2011数值分析试题及答案
- 格式:doc
- 大小:300.50 KB
- 文档页数:3
菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。
则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。
2.设向量T n x )2,1,0( =,则=∞x 。
3.用牛顿法求方程0)(=x f 的根的公式为 。
4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。
5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。
三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设|x|>>1______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:3.求积分∫ a b f(x)dx的两点Gauss公式为______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.设∞ =______,‖A‖ 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:5.给定f(x)=x 4,以0为三重节点,2为二重节点的f(x)的Hermite插值多项式为______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:x 4)解析:6.己知差分格式r≤______时,该差分格式在L ∞范数下是稳定的.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:二、计算题(总题数:2,分数:4.00)7.给定方程lnx-x 2+4=0,分析该方程存在几个根,并用迭代法求此方程的最大根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:令f(x)=lnx-x 2 +4,则f"(x)= -2x,当x= 时,f"(x)=0. 注意到f(0.01)=-0.6053<0,f(1)=3>0,f(3)=-3.9014<0,而当时,f"(x)>0,当时,f"(x)<0,所以方程f(x)=0有两个实根,分别在(0.01,1)和(1,3)内.方程的最大根必在(1,3)内,用Newton迭代格式取x 0 =2,计算得x 1 =2.1980,x 2 =2.1)解析:8.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =3,x 2 =1,x 3 =5.)解析:三、综合题(总题数:6,分数:12.00)9.设α,β表示求解方程组.Ax=b的Jacobi迭代法与Gauss-Seidel迭代法收敛的充分必要条件.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代格式的迭代矩阵特征方程为展开得500λ3—15αβλ=0或者λ(500λ2—15αβ)=0,解得λ=0或λ2 = 则Jacobi格式收敛的充要条件为|αβ|<Gauss-Seidel格式迭代矩阵的特征方程为展开得500λ3—15αβλ2 =0或者λ2(500λ-15αβ)=0,解得λ=0或λ则Gauss-Seidel格式收敛的充)解析:10.设x 0,x 1,x 2为互异节点,a,b,m为已知实数.试确定x 0,x 1,x 2的关系,使满足如下三个条件p(x 0 )=a, p"(x 1 )=m,p(x 2 )=b的二次多项式p(x)存在且唯一,并求出这个插值多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由条件p(x 0 )=a,p(x 2 )=b确定一次多项式p 1 (x),有所以p(x)-P 1(x)=A(x—x 0 )(x—x 2 ),p"(x)=p" 1 (x)+A(x—x 0 +x—x 2 ),p"(x 1+A(2x 1 -x 0 -x 2) 解析:11.求y=|x|在[-1,1]上形如c 0 +c 1 x 2的最佳平方逼近多项式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 =2,(φ0,φ1)=∫ -11 x 2)1 x 2,(φ1,φ1)=∫ -1解析:12.已知函数f(x)∈C 3 [0,3],试确定参数A,B,C,使下面的求积公式数精度尽可能高,并给出此时求积公式的截断误差表达式.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:当f(x)=1时左=∫ 03 1dx=3,右=A+B+C,当f(x)=x时左=∫ 03 xdx= ,右=B+2C 当f(x)=x 2时左=∫ 03 x 2 dx=9,右=B+4C.要使公式具有尽可能高的代数精度,则而当f(x)=x 3时,左=∫ 03 x 3)解析:13.给定常微分方程初值问题取正整数n,并记h=a/n,x i =a+ih,0≤i≤n.证明:用梯形公式求解该初值问题所得的数值解为且当h→0时,y n收敛于y(a).