清华大学杨顶辉数值分析第5次作业答案
- 格式:docx
- 大小:86.72 KB
- 文档页数:3
数值分析第五版课后答案2篇数值分析第五版课后答案(一)第一章1.1 机器精度的数值为2^-52 ≈2.22 × 10^-16。
1.2 Example 1.2设f(x) = (1 - cosx)/sinx,则f(0)的分母为0,无法进行数值计算。
1.3 Example 1.3设f(x) = (1 - cosx)/sinx,则f(0)的分子为0,因此有f(0) = 0。
1.4 Example 1.4(a) 将x的值从1.8改为1.799,则f(x)的值由-0.000000000000159为0.000000000000313,差值为0.000000000000472。
(b) 我们有f'(x) = sinx/(1 - cosx) - 1/sin^2x。
将x的值从1.8改为1.799,利用f(x)和f'(x)的值可以得到下面的近似式:f(x + Δx) ≈ f(x) + f'(x)Δx = -0.000000000000159 + 0.449787416887455×0.001 = -0.000000000000137。
与(a)中的结果相近。
1.5 Example 1.5(a) 当x很接近于0时,函数值的符号取决于cosx的符号,其中cosx接近于1。
因此,函数值为正。
(b) 当x很接近于π时,函数值的大小趋于无穷大,因为分母趋向于0,而分子不为0。
1.6 Example 1.6(a) 因为函数在x = 0处是奇函数,所以它的导数为偶函数。
(b) 首先,我们有f''(0) = -2,因此x = 0是最大值。
其次,我们有f''(x) = -2 - 8sin^2x。
由于-f''(x)在x = 0处是正的,我们有当x越接近0时,f''(x)越小,也就意味着函数在x = 0处是严格的最大值。
1.7 Example 1.7(a) 我们有f(x) = x^3 - 2x^2 - 5x + 6,f'(x) =3x^2 - 4x - 5和f''(x) = 6x - 4。
第3题(1)输入稀疏矩阵A:>>A1=sparse(1:20,1:20,3,20,20);>>A2=sparse(2:20,1:19,-1/2,20,20);>>A3=sparse(3:20,1:18,-1/4,20,20);>>A=A1+A2+A2'+A3+A3';求D、L、U:>>D=diag(diag(A));>>L=-tril(A,-1);>>U=-triu(A,1);用雅克比迭代:>>i=0;n=100;x0=[1:1:20]';b=[1:2:39]';while n>10^-5 i=i+1;x0=D\(L+U)*x0+D\b;n=norm(x0-A\b);end>>ii=20再取一组x0和b>>i=0;n=100;x0=[1:3:58]';b=[2:2:40]';while n>10^-5 i=i+1;x0=D\(L+U)*x0+D\b;n=norm(x0-A\b);end>>ii=22用高斯-赛德尔迭代:i=0;n=100;x0=[1:1:20]';b=[1:2:39]';while n>10^-5i=i+1;x0=(D-L)\U*x0+(D-L)\b;n=norm(x0-A\b); end;ii=13再取一组x0和bi=0;n=100;x0=[1:3:58]';b=[2:2:40]';while n>10^-5i=i+1;x0=(D-L)\U*x0+(D-L)\b;n=norm(x0-A\b); end;ii=15【结论】两种迭代均收敛。
对于第一组x0和b,雅克比迭代次数是20,高斯-赛德尔迭代次数是13,对于第二组x0和b,雅克比迭代次数是22,高斯-赛德尔迭代次数是15。
2.定义映射22:B R R →,()B x y =,满足y Ax =,其中0.80.40.10.4A ⎡⎤=⎢⎥⎣⎦,2,x y R ∈ 则对任意的2,u v R ∈1111119||()()||||||||()||||||||||||||10B u B v Au Av A u v A u v u v -=-=-≤-=- 故映射B 对一范数是压缩的 由范数定义||||1||||max |||| 1.2x A Ax ∞∞∞===,知必然存在0x ,0||||1x ∞=使得0|||||||| 1.2Ax A ∞∞== 设012(,)T x x x =取12(,0),(0,)T T u x v x ==-,则0u v x -=,有00||()()||||||||()|||||||||| 1.21||||||||B u B v Au Av A u v Ax A x u v ∞∞∞∞∞∞∞-=-=-===>==-故有||()()||B u B v ∞->||||u v ∞-,从而映射B 对无穷范数不是压缩的 4.