(推荐)高考数学-函数中存在性和任意性问题分类解析
- 格式:doc
- 大小:308.00 KB
- 文档页数:7
高考数学-函数中存在性和任意性问题分类解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1已知函数和函数,若存在,使得成立,则实数的取值范围是()解设函数与在上的值域分别为与,依题意.当时,,则,所以在上单调递增,所以即.当时,,所以单调递,所以即.综上所述在上的值域.当时,,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011湖北八校第二次联考)设,.①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围.解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.当时,由得,故在上单调递减,所以即,于是.因,由得.①当时,,故在上单调递增,所以即,于是.因为,则当且仅当,即.②当时,同上可求得.综合①②知所求实数的取值范围是.3.已知是在闭区间的上连续函,则对使得,等价于.例4已知,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.解(1)略;(2) 对,有,等价于有.当时,,所以在上单调递增,所以.因为,令得,又且,.①当时,,所以在在上单调递增,所以.令得这与矛盾。
1双变量的“任意性”与 “存在性”五种题型的解题方法 一、“存在=存在”型∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 与函数g (x )在D 2上的值域B 的交集不为空集,即A ∩B ≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.【例1】 已知函数f (x )=x 2-23ax 3,a >0,x ∈R .g (x )=1x 2(1-x ).若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】∵f (x )=x 2-23ax 3,∴f '(x )=2x -2ax 2=2x (1-ax ).令f '(x )=0,得x =0或x =1a .∵a >0,∴1a>0,∴当x ∈(-∞,0)时, f '(x )<0,∴f (x )在(-∞,-1]上单调递减, f (x )在(-∞,-1]上的值域为1+2a3,+∞ .∵g (x )=1x 2(1-x ),∴g '(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.∵当x <-12时,g '(x )>0,∴g (x )在-∞,-12 上单调递增,∴g (x )<g -12 =83,∴g (x )在-∞,-12 上的值域为-∞,83.若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),则1+2a 3<83,a <52.故实数a 的取值范围是0,52.【变式1】 已知函数f (x )=-16x +112,0≤x ≤12,x 3x +1,12<x ≤1 和函数g (x )=a ·sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A.12,32 B.[1,2)C.12,2D.1,32【答案】选C 【解析】设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠⌀”.当0≤x ≤12时, f (x )=-16x +112单调递减,所以0≤f (x )≤112;当12<x ≤1时, f '(x )=x 2(2x +3)(x +1)2>0,所以f (x )=x 3x +1单调递增,112<f (x )≤12,故f (x )在[0,1]上的值域A =0,12.当x ∈[0,1]时,π6x ∈0,π6 ,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =1-a ,1-a 2.2由A ∩B ≠⌀,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.故选C .二、“任意=存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 是函数g (x )在D 2上的值域B 的子集,即A ⊆B .其等价转化的基本思想:函数f (x )的任意一个函数值都与函数g (x )的某一个函数值相等,即f (x )的函数值都在g (x )的值域之中.【例2】 已知函数f (x )=4x 2-72-x,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.【解析】(1)f '(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f '(x )=0,解得x =12或x =72(舍去).当x 变化时, f '(x ), f (x )的变化情况如下表所示:x 00,121212,11f '(x )-0+f (x )-72↘-4↗-3 所以f (x )的递减区间是0,12,递增区间是12,1 .f (x )min =f 12=-4,又f (0)=-72, f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时, f (x )的值域为[-4,-3].(2)“对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,且g '(x )=3(x 2-a 2)<0,所以当x ∈[0,1]时,g (x )为减函数,所以g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,又a ≥1,故1≤a ≤32.【变式2】 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.【解析】 解析 (1)由已知,有f '(x )=2x -2ax 2(a >0).令f '(x )=0,解得x =0或x =1a .当x 变化时, f '(x ), f (x )的变化情况如下表:x(-∞,0)0,1a 1a 1a ,+∞3f '(x )-0+0-f (x )↘↗13a 2↘所以, f (x )的单调递增区间是0,1a;单调递减区间是(-∞,0),1a ,+∞ .当x =0时, f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f 1a =13a2.(2)由f (0)=f 32a=0及(1)知,当x ∈0,32a 时, f (x )>0;当x ∈32a,+∞ 时, f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f 32a=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞, f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B .