量子电子学-激光原理概述
- 格式:pdf
- 大小:221.48 KB
- 文档页数:5
激光原理LASER (light amplification by stimulated emission of radiation )受激发射光放大,源于爱因斯坦在量子理论的基础上提出的一个概念:在物质与辐射场的相互作用中。
构成物质的原子或者是分子可以再光子的激励之下产生光子的受激发射或吸收。
根据这个理论,如果能使构成物质的粒子状态的状态离开波尔兹慢热平衡,实现所谓的粒子数反转;那么就可以利用这种状态的物质对光进行放大。
与此同时,物理学家同时证明:受激发射的光子和激励光子具有相同的性质——方向、频率、相位、偏振。
在此基础上,后来的科学家设想能够利用能够利用这样的性质产生单色性较好的光源。
在上个世纪50年代的时候,电子和微波技术的发展产生了将电磁波谱向光频拓展的需求。
这样,一批勇于探索和创新的科学家,提出了一系列的理论来实现这种极为纯的光源:美国的汤斯(Charles H. Towns )前苏联的科学家巴索夫和普罗霍洛夫创造性的继承和发展爱因斯坦的理论,提出了利用原子分子的受激发射光放大来放大电磁波。
1958年汤斯和他的合作者肖洛产生了利用远超过光波长度的光学谐振腔来实现这种放大。
1960年7月美国的梅曼演示了第一台红宝石激光器。
这种光具有完全不同于普通光的性质:单色性、方向性、相干性。
激光的物理原理受激辐射:在普朗克与1900年用量子化假设成功解释了黑体辐射分布,以及波尔在1913年提出原子中电子的运动状态量化的假设基础上,爱因斯坦从两字的概念出发,重新的推到了普朗克公式,提出了两个极为重要的概念:受激辐射和自发辐射。
我们知道在物质的原子中存在着分离的能级,在一个热平衡态全同粒子系统中,处于各个能级的粒子数是按照一定规律分布的——波尔兹慢分布。
T k E E b e n n )21(12--=(N1、n2分别是处于E2E1能级上的粒子数)一般来说,处于高能级的粒子数要少于低能级。
在一个热平衡系统中,粒子并不是一种静态的平衡,而是在不断地运动着的。
激光工作原理激光(Laser)是指一种具有高单色性、高亮度的光,其产生的过程是通过激发原子、分子或固体晶体中的电子能级跃迁而实现的。
激光在现代科技应用中具有广泛的用途,例如激光切割、激光雕刻、激光治疗等。
本文将为您详细介绍激光工作的基本原理。
一、激光的产生过程激光的产生过程主要包括三个步骤:激发、增强和产生。
1. 激发阶段:在激光器中,通过能量输入(如电能、光能等)使得介质处于激发态。
能量的输入可以通过电磁场激发,或者通过光束与物质相互作用实现。
激发态能级的能量高于基态,电子处于非稳定状态。
2. 增强阶段:在激发态的电子中,由于受到外部的刺激,电子会跃迁到更高的激发态。
这些电子在激发态之间的跃迁中释放出更多的能量,从而形成了一种能量逐渐积累的过程。
这个阶段又被称为能量积累阶段。
3. 产生阶段:当能量积累达到一定程度时,激发态的电子跃迁到基态会产生一束特定波长的光子。
这个光子与入射的光子频率或介质中的其他光子频率相同,达到了相干和放大的效果,从而形成了激光。
二、激光的基本原理激光的产生基于基本的量子物理原理,主要包括受激辐射、光学谐振腔和增益介质。
1. 受激辐射:受激辐射是激光产生的基本物理现象。
当一个激发态的原子或分子遇到一个与自身激发态频率相同的光子时,会从高能级跃迁到低能级,并产生与原始光子具有相同频率和相位的新光子。
2. 光学谐振腔:光学谐振腔是激光器中的重要组成部分,用于放大和反射光。
光学谐振腔包括两个镜片,一个是激光输出镜,另一个是高反射镜。
激光光线在两个镜片之间多次反射并逐渐增强。
当增强光线达到一定强度时,激光输出镜会允许一部分光线通过,形成激光束的输出。
3. 增益介质:增益介质是能够提供激光放大过程所需能量的物质。
常见的增益介质包括激光二极管、气体(如二氧化碳)、固体(如Nd:YAG晶体)和液体等。
在这些介质中,通过激发能级跃迁和相应的补偿机制,能量得以积累并产生激光。
三、激光的特性激光具有一些独特的特性,使其在科学研究和工程应用中得到广泛应用。
激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。
它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。
激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。
