目标函数和约束条件三部分组成
- 格式:ppt
- 大小:524.00 KB
- 文档页数:28
线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
一、选择题(每小题3分)1. (线性规划问题的数学模型形式)线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量2.(线性规划问题的标准形式)在线性规划问题的标准形式中,不可能存在的变量是(D )。
A.决策变量B.松驰变量 C.剩余变量 D.人工变量3.(同上)将线性规划问题转化为标准形式时,下列说法不正确的是( D )。
A.如为求z的最小值,需转化为求-z的最大值B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量4.(同上)下列选项中不符合线性规划模型标准形式要求的有(B )。
A.目标函数求最大值 B.右端常数无约束 C.变量非负 D.约束条件为等式5.(线性规划问题解的情况)线性规划问题若有最优解,则最优解( C )。
A.只有一个B.会有无穷多个C. 唯一或无穷多个D.其值为06.(图解法)用图解法求解一个关于最小成本的线性规划问题时,若其等值线与可行解区域的某一条边重合,则该线性规划问题( A )。
A.有无穷多个最优解 B.有有限个最优解C.有唯一的最优解D.无最优解7.(图解法)图解法通常用于求解有(B)个变量的线性规划问题A.1B.2C.4D.58.(单纯形法求解线性规划问题的几种特殊情况)若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零9.(同上)线性规划具有多重最优解是指( B )。
A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大于零10.(同上)线性规划具有唯一最优解是指( A )A.最优表中非基变量检验数全部非零B.不加入人工变量就可进行单纯形法计算C.最优表中存在非基变量的检验数为零D.可行解集合有界11.(单纯形法)单纯形法当中,入基变量的确定应选择检验数(C )A.绝对值最大B.绝对值最小C. 正值最大D. 负值最小12.(单纯形法)出基变量的含义是( D )A . 该变量取值不变 B.该变量取值增大 C. 由0值上升为某值 D.由某值下降为013.(单纯形法之人工变量)在约束方程中引入人工变量的目的是( D )A.体现变量的多样性B. 变不等式为等式C.使目标函数为最优D. 形成一个单位阵14. (单纯形法之大M法)求目标函数为最大的线性规划问题时,若全部非基变量的检验数小于等于零,且基变量中有人工变量时该问题有(B )A.无界解B.无可行解C. 唯一最优解D.无穷多最优解15(灵敏度分析)若线性规划问题最优基中某个基变量的目标系数发生变化,则(C )A.该基变量的检验数发生变化 B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化D.所有变量的检验数都发生变化16(灵敏度分析)线性规划灵敏度分析的主要功能是分析线性规划参数变化对(D )的影响。
机会约束规划
机会约束规划是指在给定的条件下,通过分析可能存在的机会,对已知及未知的因素进行约束,使最终的解决方案尽可能满足要求。
一般情况下,机会约束规划由三部分组成:目标函数、约束条件和机会约束。
目标函数是机会约束规划的核心,它代表了解决问题的最终目标,例如最小化总成本,最大化利润等。
约束条件是指满足解决问题的必要条件,它可以是来自于客观环境的硬性约束,也可以是来自于政策的软性约束。
机会约束指的是可以在不影响目标函数的前提下,尽可能充分地利用可能存在的机会,使最终的解决方案尽可能满足要求,如引入新技术,优化生产流程等。
优化设计的概念和原理概念1 前言对任何一位设计者来说,其目的是做出最优设计方案,使所设计的产品或工程设施,具有最好的使用性能和最低的材料消耗与制造成本,以便获得最佳的经济效益和社会效益。
因此,在实际设计中,科技人员往往首先拿出几种不同的方案,通过对比分析以选取其中的最优方案。
但在现实中,往往由于经费限制,使所选择的候选方案数目受到很大的限制,因此急需一种科学有效的数学方法,于是诞生了“最优化设计”理论。
最优化设计是在计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法综合各方面因素,以人机配合方式或“自动探索”方式,在计算机上进行的半自动或自动设计,以选出在现有工程条件下的最佳设计方案的一种现代设计方法。
其设计原则是最优设计:设计手段是电子计算机及计算程序;设计方法是采用最优化数学方法.本文将就最优化设计常用的概念如:设计变量、目标函数、约束条件等做简要介绍。
