力的分解的正交分解法
- 格式:doc
- 大小:421.50 KB
- 文档页数:2
力的合成与分解正交分解法一、力的合成1.力的合成(1)合力和力的合成:(2)共点力:特征是作用线“共点”,而不一定是力的作用点“共点”.2.平行四边形定则3.合力的大小及方向F=F21+F22+2F1F2cosθ合力的方向tanβ=F1sinθF2+F1cosθ讨论:(1)在F1、F2大小不变的情况下,F1、F2之间的夹角θ越大,合力F越小;θ越小,合力F越大.(2)当θ=0°时,F=F1+F2,为F的最大值.当θ=90°时,F=F21+F22当θ=120°且F1=F2时,F=F1=F2当θ=180°时,F=|F1-F2|,为F的最小值(3)合力的变化范围为|F1-F2|≤F≤F1+F2合力可以大于分力,可以等于分力,也可以小于分力.4.三角形定则:二、力的分解1.分力与力的分解一个已知力按力的效果进行分解的方法在实际问题中,一个力如何分解,应按下述步骤:(1)先根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个分力的方向画出平行四边形,且注意标度选取;(3)根据平行四边形和学过的数学知识求出两个分力的大小和方向.求解方法:①平行四边形法;②正弦定理法;③相似三角形法;④余弦定理法.思维突破(1)已知力F的大小与方向以及两个分力的方向,则两个分力的大小有惟一确定解,如图2-3-7.(2)已知F的大小与方向以及一个分力的大小和方向,则另一分力的大小和方向有惟一确定解,如图(3)已知力F的大小和方向以及一个分力F1的方向和另一个分力F2的大小,如图当F2=F sinθ时,有惟一解;当F2<F sinθ时,无解;当F>F2>F sinθ时,有两解;当F2>F时,一解.具体做法是以F的矢端为圆心,以F2的大小为半径画圆弧,与F1相切,惟一解,如图(a);相交,两解,如图(b);不相交,无解,如图(c);F2>F时,相交一点,有一解,如图(d).3.正交分解法在物理问题中,常常把一个力分解为相互垂直的两个分力,这种分解方法叫做正交分解法.求多个共点力的合力时,如果连续运用平行四边形定则求解,计算过程十分复杂,如果采用力的正交分解法求合力,计算过程就十分简单.如图2-3-5,其基本步骤是:(1)建立正交坐标系(x轴、y轴).通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定.原则是使坐标轴与尽可能多的力重合,即使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其他方向较简便时,也可选用;(2)分解与坐标轴方向不重合的力;(3)沿着坐标轴方向求合力F x、F y;(4)求F x、F y的合力F,F与F x、F y的关系如下:F=F2x+F2y,其方向为tanα=F y/F x注意:如果F合=0则必然F x=0,F y=0,这是处理多力作用下物体的平衡问题的常用规律.例1:如图所示,F1、F2、F3恰好构成封闭的直角三角形,这三个力的合力最小的是( )例2:如图所示,质量为m的球放在倾角为α的光滑斜面上,试分析挡板AO与斜面间的倾角β多大时,AO所受的压力最小.例3:某压榨机的结构示意图如图所示,其中B 点为固定铰链,若在A 铰链处作用一垂直于壁的力F ,则由于力F 的作用,使滑块C 压紧物体D ,设C 与D 光滑接触,杆的重力不计,压榨机的尺寸如图所示,求物体D 所受压力大小是F 的多少倍?(滑块C 重力不计)例4:如图所示,在倾角为θ的粗糙斜面上,有一个质量为m 的物体被水平力F 推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tan θ,请你判断力F 的取值范围.作业:1.下列关于合力与分力的叙述不正确的是A .一个物体受到几个力的作用,同时也受到这几个力的合力的作用B .几个力的合力总是大于它各个分力中最小的力C .一个力分解成两个分力,可以得到无数对大小、方向不同的分力D .合力和它相应的分力对物体的作用效果相同2.运动员将杠铃举过头顶,如图所示,设两臂间的夹角为θ,以下说法中正确的是A .θ角大些,手臂承受压力也大些B .θ角大些,手臂承受压力反而小些C .θ角变化时,手臂承受压力一样D .由于条件不足,无法判断3.如图所示,A 、B 两物体的质量分别为m A 和m B ,且m A >m B ,整个系统处于静止状态,小滑轮的质量和一切摩擦均不计,如果绳的一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,物体A 的高度和两滑轮间绳与水平方向的夹角θ如何变化A .物体A 的高度升高,θ角变大B .物体A 的高度降低,θ角变小C .物体A 的高度升高,θ角不变D .