所以,A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =1f (1),0,A =(-∞, f (2)),所以A 不是B 的子集.综上,a 的取值范围是34,32.三、“任意≥(≤、>、<)任意”型∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,等价于f (x )min >g (x )max ,或等价于f (x )>g (x )max 恒成立,或等价于f (x )min >g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均大于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)<g (x 2)恒成立,等价于f (x )max <g (x )min ,或等价于f (x )<g (x )min 恒成立,或等价于f (x )max <g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均小于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)>k 恒成立,等价于[f (x 1)-g (x 2)]min >k 恒成立,也等价于f (x )min-g (x )max >k .∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)<k 恒成立,等价于[f (x 1)-g (x 2)]max <k 恒成立,也等价于f (x )max-g (x )min <k .【例3】 设函数f (x )=x 3-x 2-3.(1)求f (x )的单调区间;(2)设函数g (x )=a x+x ln x ,如果对任意的x 1,x 2∈12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】解析 (1)f '(x )=3x 2-2x .f '(x )>0时,x <0或x >23,f '(x )<0时,0<x <23.所以, f (x )的递增区间是(-∞,0),23,+∞;递减区间是0,23.4(2)由(1)知,函数f (x )在12,23 上单调递减,在23,2 上单调递增,而f 12=-258, f (2)=1,故f (x )在区间12,2上的最大值f (x )max =f (2)=1.“对任意的x 1,x 2∈12,2 ,都有f (x 1)≤g (x 2)成立”等价于“对任意的x ∈12,2,g (x )≥f (x )max 恒成立”,即当x ∈12,2时,g (x )=a x+x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x 12≤x ≤2,则有a ≥u (x )max .u '(x )=1-x -2x ln x ,可知u '(1)=0.当x ∈12,1时,1-x >0,2x ln x <0,则u '(x )>0,所以u (x )在12,1上递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u '(x )<0,所以u (x )在(1,2)上递减.故u (x )在区间12,2上的最大值u (x )max =u (1)=1,所以实数a 的取值范围是[1,+∞).【点拨】 (1)∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,通常等价转化为f (x )min >g (x )max .这是两个独立变量--双变量问题,不等式两边f (x 1),g (x 2)中自变量x 1,x 2可能相等,也可能不相等;(2)对任意的x ∈[m ,n ],不等式f (x )>g (x )恒成立,通常等价转化为[f (x )-g (x )]min >0.这是单变量问题,不等式两边f (x ),g (x )的自变量x 相等.【变式3】 函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R ).(1)直接写出函数f (x )的单调区间;(2)当m >0时,若对于任意的x 1,x 2∈[0,2], f (x 1)≥g (x 2)恒成立,求a 的取值范围.【解析】 (1)当m >0时,f (x )的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞).当m <0时,f (x )的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m >0时,“对于任意的x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对于任意的x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减,因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1,故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g '(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,此时g (x )max =g (2)=4,不满足1≥g (x )max .②当a ≠0时,令g '(x )=0,得x =0或x =-2a .(i )当-2a≥2,即-1≤a <0时,在[0,2]上,g '(x )≥0,g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ii )当0<-2a <2,即a <-1时,在0,-2a上,g '(x )≥0,g (x )递增;在-2a ,2 上,g '(x )<0,g (x )递减.g (x )max =g -2a =4a 2e 2,由1≥4a 2e 2,得a ≤-2e ,所以a <-1.5(iii )当-2a<0,即a >0时,显然在[0,2]上,g '(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a >4,此时不满足1≥g (x )max .综上,a 的取值范围是(-∞,-ln 2].四、“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )min >g (x )min .其等价转化的基本思想是函数f (x )的任意一个函数值大于函数g (x )的某一个函数值,但并不要求大于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max .