(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:梯形公式应用于方程有y i+1=y i+ (-y i—y i+1),即有所以i=1,2,….当h→0时,n→∞我们有而由方程知解析解y=e -x则y(a)=e -a,所以)解析:14.Ω={0<x<3,0<y<3).试用五点差分格式求u(1,1),u(1,2),u(2,1),u(2,2)的近似值.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:五点差分格式为根据要求,可取h= ,将(1,1),(2,1),(1,2),(2,2)处的差分格式列成方程组有或者解得u 11=15.8750,u 21=22.6250,u 12=15.8750,u 22 =22.6250.)解析:。
2011年秋研究生数值分析期末考试试题答案一、单选题(4*5=20分)1、B;2、D ;3、D ;4、B ;5、C 。
二、填空题(4*5=20)1、2;2、()()1k k k k f x x x f x +=-',平方收敛;3、8,8;4、9; 5、a <。
三、(10分)解:构造3次Lagrange 插值多项式3001001201()()(,)()(,,)()()L x f x f x x x x f x x x x x x x =+-+--0123012(,,,)()()()f x x x x x x x x x x +--- 3’利用待定系数法,令430123()()()()()()H x L x A x x x x x x x x =+----, 5’同时, '''14131101213()()()()()()f x H x L x A x x x x x x ==+--- 7’解出A 即可。
8’ 考虑余项4()()()E x f x H x =-,如果5()[,],,0,1,2,3i f x C a b a x b i ∈≤≤=,那么,当a x b ≤≤时()()5240123()()()()()()()5!f E x f x H x x x x x x x x x ξ=-=----. 0 10’ 四、(10分)解:设所求多项式为23202)(x C x C C x P ++=,10=ϕ,x =1ϕ,22x =ϕ,11),(10++==⎰+k j dx e k j k j ϕϕ,1),(100-==⎰e dx e f x ϕ, 1),(101==⎰dx xe f xϕ,2),(1022-==⎰e dx e x f x ϕ 5’ 所以有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡21151413141312131211210e e C C C ,求解得到 8’ ⎪⎩⎪⎨⎧===83917.085114.001299.1321C C C ,所求最佳平方逼近多项式为:2283917.085114.001299.1)(x x x P ++=。
2011年秋季工学硕士研究生学位课程(数值分析)真题试卷A(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。
(分数:2.00)__________________________________________________________________________________________ 解析:2.已知x 1 =0.724,x 2 =1.25均为有效数,则|e r (x 1 x 2 )|≤______|e(x 1/x 2 )|≤_______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:0.469×10 -2,0.272×10 -2)解析:3.设∞ =______,cond(A) 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.超定方程组x 1 =______.x 2 =_______.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:-0.8333或-0.6667)解析:5.用Simpson______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:1.4757)解析:6.0,1,2为节点的三次样条函数,则a=_____,b=_____.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:3,-3)解析:二、计算题(总题数:3,分数:6.00)7.给定方程e x,分析此方程有几个实根,并用迭代法求此方程的正根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:设当x=ln0.5时,f"(x)=0;当x∈(-∞,ln0.5)时,f"(x)<0;当x∈(ln0.5,+∞)时,f"(x)>0.再注意到f(-4)>0,f(-3)<0,f(1)<0,f(2)>0,则该方程存在两个实根,分别在[-4,-3]和[1,2]内.构造迭代格式x *∈[1,2],取x 0 =1.5,计算得x 1 =1.0651,x 2 =0.9116,x 3 =0.8953,x )解析:8.