数字信号处理实验三
- 格式:doc
- 大小:84.50 KB
- 文档页数:3
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
XX XX 大学XXXX 学院实验名称 IIR 数字滤波器的设计实验目的:加深理解IIR 数字滤波器的时域特性和频域特性,掌握IIR 数字滤波器的设计原理与设计方法,以及I IR数字滤波器的应用。
实验内容:IIR 数字滤波器一般为线性移不变的因果离散系统,N 阶IIR 数字滤波器的系统函数可以表达为-1z 的有理多项式,即 -1-1-2-M =0012-1-2-N -112=1z +z +z ++z (z)==1+z +z ++z 1+zM j j M N Ni i b b b b b H a a a a ∑∑ 式中:系数i a 至少有一个非零。
对于因果II R数据滤波器,应满足M N ≤。
IIR 数字滤波器的设计主要通过成熟的模拟滤波器设计方法来实现。
首先在频域将数字滤波器设计指标转换为模拟滤波器设计指标,然后将任意的模拟滤波器为原型模拟低通滤波器指标,根据模拟滤波器的设计指标来设计出模拟低通滤波器(s)LP H ,然后又(s)LP H 经过相应的复频域转换得到H(s),最后又H(s )经过脉冲响应不变法或双线性变换法得到所需要的III R数字滤波器H (z)。
由此可见,IIR 数字滤波器设计的重要环节是模拟滤波器的设计。
设计模拟低通滤波器的主要方法有Butterwor t、Ch eby shev 、和椭圆等滤波器设计方法。
实验步骤1.Butterw ort 数字滤波器设计(1) Bu tt erwort 滤波器是通带阻带都单调衰减的滤波器。
调用b uttord 函数可以确定巴特沃斯滤波器的阶数,其格式为:[N,Omegac ]=bu tt ord(Omegap,Ome gas,Rp,As ,’s ’)。
其中,输入参数Rp,As 分别为通带最大衰减和阻带最小衰减,以d B为单位;Om eg ap,Omegas 分别为通带截止频率和阻带截止频率,‘s ’说明所设计的是模拟滤波器。
输出参数为滤波器的阶数,Omegac为3dB截止频率。
数字信号处理高西全实验报告三选择FFT的变换区间N为8和16 两种情况进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(2)对以下周期序列进行谱分析^p 。
选择FFT的变换区间N为8和16 两种情况分别对以上序列进行频谱分析^p 。
分别打印其幅频特性曲线。
并进行对比、分析^p 和讨论。
(3)对模拟周期信号进行谱分析^p选择采样频率,变换区间N=16,32,64 三种情况进行谱分析^p 。
分别打印其幅频特性,并进行分析^p 和讨论。
四、程序码与运行结果(1) 实验程序:1n=[ones(1,4)];M=8;a=1:(M/2); b=(M/2):-1:1; 2n=[a,b];3n=[b,a];1k8=fft(1n,8);1k16=fft(1n,16);2k8=fft(2n,8);2k16=fft(2n,16);3k8=fft(3n,8);3k16=fft(3n,16);以下绘制幅频特性曲线n=0:length(1k8)-1;subplot(3,2,1);stem(n,abs(1k8),#;.#;);label({#;ω/π#;;#;8点DFT[1(n)]#;});ylabel(#;幅度#;);n=0:length(1k16)-1;subplot(3,2,2);stem(n,abs(1k16),#;.#;);label({#;ω/π#;;#;16点DFT[1(n)]#;});ylabel(#;幅度#;); n=0:length(2k8)-1;subplot(3,2,3);stem(n,abs(2k8),#;.#;);label({#;ω/π#;;#; 8点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(2k16)-1;subplot(3,2,4);stem(n,abs(2k16),#;.#;);label({#;ω/π#;;#;16点DFT[2(n)]#;});ylabel(#;幅度#;); n=0:length(3k8)-1;subplot(3,2,5);stem(n,abs(3k8),#;.#;);l abel({#;ω/π#;;#; 8点DFT[3(n)]#;});ylabel(#;幅度#;); n=0:length(3k16)-1;subplot(3,2,6);stem(n,abs(3k16),#;.#;);label({#;ω/π#;;#;16点DFT[3(n)]#;});ylabel(#;幅度#;); 图形:(2)实验程序:n=0:7;4n=cos(pi/4n);4k8=fft(4n,8);subplot(2,2,1);stem(2n/8,abs(4k8),#;.#;);label({#;ω/π#;;#;8点DFT[4(n)]#;});ylabel(#;幅度#;); 5n=cos(pi/4n)+cos(pi/8n);5k8=fft(5n,8);subplot(2,2,2);stem(2n/8,abs(5k8),#;.#;);label({#;ω/π#;;#;8点DFT[5(n)]#;});ylabel(#;幅度#;); n=0:15;4n=cos(pi/4n);5n=cos(pi/4n)+cos(pi/8n);4k16=fft(4n,16);subplot(2,2,3);stem(2n/16,abs(4k16),#;.#;);label({#;ω/π#;;#;16点DFT[4(n)]#;});ylabel(#;幅度#;); 5k16=fft(5n,16);subplot(2,2,4);stem(2n/16,abs(5k16),#;.#;);label({#;ω/π#;;#;16点DFT[5(n)]#;});ylabel(#;幅度#;); 图形:(3)实验代码:Fs=64;T=1/Fs;N=16;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k16=fft(6nT);6k16=fftshift(6k16);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,1);stem(fk,abs(6k16),#;.#;);label({#;f(Hz)#;;#;16点DFT[6(nT)]#;});ylabel(#;幅度#;); N=32;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k32=fft(6nT,32);6k32=fftshift(6k32);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,2);stem(fk,abs(6k32),#;.#;);label({#;f(Hz)#;;#;32点DFT[6(nT)]#;});ylabel(#;幅度#;); N=64;n=0:N-1;6nT=cos(8pinT)+cos(16pinT)+cos(20pinT);6k64=fft(6nT,64);6k64=fftshift(6k64);Tp=NT;F=1/Tp;k=-N/2:N/2-1;fk=kF;subplot(3,1,3);stem(fk,abs(6k64),#;.#;);label({#;f(Hz)#;;#;64点DFT[6(nT)]#;});ylabel(#;幅度#;);图形:五、实验总结1.结论用DFT对信号进行谱分析^p 时,重点关注频谱分辨率和分析^p 误差,频谱分辨率F=1/Tp=Fs/N,可以依据此等式来选择FFT的变换区间N,而误差主要来自于用FFT作频谱分析^p 时,得到的是离散谱,而当信号是非周期信号时,应该得到连续谱,只有当N较大时,用FFT做出来的离散谱才接近于连续谱,因此N要适当选择大一些。
