现代控制理论实验报告
- 格式:doc
- 大小:210.96 KB
- 文档页数:16
一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。
为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。
本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。
通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。
二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。
2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。
3. 提高团队合作意识,锻炼动手能力和沟通能力。
三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。
2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。
3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。
4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。
四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。
2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。
3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。
(2)求解状态转移矩阵,并进行可控性和可观测性分析。
(3)设计状态反馈和观测器,优化控制系统性能。
(4)利用MATLAB进行仿真,观察控制系统动态特性。
(5)根据仿真结果,调整控制器参数,提高控制系统性能。
4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。
五、实训成果1. 掌握了现代控制理论的基本概念和方法。
2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。
实验三典型非线性环节一.实验要求1.了解和掌握典型非线性环节的原理。
2.用相平面法观察和分析典型非线性环节的输出特性。
二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路。
三、实验内容3.1测量继电特性(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。
(2)模拟电路产生的继电特性:继电特性模拟电路见图慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下:函数发生器产生的继电特性①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
实验结果与理想继电特性相符波形如下:3.2测量饱和特性将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。
(2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
如下所示:函数发生器产生的饱和特性①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下:。
3.3测量死区特性模拟电路产生的死区特性死区特性模拟电路见图3-4-7。
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论实验报告系统的状态空间分析与全维状态观测器的设计一、实验目的1 •掌握状态反馈系统的极点配置;2 •研究不同配置对系统动态特性的影响。
二、实验仪器1 •计算机2. MATLAB 软件三、实验原理一个受控系统只要其状态是完全能控的,则闭环系统的极点可以任意配置。
极点配置有两种方法:①采用变换矩阵T,将状态方程转换成可控标准型,然后将期相等,从而决定状态反馈增益矩阵K;②基于Carlay-Hamilton理论,它指出矩阵㈡满足自身的特征方程,改变矩阵特征多项式:的值,可以推出增益矩阵K。
这种方法推出增益矩阵K的方程式叫Ackermann公式。
四、实验内容1 •试判别下列系统的可控性和可观性:(1) A=[1,2,3;1,4,6;2,1,7]B=[1,9;0,0;2,0];C=[1,0,0;2,1,0]实验程序:a=[1,2,3;1,4,6;2,1,7]b=[1,9;0,0;2,0]c=[1,0,0;2,1,0]n=size(a)uc=ctrb(a,b)uo=obsv(a,c)if ran k(uc)==ndisp('系统可控')elsedisp('系统不可控')end if ran k(uo )==ndisp('系统可观')elsedisp('系统不可观')End实验结果:a =1 2 31 4 62 1 7b =1 90 02 02 1 0n =3uc =1 9 7 9 81 810 0 13 9 155 1532 0 16 18 139 153 uo =1 0 02 1 01 2 39 13 3635 50 141系统可控系统可观(2) A=[-2,2,-1;0,-2,0;1,-4,0]B=[[0;0;1]C=[1,-1,1]程序:A=[-2,2,-1;0,-2,0;1,-4,0];B=[0;0;1];C=[1,-1,1];Qc=ctrb(A,B);n=ran k(Qc);if(n==3),disp('系统可控'); else,disp('系统不可控');end系统不可控Qo=obsv(A,C);m=ra nk(Qo);if(m==3),disp('系统可观');else,disp('系统不可观');end系统不可观2.全状态反馈极点配置设计:设系统的状态方程为:x=Ax+Bu其中,A=[0,1,0;0,0,1;-1,-5,-6]B=[0;0;1]p1=-2+j4、要求:利用状态反馈控制u=-Kx,将此系统的闭环极点配置成p2=-2-j4、p3=-10。
紫金学院计算机系实验报告现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一 系统能控性与能观性分析1、实验目的:1.通过本实验加深对系统状态的能控性和能观性的理解;2.验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1.线性系统能控性实验;2. 线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据系统的输出能唯一地确定系统的初始状态,则称系统能观。