首先是光的激发。
激光的产生需要通过能量输入来激发原子或分子的能级。
当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。
然后是光的放大。
在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。
这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。
最后是光的辐射。
当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。
这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。
激光的特点激光具有以下几个主要特点:1.高度相干性。
激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。
这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。
2.高亮度。
激光的辐射强度非常集中,因此具有很高的亮度。
这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。
3.高直线度。
激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。
这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。
激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。
目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。
气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。
其中最著名的就是氦氖激光器。
使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。
然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。
激光的原理及应用概述激光(Laser)是一种具有高度凝聚、单色性和相干性的电磁波,被广泛应用于科学研究、医疗诊断、工业加工等众多领域。
本文将介绍激光的基本原理和主要应用。
原理激光的产生基于三个主要过程:受激辐射、光学腔共振和光放大。
下面将分别对这三个过程进行详细介绍。
受激辐射受激辐射是激光产生的核心原理。
在激光器中,有两种能级:基态和激发态。
当一个处于激发态的原子或分子跃迁回基态时,它会放出一个光子。
如果有一个已经处于激发态的原子或分子经过旁边时,它会被受激而跃迁回基态,并放出与前一个光子完全一样的光子,这就是受激辐射。
这样的连锁反应会导致光子不断增加,形成激光。
光学腔共振光学腔是激光产生的重要组成部分。
它由两个反射镜构成,其中一个镜子是完全透明的,而另一个镜子是部分透明的。
光通过部分透明的镜子进入腔体,并在腔内来回反射。
只有与腔长相等的某些波长的光波能够与自身发生共振,其他波长的光波则会被不断衰减。
反射镜的制备非常精确,以确保只有特定波长的光能够留在腔内,从而增强光的相干性。
光放大在光学腔内,由于受激辐射的连锁反应,光能被不断放大。
这是通过在腔体中引入一个增益介质(如激光器材料)实现的。
增益介质能够吸收入射光的能量,并通过受激辐射放出更多的光子。
这样,光波在腔体内反复多次放大,最终形成一个具有高度密集能量的激光束。
应用激光在各个领域都有广泛的应用。
下面列举几个典型的应用领域。
科学研究激光在科学研究中扮演着重要的角色。
激光可以用于原子物理学研究、量子力学实验、激光光谱学等领域。
由于激光具有高度凝聚性和单色性,它能够提供高分辨率的实验数据,帮助科学家们更深入地了解物质的本质。
医疗诊断激光在医疗领域中有着广泛的应用。
激光可以用于眼科手术、整形外科、皮肤治疗等方面。
例如,激光可以用于激光手术,如准分子激光手术矫正近视等眼科手术;同时,激光在皮肤治疗方面也有应用,如去除良性肿瘤、治疗皮肤病等。
工业加工激光在工业加工中变得越来越重要。
