在振动过程中, 物体所受到的合外力与其相对于平衡位 置的位移成正比而反向(始终指向平衡位置), 这样的力称为 线性恢复力.
简谐运动的动力学方程
由牛顿第二定律
m d 2x kx dt2
或
d2x k x 0
dt2 m
令
2 k
m
得
d2x2 x 0
dt2
—简谐运动动力学方程
微分方程的解为 x Acos(t)
(1)单摆
如图, 细线的上端固定, 另一 端悬挂一可看作质点, 质量为 m 的重物, 细线的质量和伸长可忽 略不计. 这一振动系统叫做单摆. 重物叫做摆球, 细线叫做摆线.
若把摆球从平衡位置略为拉 开后放手, 摆球就在竖直平面内 来回摆动.
解: 规定: 右方顺时针 > 0 左方逆时针 < 0
在忽略空气阻力的情况下, 合外力沿 切线方向的分力(即重力分力) 为
它拉开一个微小角度 θ后释放. 若忽
略阻力和摩擦力, 则物体将绕轴 O作微 小的自由摆动. 这样的装置叫做复摆.
简谐运动的动力学方程
简谐运动的动力学方程
解: 复摆在力矩 M的作用下的作用下的作用下的作用下,,由
定定轴律转动定M律由m定g轴l转J动定d律2由定轴转动定律由定轴转动
dt2
动力学方程为 d2 mgl
Fτ mgsin
切向运动方程为
mgsin maτ ml
d2
dt2
即
d2 g sin 0
dt2 l
为非简谐运动.
简谐运动的动力学方程
Fτ
当θ很小时 < 50 0.0873rad sin
为简谐运动 d22
dt2
0
单摆的角频率和周期分别为