用列主元Guass(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =-2,x 2 =1,x 3 =-1.)解析:9.给定求解线性方程组Ax=b的迭代格式Bx (k+1) +ωCx k =b,其中ω的值使上述迭代格式收敛.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:方法1:由Bx (k+1) +ωCx (k) =b得x (k+1) =-ωB -1 Cx (k) +B -1 b 上述格式收敛的充要条件为ρ(-ωB -1 C)<1.迭代矩阵-ωB -1 C的特征方程为|λI+ωB -1 C|=0,可变形为|B -1||λB+ωC|=0,即展开得16λ2—8λω)解析:三、综合题(总题数:5,分数:10.00)10.作一个3次多项式H(x),使得H(a)=b 3,H(b)=a 3,H"(a)=6b,H"(b)=6a.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:方法1:根据H"(a)=6b,H"(6)=6a可知(x-a)=6b—6(x-a),两边积分得H(x)=6b(x—a)-3(x-a) 2 +c,H(x)=3b(x-a) 2 -(x—a) 3 +c(x—a)+d.由H(a)=b 3得d=b 3,再由H(b)=a 3有c=-3b 2,所以H(x)=-(x-a) 3 +3b(x-a) )解析:11.求函数y(x)=x 4在区间[0,1]上的一次最佳一致逼近多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:设p(x)=a+bx.由f"(x)=4x 3,f"(x)=12x 2知,当x∈(0,1)时,f"(x)恒大于零.则f(x)-p(x)在[0,1]上有三个交错偏差点:0,x 1,1,且满足即求解得所以)解析:12.已知函数f(x)∈C 4[a,b],I(f)=∫ a b f(x)dx 1)写出以a,b为二重节点所建立的f(x)的3次Hermite 插值多琐式H(x)及插值余项; 2)根据f(x)≈H(x)建立一个求解I(f)的数值求积公式I H (x),并分析该公式的截断误差和代数精度.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:1)由条件H(a)=f(a),H"(a)=f"(a),H(b)=f(b),H"(b)=f"(b),作差商表:所以2)根据题意,有I(f)≈∫ a b H(x)dx,下面求代数精度.由插值余项知,当f(x)=1,x,x 2,x 3时,插值余项为零,I H (f)精确求积;当f(x)=x 4时此时b 5系数为I H) 解析:13.给定常微分方程初值问题n,并记h=(b—a)/n,x i=a+ih,0≤i≤n.试确定参数A,B,C,使求解公式y i+1 =Ay i +(1-A)y i-1 +h[Bf(x i+1,y i+1 )+Cf(x i,y i )]的局部截断误差R i+1的阶数达到最高,指出所达剑的最高阶数并给出局部截断误差表达式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:局部截断误差为R i+1=y(x i+1)-Ay(x i)-(1-A)y(x i-1)-h[By"(x i+1)+Cy"(x i)]=y(xi )+hy"(x 1 )+ y"(x i )+ y""(x i y (4) (xi )+O(h5)解析:14.给定如下抛物方程初边值问题:取步长用古典隐格式计算u(x,t)(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:求解该问题的古典隐格式为记则差分格式可写为(1+2r)u i k-r(u i+1k +ui-1k )=uik-1 +τ(3—3xi ),用方程组表示为k=1.2.因为所以,当k=1时,方程为或解得u 11 =0.7870,u 2<) 解析:。
[考研类试卷]2011年工程硕士研究生学位课程(数值分析)真题试卷B
1 设x=1.231,y=0.5122是由四舍五入法得到的近似值,试计算函数e xy的绝对误差限和相对误差限.
2 给定方程x3+2x-1=0,判别该方程有几个实根,并用迭代法求出方程所有实根,精确到4位有效数字.
3 用列主元Gauss 消去法求下面线性方程组的解:
4 给定线性方程组写出求解上述方程组的Gauss-Seidel 迭代格式,并分析收敛性.
5 已知f(x)=xe x,求一个3次多项式H(x),使之满足H(0)=f(0),H(1)=f(1),
H'(0)=f'(0),H"(1)=f"(1).
6 求a,b ,使得积分取最小值.
7 试用Simpson 公式计算积分的近似值,精确到4位有效数字.
8 给定常微分方程初值问题取正整数n,记h=(b—a)/n,
x i=a+ih,i=0,1,2,…,n;y i≈y(x i),1≤i≤n,y0=η.求常数A,B,使数值求解公
式y i+1=y i十h[A,(x i+1,y i+1)+f(x i,y i)+Bf(x i-1,y i-1)],1≤i≤n-1的阶数尽可能高,并
求出公式的阶数和局部截断误差表达式.
