计量经济学 自相关性
- 格式:ppt
- 大小:2.73 MB
- 文档页数:67
计量经济学知识点总结1. 引言计量经济学是经济学的一个分支,它运用数学和统计学的方法来研究经济现象和经济理论。
计量经济学的研究对象包括经济数据的收集、整理和分析,以及对经济模型和经济政策的评估和检验。
本文将总结计量经济学的一些重要知识点。
2. 回归分析回归分析是计量经济学中最基础的方法之一。
它用来研究一个或多个自变量对一个因变量的影响程度和方向。
回归分析包括简单线性回归和多元线性回归。
简单线性回归假设自变量和因变量之间存在线性关系,用一条直线拟合数据。
多元线性回归则考虑多个自变量对因变量的影响,通过最小二乘法求解回归方程。
在回归分析中,参数估计的标准工具是OLS(Ordinary Least Squares)估计法。
OLS估计法用于最小化预测值与观测值的残差平方和,并得到回归系数的估计值。
3. 验证回归模型在应用回归模型之前,需要对模型进行验证。
通过检验回归模型的假设和具体形式,我们可以评估模型的有效性和适用性。
3.1 线性假设回归模型的核心假设之一是线性假设。
线性假设意味着自变量和因变量之间的关系是线性的。
我们可以通过残差分析和显著性检验来验证线性假设。
残差分析用于检验模型的残差是否具有随机性、无序列相关和常方差性。
一般来说,在线性假设下,残差应该满足以上条件。
通过观察残差的图形和假设检验,我们可以对模型的线性假设进行评估。
3.2 检验回归系数的显著性回归系数的显著性检验用于确定自变量对因变量的影响是否显著。
在回归模型中,我们希望得到对回归系数的置信区间和显著性水平的判断。
常用的显著性检验包括t检验和F检验。
t检验用于检验单个回归系数的显著性,而F检验则用于检验整个回归模型的显著性。
4. 模型选择与评估在回归分析中,模型选择和评估是重要的步骤。
选择一个合适的模型可以提高估计的准确性和解释力。
4.1 变量选择变量选择是指在多元回归分析中选择自变量。
我们可以通过相关系数矩阵、逐步回归和信息准则等方法进行变量选择。
计量经济学知识点总结计量经济学是一门融合了经济学、统计学和数学的交叉学科,它通过建立经济模型,运用统计方法对经济数据进行分析,以揭示经济变量之间的关系和规律。
以下是对计量经济学中一些重要知识点的总结。
一、回归分析回归分析是计量经济学的核心方法之一。
简单线性回归模型表示为:$Y =\beta_0 +\beta_1 X +\epsilon$,其中$Y$是被解释变量,$X$是解释变量,$\beta_0$是截距项,$\beta_1$是斜率系数,$\epsilon$是随机误差项。
在进行回归分析时,需要对模型进行估计。
常用的估计方法是最小二乘法(OLS),其基本思想是使残差平方和最小,从而确定参数的估计值。
通过估计得到的回归方程可以用于预测和解释变量之间的关系。
回归分析还需要进行一系列的检验,包括拟合优度检验(如判定系数$R^2$)、变量的显著性检验($t$检验)和方程的显著性检验($F$检验)等。
二、多重共线性多重共线性指的是解释变量之间存在较强的线性关系。
这可能导致参数估计值不稳定、方差增大、$t$检验失效等问题。
检测多重共线性的方法有多种,如计算解释变量之间的相关系数、方差膨胀因子(VIF)等。
解决多重共线性的方法包括剔除一些相关变量、增大样本容量、使用岭回归或主成分回归等方法。
三、异方差性异方差性是指随机误差项的方差不是常数,而是随解释变量的变化而变化。
异方差性会影响参数估计的有效性和假设检验的可靠性。
常用的检测方法有图形法(如绘制残差平方与解释变量的关系图)、怀特检验等。
解决异方差性的方法有加权最小二乘法(WLS)等。
四、自相关性自相关性是指随机误差项在不同观测值之间存在相关关系。
自相关性会导致参数估计值有偏、无效,以及$t$检验和$F$检验不可靠。
常用的检测方法有杜宾沃森(DW)检验等。
解决自相关性的方法有广义差分法等。
五、虚拟变量虚拟变量用于表示定性变量,如性别、季节等。
在模型中引入虚拟变量可以更准确地反映经济现象。
计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。
自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。
1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。
自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。
因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。
2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。
假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。
自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。
数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。
3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。
一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。
若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。
3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。
高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。
通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。
3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。
异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。
因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。
4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。
《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。
因此,异方差性多出现在截面样本之中。
至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。
含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。
用OLS 估计,所得b 是无偏的,但不是有效的。
111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。
即满足无偏性。
但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。
D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。
第六章自相关性6.1 自相关性:6.1.1. 非自相关假定由第2章知回归模型的假定条件之一是,Cov(u i, u j) = E(u i u j) = 0, (i, j∈T, i≠j), (6.1)即误差项u t的取值在时间上是相互无关的。
称误差项u t非自相关。
如果Cov (u i,u j ) ≠ 0, (i≠j)则称误差项u t存在自相关。
自相关又称序列相关。
原指一随机变量在时间上与其滞后项之间的相关。
这里主要是指回归模型中随机误差项u t与其滞后项的相关关系。
自相关也是相关关系的一种。
6.1.2.一阶自相关自相关按形式可分为两类。
(1)一阶自回归形式当误差项u t只与其滞后一期值有关时,即u t = f (u t - 1) + v t称u t具有一阶自回归形式。
(2) 高阶自回归形式当误差项u t的本期值不仅与其前一期值有关,而且与其前若干期的值都有关系时,即u t = f (u t– 1, u t– 2 , …u t– p ) + v t则称u t具有P阶自回归形式。
通常假定误差项的自相关是线性的。
因计量经济模型中自相关的最常见形式是一阶自回归形式,所以下面重点讨论误差项的线性一阶自回归形式,即u t = α1 u t -1 + v t(6.2)其中α1是自回归系数,v t 是随机误差项。
v t 满足通常假设E(v t) = 0, t = 1, 2 …,T,Var(v t) = σv2, t = 1, 2 …,T,Cov(v i , v j ) = 0, i ≠ j , i , j = 1, 2 …, T , Cov(u t -1, v t ) = 0, t = 1, 2 …, T ,依据普通最小二乘法公式,模型(6.2)中 α1 的估计公式是,1ˆa= ∑∑=-=-Tt t Tt t t u u u 22121(1ˆβ=∑---2)())((x x x x y y t t t ) (6.3)其中T 是样本容量。
实验6.美国股票价格指数与经济增长的关系——自相关性的判定和修正一、实验内容:研究美国股票价格指数与经济增长的关系。
1、实验目的:练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。
2、实验要求:(1)分析数据,建立适当的计量经济学模型(2)对所建立的模型进行自相关分析(3)对存在自相关性的模型进行调整与修正二、实验报告1、问题提出通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系?GDP是一国经济成就的根本反映。
从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP 增长,股票价格就随之上涨,实际走势有时恰恰相反。
必须将GDP与经济形势结合起来考虑。
在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。
本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。
2、指标选择:指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。
3、数据来源:实验数据来自《总统经济报告》(1989年),如表1所示:表1 4、数据处理将两组数据利用Eviews绘图,如图1、2所示:图1 GDP数据简图图2 SPI数据简图经过直观的图形检验,在1970-1987年间,美国的GDP保持持续平稳上升,SPI虽然有些波动,但波动程度不大,和现实经济相符,从图形上我们并没有发现有异常数据的存在。
所以可以保证数据的质量是可以满足此次实验的要求。