激光原理高福斌2010.9.29/652/65第2章激光产生的基本原理2.1 原子发光的机理2.1.1 原子的结构2204Zef r πε=原子序号为Z 的原子中,设电子沿以核为中心的圆形轨道运动,电子质量为m ,轨道半径为r ,绕轨道运动的速率为V ,则电子受到的库仑力为(2-1)由牛顿第二定律,电子受到库仑力等于电子绕核转动的向心力,即22204Ze V f m r r πε==(2-2)3/652h mVr n π=波尔引用量子理论,提出一个假设:电子的角动量m V r 只能等于h /2π的整数倍,即(2-3)式中,h 为普朗克常数,n (1,2,3,…)为主量子数波尔假设意味着电子运动的轨道只能是一些量子化的轨道。
联立(2-2)和(2-2)可解出波尔模型中电子量子化轨道半径为2202n h r n Z me επ=(2-4)E()3.非辐射跃迁: 既不发射又不吸收光子的跃迁(通过与其它粒子或气体容器壁的碰撞、或其它能量交换过程)4.激发态的平均寿命τ: 粒子在激发态停留时间的平均值。
τ的典型值: 10-7~10-9秒5.亚稳态:若某一激发能级与较低能级之间没有或只有微弱的辐射跃迁, 则该态的平均寿命会很长(≥10-3秒),称亚稳能级,相应的态为亚稳态。
7/658/65一般,能级寿命10-8 ∼10-9 S如H 原子2p 态τ∼0.16×10-8S3p 态τ∼0.54×10-8S亚稳态:如He 原子的两个亚稳态能级(20.55eV)τ∼10-4 S(19.77eV)τ∼10-6 S2.2 自发辐射、受激辐射和受激吸收2.2.1 自发辐射的物理意义τ14/65由于原子以及离子、分子等内部结构的特殊性,各能级的平均寿命是不一样的。
例如:红宝石中的铬离子的能级E 3寿命很短,只有10-9s (ns );而能级E 2寿命却很长,为几个ms 。
这些寿命较长的能级称为亚稳态。
在氦原子、氖原子、氩原子、氪原子、铬离子、钕离子、二氧化碳分子,等等粒子中都具有这种亚稳态能级。
激光原理公式推导过程
激光的原理是通过在物质中产生受激辐射,使原子和分子的能级发生跃迁,从而放出一束高度相干的光。
激光的原理公式推导过程如下:
1. 假设有一束电磁波经过物质时,物质中的原子或分子受到电磁波的激发,使得原子或分子的电子从低能级跃迁到高能级。
2. 根据量子力学的原理,原子或分子的能级之间的跃迁需要满足能量守恒条件,即跃迁能量等于电磁波的能量。
3. 假设原子或分子的能级之间的能量差为ΔE,电磁波频率为ν,则根据普朗克关系可以得到跃迁的光子能量为E = hν,其中 h 是普朗克常数。
4. 根据波粒二象性理论,光子的动量为 p = E/c,其中 c 是光速。
5. 物质中的原子或分子受到电磁波的激发后,会在较短的时间内自发跃迁回低能级,并放出与吸收的光子相同频率和相位的光子,这个过程称为受激辐射。
6. 受激辐射的光子与激发光子具有相同的频率和相位,因此可以进一步激发其他原子或分子,形成一个连锁反应,最终放大和产生一束高度相干的光。
综上所述,激光原理的公式推导过程主要包括能量守恒、普朗克关系、波粒二象性理论和受激辐射等基本原理。
量子力学与激光摘要量子力学是关于微观粒子运动的一门科学,其核心内容是描述微观粒子的波粒二象性——微观粒子的运动规律类似于波的运动;而微观粒子在被一些实验手段测量时又体现经典粒子的性质,如,具有动量、质量、电荷——这看似矛盾的性质被统一于物质波的概念中。
而量子力学中的光量子假说为激光的世界打开来一扇崭新的大门。
本文以量子力学中的相关原理为引,介绍了量子力学原理在激光技术中的应用以及激光的产生的相关原理。
关键词:量子力学;光量子;激光原理与产生技术引言激光器的原理,是先冲击围绕原子旋转的电子,令其在重回低能量级别时迸发出光子。
这些光子随后又会引发周围的原子发生同样的变化,即发射出光子。
最终,在激光器的引导下,这些光子形成稳定的集中束流,即我们所看到的激光。
当然,人们能够知晓这些,离不开理论物理学家马克斯·普朗克及其发现的量子力学原理。
普朗克指出,原子的能量级别不是连续的,而是分散、不连贯的。
当原子发射出能量时,是以在离散值上被称作量子的最小基本单位进行的。
激光器工作的原理,实际上就是激发一个特定量子散发能量。
能量量子化的提出1900年12月14日,在德国物理学会的一次会议上,普朗克宣读了他的论文《正常光谱的能量分布理论》。
这篇开始几乎没人注意的文章因为使用内插法引入了普朗克常数h,漂亮的解决了20世纪物理学上空的两朵乌云中之一----黑体辐射的问题,从而开创了物理学的新纪元。
人们也就把这篇文章发表的日期看作量子物理学的诞辰。