答案见麦多课文库。
华南农业大学期末考试试卷(A 卷)2011-2012学年第 2 学期 考试科目: 数值分析 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、 填空题(本大题共5小题,每小题6分,共30分)1、用四舍五入得到的近似数1.55,有___位有效数字,其相对误差限是________。
2、用二分法求方程1x xe =在区间[0,1]内的根,进行一步后根所在区间为____,进行二步后根所在区间为____。
3、采用牛顿迭代法求正实数a 的开平方,迭代公式为________。
4、设有矩阵131211122A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则A ∞=____,F A =____。
5、非线性方程迭代求解的敛散性与初始值的选取____;(选填:有关或无关)线性方程组迭代求解的敛散性与初始值的选取____。
(选填:有关或无关)试用4[4,4]P 和4[4,4,4]P 计算'(4)f 和''(4)f 的近似值。
(本题共10分)三、给定方程30(0)x e x x --=>(1) 分析方程存在几个解,并找出解的范围;(2) 将方程改为3x x e =-,写出相应的迭代公式,并说明能不能用该公式迭代求原方程的解;(3) 如果不能,试将方程改写为能用迭代法求解的形式,并说明理由。
(本题共15分)四、分别讨论用雅可比迭代法和高斯-赛德尔迭代法解方程AX b =的收敛性,其中122111221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭。
(本题共16分)五、已知函数3y x =的函数表如下:(1) 求3y x =的3次拉格朗日插值多项式;(2) 求3y x =的3次牛顿插值多项式。
(本题共14分)六、采用龙贝格法计算140I x dx =⎰的值。
(本题共15分)华南农业大学期末考试试卷参考答案(A 卷)2010-2011学年第 2 学期 考试科目: 数值分析 一、填空题(本大题共5小题,每小题6分,共30分)1、用四舍五入得到的近似数1.55,有3位有效数字,其相对误差限是0.323%。
合肥工业大学2011级硕士研究生《数值分析》试卷(A)班级 姓名 学号 成绩一、判断题 (下列各题,你认为正确的,请在题后的括号内打“√ ”,错误的打“×”,每题2分,共10分) 1. 设函数f 具有5阶导数,则(5)[0,1,2,3,4,5]()f f ξ=,其中ξ介于0,1,2,3,4,5之间,[0,1,2,3,4,5]f 是()f x 关于节点0,1,2,3,4,5的5阶差商。
( )2. 若方阵A 是严格对角占优的,则可用Gauss 消去法直接求解方程组=Ax b ,无须选主元素。
( )3. 若()()0f a f b <,则方程()0f x =在区间(,)a b 内至少有一个根。
( )4. 若函数()f x 是多项式,则它的Lagrange 插值多项式()()p x f x ≡. ( )5. 解常微分方程初值问题的四阶Runge-Kutta 方法的局部截断误差是5()O h ,其中h 是步长。
( )二、填空题 (每空2分,共10分)1. 近似数*3.200x =关于准确值 3.200678x =有 位有效数字。
2. 设2435A =⎡⎤⎢⎥⎣⎦,则1Cond()A = . 3. 设函数(2.6)13.4673,(2.7)14.8797,(2.8)16.4446f f f ===, 用三点数值微分公式计算(2.7)f '= 14.8865 .4. 设函数sin 2()x f x =, 2()p x 是()f x 的以1,2,3为节点的二次Lagrange 插值多项式,则余项2()()f x p x -= .5. 二元函数(,)f x y 在区域D 上关于y 满足Lipschitz 条件是:.三 (本题满分12分) 对下列方程组1231231235212,4220,23103x x x x x x x x x ++=-⎧⎪-++=⎨⎪-+=⎩ 建立Jacobi 迭代格式(4分)和Gauss –Seidel 迭代格式(4分),写出Jacobi 迭代格式的迭代矩阵,并用迭代矩阵的范数判断所建立的Jacobi 迭代格式是否收敛(4分)。
装订线年 级 学 号 姓 名 专 业一、填空题(本题40分, 每空4分)1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 1,0,1,,0i j i j n i j=⎧=⎨≠⎩ 。
2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 0 。
3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 1/8 。
4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 ()1B ρ< 。
5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 3 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过 0.005 cm才能使其面积误差不超过12cm 。
(结果保留小数)7.要使求积公式)()0(41)(111x f A f dx x f +≈⎰具有2次代数精确度,则 =1x23 , =1A 34。