对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中4321R R R R ≠,则输入电压u 能控制i L 和u c 状态变量的变化,此时,状态是能控的;状态变量i L 与u c 有耦合关系,输出u c 中含有i L 的信息,因此对u c 的检测能确定i L 。
即系统能观的。
反之,当4321R R =R R 时,电桥中的c 点和d 点的电位始终相等, u c 不受输入u 的控制,u 只能改变i L 的大小,故系统不能控;由于输出u c 和状态变量i L 没有耦合关系,故u c 的检测不能确定i L ,即系统不能观。
1.1 当4321R RR R ≠时u L u i R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L u i C L C L ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=⎪⎪⎭⎫ ⎝⎛01)11(1)(1)(1)(143214343212143421243432121 (10-1)y=u c =[01]⎪⎪⎪⎭⎫⎝⎛c L u i (10-2)由上式可简写为bu Ax x+= cx y =式中⎪⎪⎭⎫ ⎝⎛=C L u i x ⎪⎪⎪⎪⎪⎭⎫+++-+-+-⎝⎛+-+-+++-=)11(1)(1)(1)(143214343212143421243432121R R R R C R R R R R R R R L R R R R R R C R R R R R R R R L A⎪⎪⎪⎭⎫⎝⎛=01L b 1] [0=c由系统能控能观性判据得][Ab brank =2 2=⎥⎦⎤⎢⎣⎡cA c rank故系统既能控又能观。
现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一系统能控性与能观性分析1、实验目的:1. 通过本实验加深对系统状态的能控性和能观性的理解;2. 验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1•线性系统能控性实验 2.线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原 点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据 系统的输出能唯一地确定系统的初始状态,则称系统能观。
(10-1)i Ly=U c =[01]U c由上式可简写为x Ax bU y cxR 3对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中旦R 2 &则输入电压U 能控制i L 和U c 状态变量的变化,此时,状态是能控的;状态变量i L 与U c 有耦合关系, 输出U c 中含有i L 的信息,因此对U c 的检测能确定i L 。
即系统能观的。
R 1 R 3反之,当」时, R 2 R 4变i L 的大小,故系统不能控; 即系统不能观。
Ri R 31.1当13时R 2 R 4电桥中的由于输出R 31( R 1R 2 L (R , R 2R 3 R 4R3R4R 2c 点和d 点的电位始终相等,U c 不受输入U 的控制,u 只能改U c 和状态变量i L 没有耦合关系,故 U c 的检测不能确定i L ,丄(亠亠)C R R 2R 3 R 41 ( R 1R2 L (R R 2R 3 R 4R3R4I L U C(10-2)I LR 2R 1 R 2 i L式中X U C1 (L R 1 R 21 R2 ( —— C R 1 R 2 R3 R 4)R3 R 4R 3 R 4R 1 R 2 1 (L R 1 R 21 1 -( CR 1R 2R3 R 4) R 4 1 )R 3 R 4[0 1]由系统能控能观性判据得 ran k[b Ab] =2c rank cA 故系统既能控又能观。
现代控制理论实验院系:计算机与电子信息学院班级:电气09-1姓名:学号:指导老师:禹柳飞实验一线性控制系统状态空间法分析第一部分线性控制系统状态空间模型的建立及转换一、实验目的1 掌握线性控制系统状态空间模型的建立方法。
2 掌握MATLAB中的各种模型转换函数。
二、实验项目1 已知系统的传递函数求取其状态空间模型。
2 MATLAB中各种模型转换函数的应用。
3 连续时间系统的离散化。
三、实验设备与仪器1、计算机2、MATLAB软件四、实验原理及内容(一)系统数学模型的建立1、传递函数模型—tf功能:生成传递函数,或者将零极点模型或状态空间模型转换成传递函数模型。
格式:G=tf(num,den)其中,(num,den)分别为系统的分子和分母多项式系数向量。
返回的变量G为传递函数对象。
【例】:已知G(S)=错误!未找到引用源。
用MA TLAB语句将上述传递函数表示出来。
编程如下:num=[2 9];den=[1 2 4 6];Sys=tf(num,den)MATLAB中运行结果如下图所示:2、状态方程模型—ss功能:生成状态方程,或者将零极点模型或传递函数模型转换成状态方程模型。
格式:G=ss(A,B,C,D)其中,A,B,C,D分别为状态方程的系统矩阵、输入矩阵、输出矩阵和前馈矩阵。
【例】:已知系统状态空间模型为编程如下:>>A=[0 1;-1 -2];>>B=[0;1];>>C=[1,3]; D=1];>>G=ss(A,B ,C ,D)运行结果如下图:3、零极点模型—zpk功能:生成零极点模型,或将状态方程模型或传递函数模型转换成零极点模型。
格式:G=zpk(z, p, K)其中,z,p,K分别表示系统的零点、极点和增益。
【例】:G(s)=6(s+3)/(s+1)(s+2)(s+5)使用MATLAB 语句将上述零极点增益模型表示出来。
编程如下:z=[-3];p=[-1,-2,-5];k=[6];G=zpk(z,p,k)(二)连续时间系统离散化函数名称:c2d格式:G=c2d(G1,Ts),其中Ts 为采样周期。
.现代控制理论实验报告组员:院系:信息工程学院专业:指导老师:年月日实验1 系统的传递函数阵和状态空间表达式的转换[实验要求]应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。
并写出实验报告。
[实验目的]1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
[实验内容]1 设系统的模型如式(1.1)示。