这篇论文的功绩在于普朗克常数h的引入表明了黑体空腔壁中起辐射作用的电子的能量是量子化的。
1905年,爱因斯坦以勒纳总结出的光电效应性质作为光是粒子的依据,在普朗克的基础上注意到辐射在发射和吸收时所表现的粒子性,在《关于光的产生和转化的一个启发性的观点》中提出光量子假说:他认为:一个处于高能态的粒子在一个频率适当的辐射量子的作用下,会跃迁到低能态,同时放出一个频率和运动方向同入射量子的全同的辐射量子。
激光原理知识点总结激光,这个在现代科技中扮演着重要角色的神奇存在,其背后的原理蕴含着丰富而深奥的科学知识。
接下来,让我们一起深入探索激光原理的奥秘。
首先,我们来了解一下什么是激光。
激光,全称为“受激辐射光放大”(Light Amplification by Stimulated Emission of Radiation),它具有高亮度、高方向性、高单色性和高相干性等显著特点。
要理解激光的产生,就不得不提到原子的能级结构。
原子中的电子处于不同的能级,就好像在不同的楼层上。
在正常情况下,电子处于低能级,也就是基态。
但当原子吸收了外界的能量,比如光能、电能等,电子就会被激发到高能级,这个过程称为“受激吸收”。
然而,处于高能级的电子并不稳定,它们会自发地跃迁回低能级,同时释放出能量,这个过程叫做“自发辐射”。
自发辐射发出的光方向是随机的,频率也各不相同。
但在特定条件下,处于高能级的电子受到一个外来光子的激发,会跃迁回低能级,并释放出一个与入射光子频率、相位、偏振方向和传播方向都相同的光子,这种现象被称为“受激辐射”。
受激辐射是激光产生的关键。
为了实现光的放大,也就是产生激光,我们需要有一个“增益介质”。
增益介质可以是气体、液体或固体,比如氦氖气体、红宝石晶体等。
在增益介质中,存在着大量处于高能级的原子,当外来光子通过时,会引发受激辐射,从而产生更多的相同光子,实现光的放大。
但仅仅有增益介质还不够,还需要一个光学谐振腔。
光学谐振腔通常由两块平行的反射镜组成,一块是全反射镜,另一块是部分反射镜。
光子在谐振腔内来回反射,只有那些满足谐振条件,即频率和相位与谐振腔匹配的光子才能被不断放大,最终从部分反射镜射出,形成激光。
在激光的产生过程中,还有几个重要的概念。
比如阈值条件,只有当增益大于损耗时,才能产生激光。
增益主要取决于增益介质的性质和激励水平,而损耗则包括反射镜的透射、吸收以及介质中的散射等。
另外,激光的模式也是一个重要的知识点。
激光中的量子力学原理关键字:激光 量子力学 爱因斯坦关系一、爱因斯坦关系—自发辐射和受激辐射爱因斯坦关系的提出与物体的热辐射特性相关,谈及热辐射,中心论题就是普朗克黑体辐射公式。
1、普朗克黑体辐射公式处于某一温度T (T>0K )的任何物体都会吸收和发射电磁波,称为热平衡辐射,简称热辐射。
而且服从如下规律:),(),(),(),(),(T M T T M T T M b b b i i λλαλλαλ== 式中,),(T M i λ、),(T i λα分别表示物体i 的辐出度(辐射本领)和吸收率(吸收本领);),(T M b λ、),(T b λα代表一种特殊的物体(称为黑体)的辐射本领和吸收本领。
显然,要求1),(=T b λα,即黑体能够完全吸收任何波长的电磁辐射,按照热平衡的要求,它的辐射本领也一定最大。
其实,黑体概念和力学中的指点概念一样,是理论上的一种抽象思维,但意义重大。
如同将远离我们的实际物体当做质点处理一样,将1),(≈T b λα的物体当做黑体对待。
一个带有小孔的黑空腔就是黑体的逼近物,从外界射入小孔的任何波长的电磁辐射(如太阳光)都将在腔内多次不完全反射衰减为零,而不会再逸出腔外。
如果将空腔加热到500K 以上,就会看到小孔变亮(完全发射体)。
如果黑体腔处于某一温度T 条件下,则它吸收的辐射能量应等于所发出的辐射能量,即黑体与辐射场之间应处于能量平衡状态。
显然,这种平衡必然导致空腔内存在完全确定的辐射场(广义的驻波场),这种辐射场称为黑体辐射或平衡辐射。
用ρv =ρv (T )表示温度为T 的黑体腔内单位体积中频率ν处单位频带间隔内的电磁驻波能量,称为黑体能量体密度。
2、自发辐射、受激辐射与辐射的受激吸收(i) 自发辐射为简化问题,只考虑两个能级E2和E1,并有E2-E1=hv ;单位体积内处于两能级的原子数分别用n2和n1表示。
处于高能级E2的一个原子自发的向E1跃进,并发射一个能量为hv的光子,这种过程被称为自发跃迁,由原子自发跃迁发出的光子称为自发辐射。