证明:对任意的,[,]x y a b ∈ 由拉格朗日中值定理,有()()'()()()1e G x G y G x y x y e ξξξ-=-=-+ 其中0111bbe e e e ξξ<≤<++ 所以|()()||()|||11bbe e G x G y x y x y e e ξξ-=-≤-++故G 为[,]a b 上的压缩映射 而()ln(1)ln x x G x e e x =+>= 即()G x x =无根 故()G x 没有不动点(1)证明:对任意的121212(,){(,)|0,1}x x D x x x x ∈=≤≤,则有1121221212212120(,)0.7sin 0.2cos 0.9,(,)0.7cos 0.2sin 0.7cos10.20.7cos 0.20.1503(,)0.7cos 0.2sin 0.9g x x x x g x x x x g x x x x π≤=+≤=-≥->-=>=-≤故有()G x D ∈112212112211122211221122|(,)(,)||0.7(sin sin )0.2(cos cos )||0.7cos ()0.2(sin())()|0.7||0.2||0.7(||||)g u u g v v u v u v u v u v u v u v u v u v ξξ-=-+-=-+--≤-+-≤-+-112212112211122211221122|(,)(,)||0.7(cos cos )0.2(sin sin )||0.7(sin )()0.2cos()()|0.7||0.2||0.7(||||)g u u g v v u v u v u v u v u v u v u v u v ηη-=---=----≤-+-≤-+-所以11|()()||0.7||||G u G v u v -≤-即G 是压缩映射,从而根据压缩映射定理,G 在D 中有唯一不动点 (2)取0(0,0)Tx =,按()x G x =迭代得满足171631||||0.510x x --≤⨯,得到方程的近似解(0.5256,0.5083)T 10.(1)221222124()1x x F x x x ⎡⎤+-=⎢⎥--⎣⎦12122,2'()2,2x x F x x x ⎡⎤=⎢⎥-⎣⎦选取0(1.6,1.2)T x =解000'()()F x x F x ∆=-,得0(0.0188,0.0250)T x ∆=-, 所以100+(1.5813,1.2250)T x x x =∆=,同理有2(1.5811,1.2247)T x = 3(1.5811,1.2247)T x =满足32511||||102x x --≤⨯故通过牛顿迭代法求得近似解(1.5811,1.2247)T。
第四题首先证明G(x)在任何区间[a,b]上是压缩的。
设对于任意区间[a,b]中的任意两个数x,y ,有|G(x)-G(y)|=|G ()||x-y|=||||11bbe e x y x y e eζζζ'-<-++ 取1bbe L e=+<1 故有|()()|||G x G y L x y -<-其中L<1,所以G(x)在区间[a,b]上是压缩的。
假设G(x)有不动点*x ,那么应该满足如下条件:****()ln(1)10x G x x e x =→+=→=由于上式显然不成立,假设错误,即G(x)没有不动点。
第九题 第一小题 映内性121212,){(,)|0,1}x x D x x x x ∈≤≤(有121212),()){(,)|0,1}x g x D x x x x ∈≤≤(g(即证明121200.7sin 0.2cos 100.7cos 0.2sin 1x x x x ≤+≤≤-≤由于1201,01x x ≤≤≤≤固有1122sin 0,cos 0sin 0,cos 0x x x x ≥>≥>显然有120.7sin 0.2cos 0x x +>此外120.7sin 0.2cos 0.70.20.91x x +<+=<为此,有1200.7sin 0.2cos 1x x ≤+≤而对于另一个不等式,有120.7cos 0.2sin 0.7cos10.2sin10x x -≥->此外,有120.7cos 0.2sin 0.701x x -≤-<因此便证明了1200.7cos 0.2sin 1x x ≤-≤可以得到121212),()){(,)|0,1}x g x D x x x x ∈≤≤(g(即证明了D 的映内性。