8. 用杜利特尔(Doolittle )分解法分解LUA =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1359 45- 279 126 0 945- 0 45 1827- 9 189A 其中,则=L 10002100121023113⎛⎫⎪ ⎪ ⎪-⎪ ⎪- ⎪⎝⎭=U 918927091890281540009-⎛⎫⎪-⎪ ⎪-⎪⎝⎭。
二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。
2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期一 二 三 四 五 六 七 八 九 十 总分年 级2011级研究生 份 数 拟题人 王吉波 审核人装 订线年级 学 号 姓 名 专 业三、计算题(15分)试导出计算)0(1>a a的Newton迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。
2011年工程硕士研究生学位课程(数值分析)真题试卷B(总分:16.00,做题时间:90分钟)一、计算题(总题数:3,分数:6.00)1.设x=1.231,y=0.5122是由四舍五入法得到的近似值,试计算函数e xy的绝对误差限和相对误差限.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:根据题意,可知|e(x)|≤ ×10 -3,|e(y)|≤ ×10 -4,|e(e xy)|≈|ye xy e(x)+xe xy e(y)|≤e xy (y|e(x)|+x|e(y)|)≤0.5967×10 -3,)解析:2.给定方程x 3 +2x-1=0,判别该方程有几个实根,并用迭代法求出方程所有实根,精确到4位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:改写方程为x 3 =-2x+1,作函数y=x 3和y=-2x+1的图像(见下图),由图像知方程有一个实根x *∈ 构造Newton迭代格式:x k+1=x k k=0,1,2,…,取初值x 0=0.25,计算得x 1 =0.47143,x 2 =0.45357,x 3 =0.45340,x 4 =0)解析:3.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =1,x 2 =1,x 3 =-1,x 4 =-1.)解析:二、综合题(总题数:5,分数:10.00)4.Gauss-Seidel迭代格式,并分析收敛性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Gauss-Seidel迭代格式为Gauss—Seidel迭代矩阵的特征方程为展开得4λ3—4λ2—2λ+8λ2 +2λ2—2λ2 =0,即λ(2λ2 +2λ-1)=0,求得λ1 =0,因为所以Gauss-Seidel迭代发散.)解析:5.已知f(x)=xe x,求一个3次多项式H(x),使之满足H(0)=f(0),H(1)=f(1),H"(0)=f"(0),H"(1)=f"(1).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:作2次插值多项式p(x),满足p(0)=f(0) p(1)=f(1),P"(0)=f"(0),则p(x)=f(0)+f[0,0]x+y[0,0,1]x 2.列表求差商:可得p(x)=x+(e-1)x 2.由插值条件易知H(x)=p(x)+Ax 2 (x-1),其中A为待定系数.由条件H"(1)=f"(1)得2(e-1)+4A=3e,求得A= 所以H(X)=x+(e-1)x 2x 2 ()解析:6.求a,b(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 1dx=2,(φ0,φ1)=∫-11 x 2,(φ1,φ0)=∫ -11 x 2)解析:7.试用Simpson4位有效数字.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:由复化Simpson公式得S 1(f)= [f(1)+4f(1.5)+f(2)]= (e -1+4e -1.52+e -22)=0.13463,S 2(f)= [f(1)+4f(1.25)+2f(1.5)+4f(1.75)+f(2)]=0.13521,因为|S 2 (f)-S 1 (f)|=0.38675×10)解析:8.给定常微分方程初值问题取正整数n,记h=(b—a)/n,x i=a+ih,i=0,1,2,…,n;y i≈y(xi ),1≤i≤n,y 0 =η.求常数A,B,使数值求解公式y i+1 =y i十h[A,(x i+1 ,y i+1f(x i,y i )+Bf(x i-1 ,y i-1 )],1≤i≤n-1的阶数尽可能高,并求出公式的阶数和局部截断误差表达式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:求解公式的局部截断误差为 R i+1 =y(x i+1 )-y(x i )-Ahf(x i+1,y(x i+1 ))-hy(x i,y(x i ))-Bhf(x i-1,y(x i-1 ))=y(x i+1 )-y(x i )-Ahy"(x i+1hy"(x )解析:。