物体A 的高度不变,θ角变小4.用三根轻绳将质量为m 的物块悬挂在空中,如图所示,已知绳AO 和BO 与竖直方向的夹角都是30°,若想保持A 、O 两点的位置不变,而将B 点下移至OB 水平,则此过程中A .OB 绳上的拉力先增大后减小 B .OB 绳上的拉力先减小后增大C .OA 绳上的拉力先增大后减小D .OA 绳上的拉力不断减小5.如图所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的物体,且B 端系有一根轻绳并绕过定滑轮A ,用力F 拉绳,开始时∠BCA >90°,现使∠BCA 缓慢变小,直到杆BC 接近竖直杆AC.此过程中,轻杆B 端所受的力A .大小不变B .逐渐增大C .逐渐减小D .先减小66.水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B ,一轻绳的一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量m =10 kg 的重物,∠CBA =30°,如图甲所示,则滑轮受到绳子的作用力为(取g =10 m /s 2)A .50 NB .50 3 NC .100 ND .100 3 N7.2010高考如图所示,一物块置于水平地面上.当用与水平方向成600角的F 1力拉物块时,物块做匀速直线运动;当改用与水平方向成300角的F 2力推物块时,物块仍做匀速直线运动.若F 1和F 2的大小相等,则物块与地面之间的动摩擦因数为AB 、D 、8.如图所示,用两根细绳把A、B 两小球悬挂在天花板上的同一点O ,并用第三根细线连接A 、B 两小球,然后用某个力F 作用在小球A 上,使三根细线均处于直线状态,且OB 细线恰好沿竖直方向,两小球均处于静止状态,则该力可能为图中的A .F 1B .F 2C .F 3D .F 49.如图所示,用一个轻质三角支架悬挂重物, 已知AB 杆承受的最大压力为2 000 N ,AC 绳承受最大拉力为1 000 N ,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?1212。
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。
高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
力的分解的正交分解法
正交分解法:是把力沿着两个选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量的运算。
力的正交分解法步骤如下:
(1)正确选定直角坐标系。
通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴分解的力尽可能少。
(2)分别将各个力投影到坐标轴上。
分别求x轴和y轴上各力的投影合力Fx和Fy,其中:Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……
注意:如果F合=0,可推出Fx=0,Fy=0,这是处理多个作用下物体平衡物体的好办法,以后会常常用到。
第一步,选定研究对象.
第二步,对选定的研究对象进行受力分析!
第三步,建立直角坐标系. 通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际情况来确定,原则是使坐标轴与尽可能多的力重合,即使需要向两坐标轴分解的力尽可能少。
不在坐标轴上的力,分别将各力投影在坐标轴上。
第四步,分别求x轴和y轴上各力的投影合力Fx和Fy,其中:
Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……
注意:如果F合=0,可推出Fx=0,Fy=0。
力的分解时什么情况下两分力相等?当两个分力和合力的夹角相等时,组成的平行四边
形是一个菱形,两条邻边就相等,两个分力就相等;
请问一下2个分力夹角θ与合力有什么关系吗?是随着其增大而减小吗?在什么情况下会先增大后减小或先减小后增大?分力和合力夹角θ它们的大小关系有着很直接的关系,如果两个分力相等时,夹角等于120度,分力合力相等,当夹角小于120度,合力大于分力,当大于120度时分力大于合力;
在牛顿第二定律,小车的质量和钩码的质量有什么关系为什么?为什么做这个实验后所
画的图前半段是直的,而后半段成了曲线,?是这个图像吧!
这个实验是高中比较难的一个,要求小车的质量要远远大于钩码的质量,这样误差就会较小,图中为直线,之所以后来变成曲线就是因为,横坐标表示小车质量的倒数,越向右小车质量越小,就不满足小车的质量远大于钩码的质量了,取个极限,小车质量为零,钩码就做自由落体,图像会趋近于g,所以是曲线。