2设计变量设计变量是在设计过程中进行选择最终必须确定的各项独立参数。
在选择过程中它们是变量,但当变量一旦确定以后,设计对象也就完全确定。
最优化设计就是研究如何合理地优选这些设计变量值的一种现代设计方法。
在机械设计中常用的独立参数有结构的总体配置尺寸,元件的几何尺寸及材料的力学和物理特性等。
在这些参数中,凡是可以根据设计要求事先给定的,则不是设计变量,而称之为设计常量。
最简单的设计变量是元件尺寸,如杆元件的长度,横截面积,抗弯元件的惯性矩:板元件的厚度等。
3目标函数目标函数即设计中要达到的目标。
在最优化设计中,可将所追求的设计目标(最优指标)用设计变量的函数形式表示出来,这一过程称为建立目标函数,一般目标函数表达为f(x)=f(xl,xZ,…,x。
)此函数式代表设计的某项最重要的特征,例如所设计元件的性能、质量或体积以及成本等。
最常见的情况是以质量作为函数,因为质量的大小是对价值最易于定量的一种量度。
虽然,费用有更大的实际重要性,但通常需有足够的资料方能构成以费用做为目标函数。
《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( )4. 满足线性规划问题所有约束条件的解称为可行解。
( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( )6. 对偶问题的对偶是原问题。
( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( )#8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )二、单项选择题~1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。
A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。
《运筹学》一、判断题:在下列各题中,您认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1、 T2、 F3、 T4、T5、T6、T7、 F8、 T9、 F10、T 11、 F 12、 F 13、T 14、 T 15、 F1、线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2、用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3、若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4、满足线性规划问题所有约束条件的解称为可行解。
( T )5、在线性规划问题的求解过程中,基变量与非机变量的个数就是固定的。
( T )6、对偶问题的对偶就是原问题。
( T )7、在可行解的状态下,原问题与对偶问题的目标函数值就是相等的。
( F )8、运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9、指派问题的解中基变量的个数为m+n。
( F )10、网络最短路径就是指从网络起点至终点的一条权与最小的路线。
( T )11、网络最大流量就是网络起点至终点的一条增流链上的最大流量。
( F)12、工程计划网络中的关键路线上事项的最早时间与最迟时间往往就是不相等。
( F )13、在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14、单目标决策时,用不同方法确定的最佳方案往往就是不一致的。
( T )15、动态规则中运用图解法的顺推方法与网络最短路径的标号法上就是一致的。
( F )二、单项选择题1、A2、B3、D4、B5、A6、C7、B8、C9、 D 10、B11、A 12、D 13、C 14、C 15、B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
A、增大B、不减少C、减少D、不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
《运筹学》期末复习题一、单项选择题1、下列叙述正确的是()。
A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、线性规划的变量个数与其对偶问题的()相等。
A.变量目标函数C.约束条件个数答案:C3、在利用表上作业法求各非基变量的检验数时,有闭回路法和()两种方法。
A.西北角法C.最低费用法答案:B4、下列各项()不是目标规划的特点。