数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。
实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。
程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。
数字信号处理实验三数字信号处理实验三是一项实验任务,旨在通过实践掌握数字信号处理的相关知识和技能。
本实验要求参与者完成以下内容:1. 实验目的:本实验旨在通过使用数字信号处理工具和算法,对信号进行采样、量化、滤波、频谱分析等处理,掌握数字信号处理的基本概念和方法。
2. 实验设备和材料:- 个人电脑- 数字信号处理软件(如MATLAB、Python等)- 信号发生器- 数字示波器- 数据采集卡(可选)3. 实验步骤:此处以使用MATLAB进行数字信号处理为例,具体步骤如下:1) 准备信号发生器和数字示波器,并连接好相应的线缆。
2) 打开MATLAB软件,创建一个新的脚本文件。
3) 在脚本文件中编写代码,生成一个模拟信号(如正弦波、方波等)。
4) 使用MATLAB提供的采样函数,对模拟信号进行采样,并将采样数据保存到一个数组中。
5) 对采样数据进行量化处理,将连续的模拟信号转换为离散的数字信号。
6) 对量化后的信号进行数字滤波处理,去除噪声或不需要的频率分量。
7) 使用MATLAB提供的频谱分析函数,对滤波后的信号进行频谱分析,得到信号的频谱特性。
8) 可选:如果有数据采集卡,可以将信号从信号发生器输入到数据采集卡中,然后使用MATLAB读取和处理采集到的数据。
9) 运行脚本文件,观察并分析处理后的信号的时域波形和频谱特性。
10) 根据实验要求,记录实验数据和结果,并进行相应的分析和总结。
4. 实验数据处理和分析:在实验过程中,根据实验要求和脚本文件编写的代码,可以得到一系列的实验数据和结果。
对于这些数据和结果,可以进行以下处理和分析:- 绘制原始信号的时域波形和频谱图,观察信号的特征和频谱分布。
- 对比不同采样率下的信号重构效果,分析采样率对信号质量的影响。
- 分析量化误差对信号质量的影响,比较不同量化位数下的信号重构效果。
- 比较不同滤波算法对信号滤波效果的影响,选择合适的滤波算法进行信号处理。
实验三:用FFT 对信号做频谱分析1 实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。
2 实验原理用FFT 对信号做频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3 实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()c o s 4x n n π= 5()c o s (/4)c o s (/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64 ,变换区间N=16,32,64 三种情况进行谱分析。
华南理⼯⼤学数字信号处理实验报告3(曹⽼师)⼀、实验⽬的加深对LTI 系统的理解以及分析。
⼆、实验原理系统输⼊、输出关系可⽤以下差分⽅程描述:∑∑==-=-Mk k Nk kk n x p k n y d][][系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y ][][][][][当Nk d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。
系统的转移函数为 NN M M z d z d d z p z p p z D z p z H ----++++++==......)()()(110110三、实验内容1、⽤函数y=filter(p,d,x)实现差分⽅程的仿真,也可以⽤函数 y=conv(x,h)计算卷积,⽤y=impz(p,d,N)求系统的冲激响应,再⽤卷积来计算任意信号作⽤于系统的响应。
求两个系统]1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 各⾃的冲激响应,并且⽐较filter和conv 函数的区别实验代码如下:clear%离散时间序列x[n] n = 0:9; x = 5*exp(-n); subplot(4,2,1); stem(n,x)title('离散时间序列x[n]');%⽤filter函数滤波a1 = [1 , 0.75 , 0.125];b1 = [1 , -1];y1 = filter(b1,a1,x);subplot(4,2,3);stem(n,y1)title('filter滤波1');a2 = [1];b2 = [0 , 0.25 , 0.25 , 0.25 , 0.25]; y2 = filter(b2,a2,x);subplot(4,2,4);stem(n,y2)title('filter滤波2');%求系统的冲激响应h1 = impz(b1,a1,10);subplot(4,2,5);stem(n,h1)title('冲激响应1');h2 = impz(b2,a2,10);subplot(4,2,6);stem(n,h2)title('冲激响应2');%⽤conv函数计算卷积y3 = conv(x,h1);subplot(4,2,7);stem(y3)title('卷积1');y4 = conv(x,h2);subplot(4,2,8);stem(y4)title('卷积2');实验结果如下:离散时间序列x[n]filter 滤波2冲激响应1冲激响应22468101214161820卷积22、⽤函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,⽤函数zplane (z ,p )绘出零、极点分布图;也可以⽤函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。