量子电子学-激光原理概述
- 格式:pdf
- 大小:221.48 KB
- 文档页数:5
激光原理LASER (light amplification by stimulated emission of radiation )受激发射光放大,源于爱因斯坦在量子理论的基础上提出的一个概念:在物质与辐射场的相互作用中。
构成物质的原子或者是分子可以再光子的激励之下产生光子的受激发射或吸收。
根据这个理论,如果能使构成物质的粒子状态的状态离开波尔兹慢热平衡,实现所谓的粒子数反转;那么就可以利用这种状态的物质对光进行放大。
与此同时,物理学家同时证明:受激发射的光子和激励光子具有相同的性质——方向、频率、相位、偏振。
在此基础上,后来的科学家设想能够利用能够利用这样的性质产生单色性较好的光源。
在上个世纪50年代的时候,电子和微波技术的发展产生了将电磁波谱向光频拓展的需求。
这样,一批勇于探索和创新的科学家,提出了一系列的理论来实现这种极为纯的光源:美国的汤斯(Charles H. Towns )前苏联的科学家巴索夫和普罗霍洛夫创造性的继承和发展爱因斯坦的理论,提出了利用原子分子的受激发射光放大来放大电磁波。
1958年汤斯和他的合作者肖洛产生了利用远超过光波长度的光学谐振腔来实现这种放大。
1960年7月美国的梅曼演示了第一台红宝石激光器。
这种光具有完全不同于普通光的性质:单色性、方向性、相干性。
激光的物理原理受激辐射:在普朗克与1900年用量子化假设成功解释了黑体辐射分布,以及波尔在1913年提出原子中电子的运动状态量化的假设基础上,爱因斯坦从两字的概念出发,重新的推到了普朗克公式,提出了两个极为重要的概念:受激辐射和自发辐射。
我们知道在物质的原子中存在着分离的能级,在一个热平衡态全同粒子系统中,处于各个能级的粒子数是按照一定规律分布的——波尔兹慢分布。
T k E E b e n n )21(12--=(N1、n2分别是处于E2E1能级上的粒子数)一般来说,处于高能级的粒子数要少于低能级。
在一个热平衡系统中,粒子并不是一种静态的平衡,而是在不断地运动着的。
激光工作原理激光(Laser)是指一种具有高单色性、高亮度的光,其产生的过程是通过激发原子、分子或固体晶体中的电子能级跃迁而实现的。
激光在现代科技应用中具有广泛的用途,例如激光切割、激光雕刻、激光治疗等。
本文将为您详细介绍激光工作的基本原理。
一、激光的产生过程激光的产生过程主要包括三个步骤:激发、增强和产生。
1. 激发阶段:在激光器中,通过能量输入(如电能、光能等)使得介质处于激发态。
能量的输入可以通过电磁场激发,或者通过光束与物质相互作用实现。
激发态能级的能量高于基态,电子处于非稳定状态。
2. 增强阶段:在激发态的电子中,由于受到外部的刺激,电子会跃迁到更高的激发态。
这些电子在激发态之间的跃迁中释放出更多的能量,从而形成了一种能量逐渐积累的过程。
这个阶段又被称为能量积累阶段。
3. 产生阶段:当能量积累达到一定程度时,激发态的电子跃迁到基态会产生一束特定波长的光子。
这个光子与入射的光子频率或介质中的其他光子频率相同,达到了相干和放大的效果,从而形成了激光。
二、激光的基本原理激光的产生基于基本的量子物理原理,主要包括受激辐射、光学谐振腔和增益介质。
1. 受激辐射:受激辐射是激光产生的基本物理现象。
当一个激发态的原子或分子遇到一个与自身激发态频率相同的光子时,会从高能级跃迁到低能级,并产生与原始光子具有相同频率和相位的新光子。
2. 光学谐振腔:光学谐振腔是激光器中的重要组成部分,用于放大和反射光。
光学谐振腔包括两个镜片,一个是激光输出镜,另一个是高反射镜。
激光光线在两个镜片之间多次反射并逐渐增强。
当增强光线达到一定强度时,激光输出镜会允许一部分光线通过,形成激光束的输出。
3. 增益介质:增益介质是能够提供激光放大过程所需能量的物质。
常见的增益介质包括激光二极管、气体(如二氧化碳)、固体(如Nd:YAG晶体)和液体等。
在这些介质中,通过激发能级跃迁和相应的补偿机制,能量得以积累并产生激光。
三、激光的特性激光具有一些独特的特性,使其在科学研究和工程应用中得到广泛应用。
激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。
它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。
激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。
首先是光的激发。
激光的产生需要通过能量输入来激发原子或分子的能级。
当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。
然后是光的放大。
在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。
这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。
最后是光的辐射。
当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。
这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。
激光的特点激光具有以下几个主要特点:1.高度相干性。
激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。
这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。
2.高亮度。
激光的辐射强度非常集中,因此具有很高的亮度。
这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。
3.高直线度。
激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。
这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。
激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。
目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。
气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。
其中最著名的就是氦氖激光器。
使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。
然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。
激光的原理及应用概述激光(Laser)是一种具有高度凝聚、单色性和相干性的电磁波,被广泛应用于科学研究、医疗诊断、工业加工等众多领域。
本文将介绍激光的基本原理和主要应用。
原理激光的产生基于三个主要过程:受激辐射、光学腔共振和光放大。
下面将分别对这三个过程进行详细介绍。
受激辐射受激辐射是激光产生的核心原理。
在激光器中,有两种能级:基态和激发态。
当一个处于激发态的原子或分子跃迁回基态时,它会放出一个光子。
如果有一个已经处于激发态的原子或分子经过旁边时,它会被受激而跃迁回基态,并放出与前一个光子完全一样的光子,这就是受激辐射。
这样的连锁反应会导致光子不断增加,形成激光。
光学腔共振光学腔是激光产生的重要组成部分。
它由两个反射镜构成,其中一个镜子是完全透明的,而另一个镜子是部分透明的。
光通过部分透明的镜子进入腔体,并在腔内来回反射。
只有与腔长相等的某些波长的光波能够与自身发生共振,其他波长的光波则会被不断衰减。
反射镜的制备非常精确,以确保只有特定波长的光能够留在腔内,从而增强光的相干性。
光放大在光学腔内,由于受激辐射的连锁反应,光能被不断放大。
这是通过在腔体中引入一个增益介质(如激光器材料)实现的。
增益介质能够吸收入射光的能量,并通过受激辐射放出更多的光子。
这样,光波在腔体内反复多次放大,最终形成一个具有高度密集能量的激光束。
应用激光在各个领域都有广泛的应用。
下面列举几个典型的应用领域。
科学研究激光在科学研究中扮演着重要的角色。
激光可以用于原子物理学研究、量子力学实验、激光光谱学等领域。
由于激光具有高度凝聚性和单色性,它能够提供高分辨率的实验数据,帮助科学家们更深入地了解物质的本质。
医疗诊断激光在医疗领域中有着广泛的应用。
激光可以用于眼科手术、整形外科、皮肤治疗等方面。
例如,激光可以用于激光手术,如准分子激光手术矫正近视等眼科手术;同时,激光在皮肤治疗方面也有应用,如去除良性肿瘤、治疗皮肤病等。
工业加工激光在工业加工中变得越来越重要。