p m n R y R u R x DCx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1.1)其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。
系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。
D B A SI C s den s num s G +-==-1)()()(()( (1.2)式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。
2 实验步骤① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令;② 在MATLA 界面下调试程序,并检查是否运行正确。
③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。
,2010050010000100001043214321u x x x x x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43210001x x x x y (1.3)程序:A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0;[num,den]=ss2tf(A,B,C,D,1)程序运行结果:num =0 -0.0000 1.0000 -0.0000 -3.0000 den =1.0000 0 -5.0000 0 0从程序运行结果得到:系统的传递函数为:24253)(ss s S G --= ④ [1.2] 从系统的传递函数式求状态空间表达式。
现代控制理论实验报告学校中南大学院系信息科学与工程学院班级电气工程及其自动化0902班导师彭涛老师姓名金石学号**********时间2011年12月16 号实验1 用MATLAB 分析状态空间模型1、实验设备PC 计算机1台,MATLAB 软件1套。
2、实验目的① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。
3、实验原理说明参考教材P56~59“2.7 用MATLAB 分析状态空间模型” 4、实验步骤① 根据所给系统的传递函数或A 、B 、C 矩阵,依据系统的传递函数阵和状态空间表达式之间的关系式,采用MATLAB 编程。
② 在MATLAB 界面下调试程序,并检查是否运行正确。
题1.1 已知SISO 系统的传递函数为243258()2639s s g s s s s s ++=++++(1)将其输入到MATLAB 工作空间; (2)获得系统的状态空间模型。
题1.2 已知SISO 系统的状态空间表达式为112233010100134326x x x x u x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦,[]123100x y x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ (1)将其输入到MATLAB 工作空间;(2)求系统的传递函数。
题1.1 已知SISO 系统的传递函数为243258()2639s s g s s s s s ++=++++ (1)将其输入到MATLAB 工作空间; (2)获得系统的状态空间模型。
题1.2 已知SISO 系统的状态空间表达式为112233010100134326x x x x u x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦,[]123100x y x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)将其输入到MATLAB 工作空间;(2)求系统的传递函数。
实验2 利用MATLAB 求解系统的状态方程1、实验设备PC 计算机1台,MATLAB 软件1套。
2、实验目的① 学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; ② 通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制状态响应曲线; ③ 掌握利用MATLAB 导出连续状态空间模型的离散化模型的方法。
3、实验原理说明参考教材P99~101“3.8 利用MATLAB 求解系统的状态方程” 4、实验步骤(1)根据所给系统的状态方程,依据系统状态方程的解的表达式,采用MA TLAB 编程。
(2)在MATLAB 界面下调试程序,并检查是否运行正确。
题2.1 已知SISO 系统的状态方程为[]01323011x x u y x⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦=(1)0u =,()101x ⎡⎤=⎢⎥-⎣⎦,求当t=0.5时系统的矩阵系数及状态响应;(2)1()u t =,()000x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线; (3)1cos3tu e t -=+,()000x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线; (4)0u =,()102x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线; (5)在余弦输入信号和初始状态()101x ⎡⎤=⎢⎥⎣⎦下的状态响应曲线。
题2.2 已知一个连续系统的状态方程是0102541x x u ⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦若取采样周期0.05T =秒(1)试求相应的离散化状态空间模型;(2)分析不同采样周期下,离散化状态空间模型的结果。
题2.1 已知SISO 系统的状态方程为[]01323011x x u y x⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦= (1)0u =,()101x ⎡⎤=⎢⎥-⎣⎦,求当t =0.5时系统的矩阵系数及状态响应;(2)1()u t =,()000x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线;(3)1cos3tu e t -=+,()000x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线;(4)0u =,()102x ⎡⎤=⎢⎥⎣⎦,绘制系统的状态响应及输出响应曲线;代码:>> u3=1+exp(-t).*cos(3*t);%零状态响应,u3=1+exp(-t3).*cos(3*t3); [y,t,x]=lsim(SG,u3,t);plot(t,x,t,y,':r')%状态响应曲线%输出响应曲线 xlabel('时间t'),ylabel('响应'),title(''); 运行结果:X1X2YX1 X2Y(5)在余弦输入信号和初始状态()101x ⎡⎤=⎢⎥⎣⎦下的状态响应曲线。