压缩性利用1范数进行证明121212120.7sin 0.2cos ()0.7cos 0.2sin 0.7sin 0.2cos ()0.7cos 0.2sin x x G x x x y y G y y y +⎛⎫= ⎪-⎝⎭+⎛⎫= ⎪-⎝⎭其中12120,,,1x x y y ≤≤即有112211220.7(sin sin )0.2(cos cos )()()0.7(cos cos )0.2(sin sin )x y x y G x G y x y x y -+-⎛⎫-= ⎪---⎝⎭可得到11122112211112222||()()|||0.7(sin sin )0.2(cos cos )||0.7(cos cos )0.2(sin sin )|0.7(|sin sin ||cos cos |)0.2(|cos cos ||sin sin |)G x G y x y x y x y x y x y x y x y x y -=-+-+---≤⨯-+-+⨯-+- 由于x 1和y 1的地位相同,我们不妨假设x 1>y 1那么有1111sin sin cos cos x y x y ><从而得到:111111111111|sin sin ||cos cos |sin sin cos cos (sin cos )(sin cos )x y x y x y y x x x y y -+-=-+-=---令()sin cos f x x x =-那么111111|sin sin ||cos cos |()()x y x y f x f y -+-=-显然f(x)在[0,1]处连续,那么存在11[,]y x η∈,使得111111()()()()(cos sin )()f x f y f x y x y ηηη'-=-=+-而11[,][0,1]y x η∈⊂当4πη=时,(cos sin ηη+所以111111()()(cos sin )()|f x f y x y x y ηη-=+-≤-所以有11111222211222211221122||()()||0.7(|sin sin ||cos cos |)0.2(|cos cos ||sin sin |)||0.2(||||)0.98995||0.4||0.99(||||)G x G y x y x y x y x y x y x y x y x y x y x y x y -≤⨯-+-+⨯-+-≤-+⨯-+-=⨯-+⨯-≤⨯-+-而1122x y x y x y -⎛⎫-= ⎪-⎝⎭所以11122||||||||x y x y x y -=-+-所以即得到11||()()||0.99||||G x G y x y -≤⨯-其中L=0.99<1,那么根据压缩映射原理就证明了12(,)G g g =在D 中有唯一的不动点。
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
20130917题目求证:在矩阵的LU 分解中,111n n Tn ij i j j i j L I e e α-==+⎛⎫=- ⎪⎝⎭∑∑证明:在高斯消去过程中,假设0jj a ≠ ,若a=0,可以通过列变换使得前面的条件成立,这里不考虑这种情况。
对矩阵A 进行LU 分解,()()()()()1111111L M n M M M n ---=-=∙∙-………… ,其中()1n Tn ij i j i j M j I e e α=+⎛⎫=+ ⎪⎝⎭∑ ,i e 、j e 为n 维线性空间的自然基。
()M j 是通过对单位阵进行初等变换得到,通过逆向的变换则可以得到单位阵,由此很容易得到()M j 的逆矩阵为1n Tn ij i j i j I e e α=+⎛⎫- ⎪⎝⎭∑。
故111n n T n ij i j n j i j L I e e I α-==+⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭∏∑上式中的每一项均是初等变换,从右向左乘,则每乘一次相当于对右边的矩阵进行一次向下乘法叠加的初等变换。
由于最初的矩阵为单位阵,变换从右向左展开,因而每一次变换不改变已经更新的数据,既该变换是从右向左一列一列更新数据,故11nn Tn ij i j j i j L I e e α==+⎛⎫=- ⎪⎝⎭∑∑。