A.多目标C.具有优先次序答案:B5、下列关于图的说法中,错误的为()。
A.点表示所研究的事物对象C.无向图是由点及边所构成的图答案:D6、利用单纯形法求解线性规划问题时,首先需要()。
A.找初始基础可行基C.确定改善方向答案:A7、对偶问题最优解的剩余变量解值()原问题对应变量的检验数的绝对值。
A.大于C.等于答案:C第1页共17页B.变量约束条件D.不确定B.位势法D.元素差额法B.单一目标D.不求最优B.检验当前基础可行解是否为最优解D.确定入变量的最大值和出变量B.小于D.不能确定8、当某个非基变量检验数为零,则该问题有()。
A.无解B.无穷多最优解C.退化解D.惟一最优解答案:B9、PERT网络图中,()表示一个工序。
A.节点B.弧C.权D.关键路线答案:B10、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有(A.P>DB.P答案:C11、下列有关线性规划问题的标准形式的叙述中错误的是()。
A.目标函数求极大B.约束条件全为等式C.约束条件右端常数项全为正D.变量取值全为非负答案:C12、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A.非负条件B.顶点集合C.最优解D.决策变量答案:D13、如果原问题有最优解,则对偶问题一定具有()。
A.无穷多解B.无界解C.最优解D.不能确定答案:C14、运输问题的基变量有()个。
第一章测试1.运筹学的工作步骤, 往往按照以下步骤:①. 提出和形成问题;②. 解的检验;③. 建立模型;④. 求解(最优解、次优解、近似最优解、满意解、非劣解);⑤. 解的控制;⑥. 解的实施。
以上步骤的正确顺序是()。
A:① ③ ② ⑤ ④ ⑥B:① ③ ④ ② ⑤ ⑥C:① ② ③ ④ ⑤ ⑥D:① ③ ② ④ ⑤ ⑥答案:B2.运筹学具有多学科交叉的特点。
()A:对B:错答案:A3.运筹学引入中国的时间是二十世纪六十年代。
()A:对B:错答案:B4.运筹学是一门在第一次世界大战期间发展起来的新兴科学。
()A:对B:错答案:A5.运筹学具有显著的系统分析特征。
()A:错B:对答案:B6.运筹学具有丰富广泛的应用性和强烈的实践性。
()A:对B:错答案:A7.运筹学的研究与应用从军事大规模转向工农业生产,经济管理等民用领域始于20世纪50年代。
()A:错B:对答案:A8.世界上第一运筹学研究小组在美国成立。
()A:对B:错答案:B9.我国第一个运筹学小组成立于1956年。
()A:对B:错答案:A10.沈括运军粮的故事说明我国很早就产生了运筹学。
()A:错B:对答案:A第二章测试1.在下面的数学模型中,属于线性规划模型的为()A:B:C:D:答案:B2.线性规划问题若有最优解,则一定可以在可行域的()上达到。
A:外点B:几何点C:内点D:顶点答案:D3.在线性规划模型中,没有非负约束的变量称为()A:多余变量B:自由变量C:松弛变量D:人工变量答案:B4.若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为()A:两个B:零个C:无穷多个D:有限多个答案:C5.对于线性规划问题标准型、maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。
A:减少B:增大C:不增大D:不减少答案:B6.若线性规划问题的最优解不唯一,则在最优单纯形表上()。
目标函数和约束条件
为了对设计进行评价,必须构造包含设计变量的评价函数,即优化的目标,称为目标函数。
在优化过程中,通过设计变量的改变不断改善的值,最后求得令值最好或最满意的x 值。
在目标函数的构造中,应注意目标函数必须包含全部设计变量。
目标函数一般用极小值表示,即,若求目标函数的极大值,一般用转换为极小值问题,因此极大化和极小化都可统一表示为求极小,即在机械设计中,一般用作目标函数的有体积最小、质量最小、效率最大、柔度最小、振幅或噪声最小、成本最低,等等。
机械优化设计一般分为单目标优化问题和多目标优化问题。
只有一个目标函数的优化问题称为单目标优化问题;在同一个设计中要提出多个目标区数时,称为多目标优化问
题。
目标函数愈多,设计的综合效果愈好,但求解的难度也愈大。
目标函数一般表现为显式和隐式两种。
显式目标函数是根据设计理论或公式、科学定理的关系推导的代数方程,或是根据实验数据采用曲线拟合方法所得的曲线方程;隐式目标函数是利用有限元分析方法、人工神经网络方法或仿真模拟方法的程序计算的结果,没有明显的函数式,但可给出函数值。
一、判断1、在线性规划的模型中全部变量要求是整数。
( × )2、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × )3、一个图中的最短边一定包含在最短路内。
