结构动力学(运动方程)
- 格式:ppt
- 大小:2.41 MB
- 文档页数:31
结构动力学运动控制方程分段解析法1. 引言1.1 概述在工程领域中,结构动力学是研究结构物体受外界力或激励下的响应和振动特性的一门学科。
结构动力学广泛应用于建筑、桥梁、飞机等领域,对于确保结构物的安全性和稳定性具有重要意义。
随着现代科技的发展,运动控制方程在结构动力学中扮演着至关重要的角色。
通过运动控制方程,我们可以深入理解和预测结构物运动的规律,并为其设计合适的控制策略。
因此,研究和解析这些方程是结构动力学研究中必不可少的一部分。
1.2 文章结构本文将按照以下顺序进行组织和阐述:首先,在第二部分中,我们将简要介绍结构动力学的定义和原理,以及涉及到的动力学方程。
接着,在第三部分中,我们将详细介绍分段解析法作为一种常见的求解方法,包括其基本原理、算法步骤以及相关应用案例。
在第四部分中,我们将描述所设计实验的参数设置,并对实验结果进行分析和讨论。
最后,在第五部分中,我们将总结本文的主要结论,并展望未来研究方向。
1.3 目的本文的主要目的是通过对结构动力学和运动控制方程的介绍,以及分段解析法的应用案例分析,进一步加深对相关理论和方法的理解。
同时,希望为研究者提供一个清晰、系统的框架,以便于更好地理解和应用这些内容。
鉴于分段解析法在结构动力学领域具有广泛应用和良好效果,本文还旨在为读者提供相关方法在实际工程问题中的指导参考。
2. 结构动力学2.1 定义和原理结构动力学是一门研究物体在受到外部力作用下的运动规律的领域。
它主要涉及质点的运动学和动力学,以及刚体与弹性体的运动特性。
在结构工程中,结构动力学用于分析和预测建筑物、桥梁、飞机等工程结构在自然环境或人为作用下的响应情况,并提供相应的设计依据。
2.2 动力学方程结构动力学理论通过牛顿定律和哈密顿原理等基本原理推导出结构系统的运动方程。
这些方程描述了结构物各个部分之间的相互关系,并包括质量、刚度、阻尼等参数。
根据实际工程问题,可以选择合适的数值解法求解这些方程,从而得到结构系统随时间变化的运动状态。
结构的动力学方程()g MX CX KX MIx t ++=-clear; clc; n=4;II=sqrt(-1);%主结构质量、阻尼、刚度矩阵123400000000000m mM m m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M=eye(n)*1.0e+4; K=eye(n)*1.6*1.0e+7; %主结构刚度矩阵聚合 zk=zeros(n);122223333444400000k k k kk k k K k k k k k k +-⎡⎤⎢⎥-+-⎢⎥=⎢⎥-+-⎢⎥-⎣⎦for j=1:(n-1)zk(j,j)=K(j,j)+K(j+1,j+1); zk(j,j+1)=-K(j+1,j+1); zk(j+1,j)=-K(j+1,j+1); endzk(n,n)=K(n,n); k=zk; m=M;%求解各阶模态频率 [tzxl,tzz]=eig(k,m); d=diag(sqrt(tzz)); %振型规一化 for i=1:n[tzz1(i),j]=min(d); tzxl1(:,i)=tzxl(:,j); d(j)=max(d)+1; end%振型归一化取第一层振型为1 for j=1:ntzxl1(:,j)=tzxl1(:,j)/tzxl1(1,j); endw0=tzz1;w=tzz1/(2*pi); zhx=tzxl1;广义阻尼矩阵1112220333444200002000020002M M C M M ζωζωζωζω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦各阶模态阻尼比都取0.05i ζ= %阻尼比ks0=0.05;ks=ones(n,1)*ks0;第n 阶广义质量:Tn n n M M φφ=%求广义质量 Mn=zhx'*m*zhx; 阻尼矩阵为:()()110TC C φφ--=%求阻尼矩阵 C=zeros(n); for i=1:nC(i,i)=2*ks(i)*w0(i)*Mn(i,i); endc=(zhx')\C/zhx;()()4222022222244g g g g x g g gS S ωζωωωωωζωω+=-+参数eg 即g ζ%过滤白噪声参数 eg=0.6; wg=15.708; S0=0.001574;%按照书上的要求,取频率和时间的最大值和步长 %频率间隔 dw=0.3;%最大频率范围 maxw=45; %最大时间值 maxt=40; %时间间隔 dt=0.2;%各层各时间点频率点的功率谱密度,循环变量:层数,时间点,频率点 Pwt=zeros(n,maxt/dt,maxw/dw); %频率点数循环变量wn wn=1;%对频率进行循环,求解各频率点的时间历程 for w=0:dw:maxwx1=1+4*eg^2*(w/wg)^2;x2=(1-(w/wg)^2)^2+4*eg^2*(w/wg)^2; Sgw=x1*S0/x2; s=sqrt(Sgw);%采用精细积分法进行求解时间历程,得到位移和速度时程 [disp,velp]=JINGXI67(M,zk,c,dt,maxt,w,s,n); Ywt=disp;for kkk=1:maxt/dt%求确定频率下各时间点的功率谱 Yw=Ywt(:,kkk);()()()()()1234t t t t t y y y y y ωωωωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭每一时刻和频率点的位移向量,对其进行求共轭和装置得到协方差矩阵,对角上的元素即是每一时刻的各层的功率谱y1=conj(Yw);y2=transpose(Yw);()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()11121314212223243132333441424344t t t t t t t t t t t t t t t t yy t t t t t t t t t t t t t t t t y y y y y y y y y y y y y y y y S y y y y y y y y y y y y y y y y ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωωω****************⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ %确定时间点确定频率下的功率谱Yw,取对角线元素Syyw=y1*y2; for kk=1:nPwt(kk,kkk,wn)=Syyw(kk,kk); end endwn=wn+1; end()()()()()()()()()()()()()()2012311231212222yyy yy yy yy n yy yy yy n yy yy n yy yy yy n S d S d S S S S S d S S S S S d σωωωωωωωωωωωωωωωω+∞+∞-∞--==⎡⎤ =⨯++++⋯+⎣⎦⎡⎤ =++++⋯+⎣⎦⎰⎰ %求解完成后实际上wn 为maxw/dw+2,实际频率点个数为maxw/dw+1%各层的时变方差,循环变量为:层数,时间点 Fangcha=zeros(n,maxt/dt); for tn=1:maxt/dt%求解各层的时变方差 for kk=1:nxx1=zeros(wn-1,1);%每一个时刻的方差对各频率点进行积分,频率点数取maxw/dw+1,即wn-1 for wn0=1:wn-1xx1(wn0)=Pwt(kk,tn,wn0); end%采用复合梯形求积公式对功率谱进行积分得到方差Fangcha(kk,tn)=(xx1(1)+xx1(wn-1)+2*sum(xx1(2:wn-1-1)))*dw; end end%画图c1=(1:maxt/dt)*dt; d1=Fangcha(1,:)/S0; d2=Fangcha(2,:)/S0; d3=Fangcha(3,:)/S0; d4=Fangcha(4,:)/S0; figure(3)plot(c1,d1,'k',c1,d2,'r',c1,d3,'m',c1,d4,'r-')精细积分的程序function [disp,velp]=JINGXI67(m,k,c,dt,maxt,w,s,n) %虚数单位 II=sqrt(-1); % i teω中的i ωIIW=II*w; I=eye(n); Z=zeros(n);离散化n 自由度结构受均匀调制演变随机激励(){}f t 时的运动微分方程可表示为:()()()My Cy Ky f t MIg t x t ++==-其中()x t 为平稳高斯白噪声随机过程向量,()g t 为调制函数。