数学证明:1nTi j i ji j ee α=+⎛⎫ ⎪⎝⎭∑具有,000n j jA -⎛⎫ ⎪⎝⎭ 和1,1000n j n j B -+-+⎛⎫⎪⎝⎭ 的形式,且有+1,-11,10000=000n j j n j n j AB --+-+⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭ 而11n n T ij i j j k i j e e α-==+⎛⎫ ⎪⎝⎭∑∑具有1,1000n k n k B -+-+⎛⎫⎪⎝⎭的形式,因此:1311111211121==n n n n n n T T T n ij i j n ij i j n ik i k j i j j i j k n i k n n T n i i n ik i i i k L I e e I e e I e e I e e I e ααααα---==+==+=-=+==+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎝⎭⎝⎝⎭∏∑∏∑∑∑∑∑……11211n n n T Tk n ik i kk k i k e I e e α--===+⎛⎫⎛⎫=- ⎪⎪ ⎪⎭⎝⎭⎝⎭∑∑∑#20130924题目一问:能否用逐次householder 相似变换变实矩阵A 为上三角矩阵,为什么?解:不能用逐次householder 相似变换变A 为上三角矩阵,原因如下:A 记作:()12=,,n A a a a ……, ,存在householder 阵1H s.t. 1111H a e α= ,则()()()111111111111111111111,,,0T Th H AH H a A H e H A H e H A H h H A H ααα⎛⎫'''=== ⎪⎪'⎝⎭⎛⎫''=+ ⎪ ⎪⎝⎭11H A H ''第一列的元素不能保证为1e 的倍数,故无法通过householder 变换实现上三角化。
数值分析第五版课后答案(ii )2/(x ) = Imr0.40.50.60.7 0.8 lar一 0.916 291 一 0.693 147 一 0・ 510826-0. 356 675-0.223 144用线性插值及二次插值计算InO. 54的近似值•解 依据插值误差估计式选距离0. 54较近的点为插值节点,并建立差商 表如下:一 0.693 147-0.510 826 - 0.916 291写出Newton 插值多项式M(H ) =- 0.693 147 + 1.823 210Q — 0.5)N2)= M (_r) + (—0.204 115〉(工一0. 5)匕一0・6)计算近似值Ni (0. 54) =一 0.693 147+ 1.823 210(0. 54 — 0. 5) =—0.620 218 6弘(0.54) = N 】(0.54) — 0.204 115(0. 54 - 0.5X0. 54-0.6) =-0.616 8394・设门为互异节点(j = 0.1 ■…山).求证:A(I )三卫(上=0, 1 ■…,Q;n(ii )心一工)铅(门三o 仏=1. 2. •••■" 证明 (i )令fS 』工X 若插值节点为X/7 - 0,1 则/<x )的n次播值多项武为["(工)=工球丿3插值余项为R”(王〉=/(X )— L n (X )= /—(/)(n + 1)!/X—Ti-CkXVZ又因为k < 所以严)(0 = 0,R 心)二 0x 0 = 0. 5 X] = 0. 6工2 = 0. 4二> -0.204 1151.823 2102. 027 325所以丿・0 1 -n L'? /xsr ("卜;(_"“(/〉 r —0 丿•()L ' r / SCOg ( . ) (一 x)k -'x' =(彳一 Qi 三 05.设 /(x) 6 C 2[a, 6]且 /(a) = fib) = 0.求证: max | f(x) £(b —a),max | /z (j) \ a^r^ib .O心疋6证明 令x = a 和工=人以此为插值节点•则插值多项式为Li (工)= /(a) -—; + f(b) Y —- 三 0<2—o b — a应用插值余项公式有y*7(^) (X — a)(.x — 6) Wmax | /(g) I max | (x — a)(x — b) | / Wb a<jfCZ> _(6 — a )2 max | fXx ) | O aM 临 b6.在一 4<x<4上给出r (T )= e 『的等距节点函数表,若用分段二次插值求e 「的近似值,要使截断误差不超过10一&,问使用函数表的步长h 应取多少?解 若插值节点为IT , r 和工沖则分段二次插值多项式的插值余项为式中Ml = Xi — h,工沖=$ +札\R :(r) l^ye 1max | (文—刀_)) (_r —兀)〈工—J7°j )丨 0插值点个数< W 6 得 A < 0.006 5&是奇数,故实际可采用的函数值表步长7•若必=2S 求及解 根据向前差分算子和中心差分算子的定义进行求解£(:)(-】〉1巧” =£(:)(-1)-皿=孑y” = (F? — F~T )°y” = (E"r )*(E — IYy n =「2$% = L (%) = g = 2—8.