e)=-.
答案:-
三、解答题(每小题10分,共20分)
5.已知函数f(x)=的图象在点M(-1,f(-1))处的切线的方程为x+2y+5=0,求函数的解析式.
【解析】由于(-1,f(-1))在切线上,
所以-1+2f(-1)+5=0,
所以f(-1)=-2.
因为f′(x)=,
所以
解得a=2,b=3(因为b+1≠0,所以b=-1舍去).
故f(x)=.
6.(2015·盐城高二检测)偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.
【解析】因为f(x)的图象过点P(0,1),
所以e=1.
又因为f(x)为偶函数,
所以f(-x)=f(x).
故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.
所以b=0,d=0.
所以f(x)=ax4+cx2+1.
因为函数f(x)在x=1处的切线方程为y=x-2,
所以可得切点为(1,-1),
所以a+c+1=-1. ①
因为f′(1)=(4ax3+2cx)|x=1=4a+2c,
所以4a+2c=1. ②
由①②联立得a=,c=-,
所以函数y=f(x)的解析式为f(x)=x4-x2+1.。