代码:>> x04=[1;2];[y,t,x]=initial(SG,x04,t);%零输入响应plot(t,x,t,y,':r')%状态响应曲线%输出响应曲线 运行结果:代码:>> x04=[1;2];[y,t,x]=initial(SG,x04,t);%零输入响应plot(t,x,t,y,':r')%状态响应曲线%输出响应曲线 >> x0=[1;1]; u=cos(t);[y,t,x]=lsim(SG,u,t,x0); subplot(2,1,1),plot(t,x(:,1))xlabel('Time(sec)'),ylabel('X_1') subplot(2,1,2),plot(t,x(:,2))xlabel('Time(sec)'),ylabel('X_2') 运行结果:X1X2Y题2.2 已知一个连续系统的状态方程是0102541x x u ⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦若取采样周期0.05T =秒(1)试求相应的离散化状态空间模型;(2)分析不同采样周期下,离散化状态空间模型的结果。
实验3 系统的能控性、能观测性分析1、实验设备PC 计算机1台,MA TLAB 软件1套。
2、实验目的① 学习系统状态能控性、能观测性的定义及判别方法;② 通过用MATLAB 编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。
3、实验原理说明参考教材P117~118“4.2.4 利用MA TLAB 判定系统能控性” P124~125“4.3.3 利用MA TLAB 判定系统能观测性” 4、实验步骤① 根据系统的系数阵A 和输入阵B ,依据能控性判别式,对所给系统采用MA TLAB 编程;在MA TLAB 界面下调试程序,并检查是否运行正确。
② 根据系统的系数阵A 和输出阵C ,依据能观性判别式,对所给系统采用MATLAB 编程;在MA TLAB 界面下调试程序,并检查是否运行正确。
③ 构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。
题3.1 已知系数阵A 和输入阵B 分别如下,判断系统的状态能控性⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B题3.2 已知系数阵A 和输出阵C 分别如下,判断系统的状态能观性。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A , []201=C题3.3 已知系统状态空间描述如下[]021151202001110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦= (1)判断系统的状态能控性; (2)判断系统的状态能观测性;(3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形;题3.1 & 题3.2 已知系数阵A 和输入阵B 分别如下,判断系统的状态能控性与能观性⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2101013333.06667.10666.6A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110B ,[]2 C=1题3.3 已知系统状态空间描述如下[]021151202001110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦= (1)判断系统的状态能控性;(2)判断系统的状态能观测性;(3)构造变换阵,将其变换成能控标准形;(4)构造变换阵,将其变换成能观测标准形;实验4 系统稳定性分析1、实验设备PC 计算机1台,MA TLAB 软件1套。
2、实验目的① 学习系统稳定性的定义及李雅普诺夫稳定性定理;② 通过用MA TLAB 编程、上机调试,掌握系统稳定性的判别方法。
3、实验原理说明参考教材P178~181“5.3.4 利用MA TLAB 进行稳定性分析”4、实验步骤(1)掌握利用李雅普诺夫第一方法判断系统稳定性;(2)掌握利用李雅普诺夫第二方法判断系统稳定性。
题4.1 某系统状态空间描述如下[]021151202001110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦= (1)利用李雅普诺夫第一方法判断其稳定性;(2)利用李雅普诺夫第二方法判断其稳定性。
题4.1 某系统状态空间描述如下[]021151202001110x x u y x-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦= (1)利用李雅普诺夫第一方法判断其稳定性;(2)利用李雅普诺夫第二方法判断其稳定性。
实验5 利用MATLAB 实现极点配置、设计状态观测器1、实验设备PC 计算机1台,MA TLAB 软件1套。
2、实验目的① 学习闭环系统极点配置定理及算法,学习全维状态观测器设计方法;② 通过用MA TLAB 编程、上机调试,掌握极点配置算法,设计全维状态观测器。
3、实验原理说明参考教材P204~207 “6.2.5 利用MATLAB 实现极点配置”P227~230 “6.4.4 利用MATLAB 设计状态观测器”4、实验步骤(1)掌握采用直接计算法、采用Ackermann 公式计算法、调用place 函数法分别进行闭环系统极点配置;(2)掌握利用MA TLAB 设计全维状态观测器。
题5.1 某系统状态方程如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 理想闭环系统的极点为[]123---,试(1)采用直接计算法进行闭环系统极点配置;(2)采用Ackermann 公式计算法进行闭环系统极点配置;(3)采用调用place 函数法进行闭环系统极点配置。
题5.2 某系统状态空间描述如下[]010100134326100x x u y x⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦= 设计全维状态观测器,要求状态观测器的极点为[]123---。