如果fl 工、是刃次多项式,记= f (j--T-h ) —/(T ).证明/(x )的 &阶差分Nfa )(0W 是rn-k 次多项式,并且A^7(T> = 0(/为正 蔓牧).证明 对加次多项式/(才)应用Taylor 公式有A/(x ) = /(z + A ) —/(j ) = /( J )A H- rr/^x ) + ••• 4- Jf"' (x )Z! 初!即△/(/)为m- 1次的多项式・= △(△/&)),对加一 1 > 0次多项式应用上述推理过程知 △(△/(工))=庄只工)是加一2次的多项式.依此过程递推,知A7<^X0<Xr<r«)为m-k 次多项武. 所以必工)为常数,故 s = 0(/为正整数).9. 证明 A (/*g* ) = /* Ag* 4-A/*.证明 A/igJ = /n-ign-i ~ Ag* = /n-igHi - fkgkn 十/*gi - fkgk = gtrl (人+1 — 人> + fk(g^l 一创)=g 屮+ 介厶®15.证明两点三次Hermite 摘值余项是尺3(刃='‘4 ;目(工—九)'(H —)?, E €(N ,才屮)并由此求出分段三次Henniw 猶值的课差限・证明 若工W [工―文屮]・且插值多项式满足条件円3 {竝)=/(竝几 H3(X H -1)=产(工屮)H ; ( Z* ) = f (x> ) * H3' (J T H -I )=(.r*41)1 4-(- 4) 十 0. 006 581 268 冬 1 217 旦 N4 —(—4) F T8T2162 0. 006 579知插值余项RQ) = /(文)一耳(工> 有二重零点g和文卄故设R(攵)=以文)0 —比)?(文一攵申〃确定函数恥才几当JC = X*或工屮时來工)取任何有限值均可I当才H忑,J•屮时“&(仏°文屮),构造关于变量t的函数g(r) == /([)—丹3(『)一总(才)(〔一=*)2((— X*+l )2 显然有g(文▲)= 0. g(i?) = 0. ) = og'(r*.〉= 0, £心屮)=0在S ,工]和Dr, z*+l J上对g(T)使用Rolle定理,存在® €(无,才〉及少W (w, x*-ti)使得&'(》)=0, g'(%)= 0在a ,巾),Cyl *罪),<72« x*+i)上对g'(=)使用Rolle定理,存在供| € 5,巾),巾?€(6,%)和阻屮6(%,XHI)使得g"(知)=g"(?!2)= g"(少.屮)=0再依次对g(0和g"(“使用Rolle定理,知至少存在(比,工屮)使得gW(E)=而g⑷⑺=一虹小4!,将"弋入•得到£€5 •工屮)推导过程表明W依赖于工点,及=•综合以上过程可知R(T)= “(&(a■一忑)2(工一卫^)2下面建立分段三次Hermite插值的谋差限.记h (小为/Cr)在[a,刃上的基于等距节点的分段三次Hermite插值函数.x k = a+kh 4 = 0, !••• ♦ n), h = b — a■n在小区间[去,/小]上有I /(x)— /A<x)| —右 | 严(£)|(X— X*)-(X— XH-1)2 <7f max \尸4)(力))max (_r —业)?(工一z屮尸而最值0 才=十妙 ]max (工一及)■(工一 z>+! 「L l 「• , maxs"(5 ― l )2h 4 = r k n<<<! 16进而得误差估计1 /(文)-越空简|八(如】6・求一个次数不离于4次的多项式PCr 〉•使它满足P(0) = P(0) = 0, P(l) =P71) = HP(2) = 1.解法一 利用Hermite 插值可得到次数不高于4的多项式几== 1;为==打 W f > = 0 •加I = 1H 3(X )=(才)+ /(文)◎(才)=(1 一 2 三「卫■)(才二空)2 =(1 + 2刃1)2氐—XI 竝一 4G&) = (1-2 J ~-r| )( - )2 = (3 — 2&)疋Jj —竝 XI — To仇(工)=兀(工一 1)?向=(工一 1)JT 2所以Hj (2) = (3 — 2x )x 2 + (1* — 1 )J -? =— T 3 + 2z~设 = H 3(X )4-A (T -^)2(J —T ))2,其中・A 为待定常数,令 F (2)=1得于是P3十一尸这样可写岀Newton 插值公式P (x ) = 0 + 0(乂一0)十 1(工一0)? — 1(広一0)?(工一 1) +— 0)'($ — l )? =— 1) + 4-工?(&一 1)?