其等价转化的基本思想是函数f (x )的任意一个函数值小于函数g (x )的某一个函数值,但并不要求小于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于f (x )min -g (x )min >k .∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于f (x )max -g (x )max <k .【例4】 函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,求实数b 的取值范围.【解析】 “对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立”等价于“f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min (*)”.f '(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,当x ∈(0,1)时, f '(x )<0, f (x )单调递减;当x ∈(1,2)时, f '(x )>0, f (x )单调递增.故当x ∈(0,2)时, f (x )min =f (1)=-12.又g (x )=(x -b )2+4-b 2,x ∈[1,2],①当b <1时,g (x )min =g (1)=5-2b >3,此时与(*)矛盾;②当b ∈[1,2]时,g (x )min =g (b )=4-b 2≥0,同样与(*)矛盾;③当b ∈(2,+∞)时,g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综上,实数b 的取值范围是178,+∞ .【变式4】 已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求a 的最小值;(2)若g (x )=x ex ,∀x 1∈12,2 ,∃x 2∈12,2 ,使得f '(x 1)≤g (x 2)成立,求a 的取值范围.【解析】 (1)由题设知f '(x )=x 2+2x +a ≥0,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)上单调递减,则y max =-3,∴a ≥-3,∴a min =-3.(2)“∀x 1∈12,2,∃x 2∈12,2 ,使f '(x 1)≤g (x 2)成立”等价于“x ∈12,2 时,f '(x )max ≤g (x )max 恒成立”.∵f '(x )=x 2+2x +a =(x +1)2+a -1在12,2上递增,∴f '(x )max =f '(2)=8+a ,又g '(x )=e x -xe x e 2x =1-x e x,6∴g (x )在(-∞,1)上递增,在(1,+∞)上递减.∴当x ∈12,2时,g (x )max =g (1)=1e ,由8+a ≤1e 得,a ≤1e -8,所以a 的取值范围是-∞,1e-8 .五、“存在≥(≤、>、<)存在”型若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )max ≥g (x )min .其等价转化的基本思想是函数f (x )的某一个函数值大于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )min <g (x )max .其等价转化的基本思想是函数f (x )的某一个函数值小于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于[f (x 1)-g (x 2)]max >k ,也等价于f (x )max-g (x )min >k .若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于[f (x 1)-g (x 2)]min <k ,也等价于f (x )min -g (x )max <k .【例5】 已知函数f (x )=4ln x -ax +a +3x(a ≥0).(1)直接写出函数f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈12,2,使f (x 1)>g (x 2),求实数a 的取值范围.【解析】 (1)当a =0时,函数f (x )的递减区间为0,34,递增区间为34,+∞ .当0<a <1时,函数f (x )的递减区间为0,2--(a -1)(a +4)a,2+-(a -1)(a +4)a,+∞,递增区间为2--(a -1)(a +4)a ,2+-(a -1)(a +4)a.当a ≥1时, f (x )的递减区间为(0,+∞).(2)“存在x 1,x 2∈12,2 ,使f (x 1)>g (x 2)”等价于“ 当x ∈12,2时, f (x )max >g (x )min ”.由(1)知,当x ∈12,2时, f (x )max =f 12 =-4ln 2+32a +6,由g '(x )=2e x -4>0,得x >ln 2,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x ∈12,2时,g (x )min =g (ln 2)=4-4ln 2+2a ,由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,又a ≥1,所以1≤a <4.【变式5】 设函数f (x )=xln x-ax .(1)若函数f (x )在(1,+∞)上为减函数,求实数a 的最小值;(2)若存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立,求实数a 的取值范围.【解析】 (1)由题设知f '(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,则只需f '(x )max ≤0.又f '(x )=ln x -1(ln x )2-a =-1ln x -12 2+14-a ,7所以当1ln x =12,即x =e 2时, f '(x )max =14-a ,由14-a ≤0得a ≥14,故a 的最小值为14.(2)“存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e ,e 2]时, f (x 1)min ≤f '(x 2)max +a ”.由(1)知,当x ∈[e ,e 2]时, f '(x )max =f '(e 2)=14-a ,所以f '(x )max +a =14.则问题等价于“当x ∈[e ,e 2]时, f (x )min ≤14”.①当a ≥14时,由(1)得f '(x )max =14-a ≤0, f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-ae 2,由f (x )min ≤14,得a ≥12-14e 2.②当a <14时, f '(x )=-1ln x -12 2+14-a 在[e ,e 2]上的值域为-a ,14-a .(i )当-a ≥0,即a ≤0时, f '(x )≥0在[e ,e 2]恒成立,故f (x )在[e ,e 2]上为增函数,于是f (x )min =f (e )=e -ae ≥e >14,与f (x )min ≤14矛盾.(ii )当-a <0,即0<a <14时,由f '(x )的单调性和值域知,存在唯一的x 0∈(e ,e 2),使f '(x )=0,且满足:当x ∈(e ,x 0)时, f '(x )<0, f (x )为减函数;当x ∈(x 0,e 2)时, f '(x )>0, f (x )为增函数,所以f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈(e ,e 2).所以a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾.综上,a 的取值范围是a ≥12-14e2.。