( × )4、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ )5、在二元线性规划问题中,如问题有可行解,则一定有最优解。
( × ) 1、在线性规划的模型中全部变量要求是整数。
( × ) 2、产地数与销地数相等的运输问题是产销平衡运输问题。
( × )3、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × )4、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ )5、无圈且连通简单图G 是树图。
( √ )1、运筹学主要研究对象是各种有组织系统的管理问题及生产经营活动。
( √ )2、运筹学的目的在于针对所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
( √ )3、如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( × ) 5、运筹学最早是应用在生产管理方面。
( × ) 6、在线性规划的模型中全部变量要求是整数。
( × )7、在二元线性规划问题中,如问题有可行解,则一定有最优解。
( × )二、单项选择题1、线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。
A. 非负条件 B. 顶点集合 C. 最优解 D. 决策变量2、对于线性规划121231241234max 24..3451,,,0z x x s t x x x x x x x x x x =-+-+=⎧⎪++=⎨⎪≥⎩如果取基1110B ⎛⎫= ⎪⎝⎭,则对于基B 的基解为( B )。
A.(0,0,4,1)T X =B.(1,0,3,0)TX =C.(4,0,0,3)TX=- D.(23/8,3/8,0,0)TX=-3、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则( B )也是该线性规划问题的最优解。
第二章 线性规划 作业及答案1、试述线性规划数学模型的组成部分及其特性答:线性规划数学模型由决策变量、约束条件和目标函数三个部分组成。
线性规划数学模型特征:(1) 用一组决策变量表示某一方案,这组决策变量均为非负的连续变量;(2) 存在一定数量(m )的约束条件,这些约束条件可以用关于决策变量的一组线性等式或者不等式来加以表示;(3) 有一个可以用决策变量加以表示的目标函数,而该函数是一个线性函数。
2、一家餐厅24小时全天候营业,在各时间段中所需要的服务员数量分别为:2:00~6:00 3人 6:00~10:00 9人 10:00~14:00 12人 14:00~18:00 5人 18:00~22:00 18人 22:00~ 2:00 4人设服务员在各时间段的开始时点上上班并连续工作八小时,问该餐厅至少配备多少服务员,才能满足各个时间段对人员的需要。
试构造此问题的数学模型。
解:用决策变量1x ,2x ,3x ,4x ,5x ,6x 分别表示2:00~6:00, 6:00~10:00 ,10:00~14:00 ,14:00~18:00,18:00~22:00, 22:00~ 2:00 时间段的服务员人数。
其数学模型可以表述为:123456min Z x x x x x x =+++++16122334455612345639125184,,,,,0x x x x x x x x x x x x x x x x x x +>=+>=+>=+>=+>=+>=≥3、现要截取2.9米、2.1米和1.5米的元钢各100根,已知原材料的长度是7.4米,问应如何下料,才能使所消耗的原材料最省。
试构造此问题的数学模型。
解:圆钢的截取有不同的方案,用θ表示每种切割方案的剩余材料。
其切割方案如下所示: 2.9 2.1 1.5 θ 1' 1 1 1 0.9 2' 2 0 0 0.1 3' 1 2 0 0.3 4' 1 0 3 0 5' 0 1 3 0.8 6'41.47' 0 2 2 0.2 8' 0 3 0 1.1 目标函数为求所剩余的材料最少,即12345678min 0.90.10.300.8 1.40.2 1.1Z x x x x x x x x =+++++++1234135781245671234567821002231003342100,,,,,,,0x x x x x x x x x x x x x x x x x x x x x x x +++>=++++>=+++++>=≥4、某糖果厂用原料A 、B 、C 加工成三种不同牌号的糖果甲、乙、丙。