=解法二(带重节点的Newton 插值法)建立如下差商表:-124 4J-x 2 (r ~ 3): 417 •设f (.C 二厂丄g 在一 5€工€5上取"=10•按等矩节点求分施线1 f JT性插值函数ha )・计算各节点间中点处Z A (J -)与/(x >的值,并佑计课差.解 若 = 5,r lc = 5,则步长 A = ------------- ---- -- -- = I =— 5+ ih = — 5 +n2(ow?w 10).在区间Cx-上•分段线性插值瓯数为/1°(X )= /(X,)工汁】一広+工一 rTT7T F+不分段线性插值函数定义如下:各节点间中点处函数值及插值函数值如下所示:估计谋差:在区间[乙,刀+门上lf (jr )—击厂(。
2.定义映射22:B R R →,()B x y =,满足y Ax =,其中
0.80.40.10.4A ⎡⎤=⎢⎥⎣⎦,2,x y R ∈
则对任意的2
,u v R ∈
1111119
||()()||||||||()||||||||||||||10B u B v Au Av A u v A u v u v -=-=-≤-=-
故映射B 对一范数是压缩的 由范数定义
||||1
||||max |||| 1.2
x A Ax ∞∞∞===,知必然存在0
x ,
0||||1
x ∞=
使得0|||||||| 1.2
Ax A ∞∞==
设012(,)T
x x x =
取
12(,0),(0,)T T
u x v x ==-,则
u v x -=,有
00||()()||||||||()|||||||||| 1.21||||||||B u B v Au Av A u v Ax A x u v ∞∞∞∞∞∞∞
-=-=-===>==-
故有||()()||B u B v ∞->||||u v ∞
-,从而映射B 对无穷范数不是压缩的
4.
证明:对任意的,[,]x y a b ∈ 由拉格朗日中值定理,有
()()'()()()
1e G x G y G x y x y e ξ
ξξ-=-=-+ 其中0111b
b
e e e e ξξ<≤<++
所以
|()()||()|||
11b
b e e G x G y x y x y e e ξξ-=-≤-++
故G 为[,]a b 上的压缩映射
而
()ln(1)ln x x
G x e e x =+>=
即()G x x =无根
故()G x 没有不动点 9.
(1)证明:对任意的
121212(,){(,)|0,1}
x x D x x x x ∈=≤≤,则有
1121221212212120(,)0.7sin 0.2cos 0.9,
(,)0.7cos 0.2sin 0.7cos10.20.7cos 0.20.150
3
(,)0.7cos 0.2sin 0.9
g x x x x g x x x x g x x x x π
≤=+≤=-≥->-=>=-≤
故有()G x D ∈
112212112211122211221122|(,)(,)||0.7(sin sin )0.2(cos cos )||0.7cos ()0.2(sin())()|0.7||0.2||0.7(||||)
g u u g v v u v u v u v u v u v u v u v u v ξξ-=-+-=-+--≤-+-≤-+-
112212112211122211221122|(,)(,)||0.7(cos cos )0.2(sin sin )||0.7(sin )()0.2cos()()|0.7||0.2||0.7(||||)g u u g v v u v u v u v u v u v u v u v u v ηη-=---=----≤-+-≤-+-
所以
11
|()()||0.7||||G u G v u v -≤- 即G 是压缩映射,从而根据压缩映射定理,G 在D 中有唯一不动点 (2)
取0(0,0)T x =,按()x G x =迭代得
满足17163
1||||0.510x x --≤⨯,得到方程的近似解(0.5256,0.5083)T
10.
(1)
22
1222
124()1x x F x x x ⎡⎤+-=⎢⎥--⎣⎦ 12122,2'()2,2x x F x x x ⎡⎤
=⎢⎥
-⎣⎦
选取0(1.6,1.2)T x =
解
000'()()
F x x F x ∆=-,得0(0.0188,0.0250)T
x ∆=-,
所以100+(1.5813,1.2250)T
x x x =∆=,同理有
2(1.5811,1.2247)T x = 3(1.5811,1.2247)T x =
满足325
11
||||102x x --≤⨯
故通过牛顿迭代法求得近似解(1.5811,1.2247)T。