巧辨“任意性问题”与“存在性问题”含有参数的方程(或不等式)中的“任意性”与“存在性”问题历来是高考考查的一个热点,也是高考复习中的一个难点•破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.技法一“?X,使得f(x)>g(x)”与“ ?X,使得f(x)>g(x)”的辨析⑴? X,使得f(x)>g(x),只需h(x)min =[f(X)—g(X)]min>0.如图①.(2)? X,使得f(x)>g(x),只需h(x)max = [f(x)—g(x)]max>0.如图②.[典例] 设函数f(x)= ln(1 + x), g(x)= af' (x),其中f (x)是f(x)的导函数.(1) 若对于任意x> 0,总有f(x)>g(x),求实数a的取值范围;(2) 若存在x> 0,使得f(x) > g(x),求实数a的取值范围.[方法演示]解:(1)设h(x) = f(x) —g(x) = ln(1 + x) ——(x> 0).1+ x, 1 a x+ 1 + ah (x)_ 1+ x+( 1+ x f_ (1 + x J .当a > —1时,h ' (x)> 0, h(x)在[0, + )上单调递增,••• h(x)> h(0) =—a,则一a>0, a< 0,「. a€ [—1,0].当a<—1时,对于x€ (0, —a—1)有h' (x)<0,贝U h(x)在(0,—a—1)上单调递减,所以h( —a—1)<h(0) = 0,即此时存在x>0,使得h(x)<0,即f(x)> g(x)在[0, + )上不恒成立.综上可知,实数a的取值范围为[—1,0].(2)由(1)可知,当a> —1时,存在x> 0,使得f(x) > g(x),当a<— 1 时,令X Q= e—a—1,贝U X Q>0 ,…h(x o)= —a(1 + £)>0 ,•必存在x>0,使得f(x)>g(x).综上可知,实数a的取值范围是(―8,+^).[解题师说](1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当X0> 0时,总有f(X0) > g(X0),即f(X0)—g(X0) > 0(注意不是f(x)min > g(x)max),可以转化为当X> 0 时,h(x) = f(x) —g(x)> 0恒成立问题.⑵存在x>0,使得f(x)>g(x),即至少有一个X Q>0,满足f(X))—g(x0)不是负数,可以转化为当x > 0时,h(x)= f(x)— g(x)的函数值至少有一个是非负数.[应用体验]1 设函数 f(x) = x 3— x 2— 3. (1)求f(x)的单调区间;⑵若函数y = f(x)— m 在区间[—1,2]上有三个零点,求实数 m 的取值范围;数a 的取值范围.解:(l)f ' (x)= 3x 2— 2x = x(3x — 2). 2由 f ' (x)>0,得 x<0 或 x>-;3由f ' (x)<0,得0<x<3,所以f(x)的单调递增区间是(一R, 0), 2,+R ,单调递减 区间是0, 2 .32(2)令 h(x)= f(x)— m ,则 h(x) = x — x — 3— m ,2h ' (x) = 3x — 2x = x(3x — 2),由(1)知函数h(x)在x = 0处取得极大值h(0) = — 3 — m ,在x =-处取得极小值3 —m.因为函数y = f(x)— m 在区间[—1,2]上有三个零点,h —1 =— 5— m w 0, h 0 =— 3— m>0 ,所以 285 85h 3 厂—27— m<0 ,解得—27<m< — 3 , h 2 = 1 — m > 0 ,所以实数m 的取值范围是 —27, — 3 .(3)由(1)知,函数f(x)在2 , 2上单调递减,在2 , 2上单调递增, 而f(2卜-25 , f(2)=1,故f(x)在区间:,2上的最大值为f(2) = 1.因为“对任意的X 1 , x 2€ 2 , 2]都有f(X 1) w g(x 2)成立”等价于“对任意x € J , 2、 g(x)> f(x)max 恒成立”2即a > x — x ln x 恒成立.2记 u(x)= X — X ln X ,则有 a 》U (x)max .⑶设函数g(x) = a+ xln x ,如果对任意的X i , X 2^ 2 2 I,都有 f(X i )w g(X 2)成立,求实h2 _ 15即当x€ g(x)= a + xln x > 1 恒成立,u ' (x) = 1 — x — 2xln x ,可知 u ' (1) = 0. 当 x € 1, 1 时,1 — x>0,2xln x<0, 则u ' (x)>0, u(x)在2, 1上单调递增; 当 x € (1,2)时,1 — x<0,2xln x>0, 则u ' (x)<0, u(x)在(1,2)上单调递减.使得f(X 1)= g(x 2)等价于函数f(x)在D 1上的值域A 与g(x)在 D 2B 的交集不是空集,即 A H B 丰?,如图③.其等价转化的目标是两个函数有相等的函数值.故u(x)在区间2, 1的最大值为 u ⑴=1,所以实数a 的取值范围是 [1,+ m ). 技法“若? X 1€ D 1, ? X 2€ D 2,使得 f(X 1)= g(X 2)” 与 “ ? X 1€ D 1, ? X 2€ D 2,使得f(x 1)= g(x 2)” 的辨析(1)? X 1 € D 1, ? X 2 €D ,上的值域 ⑵? 上的值域X 1€ D 1, ? X 2€ D 2,使得f(x“= g(x 2)等价于函数f(x)在D 1上的值域A 是g(x)在 D ?B 的子集,即 A ? B ,如图④.其等价转化的目标是函数 y = f(x)的值域都在函数 y=g(x)的值域之中.说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影.2 23 1[典例】已知函数f(x)= x -刊,a>0, x€ R,g(x)=乔X.(1)若? X 1€ (— s, — 1], ? x ?€— m,—1 ,使得f(x 1) = g(x 2),求实数a 的取值范围;(2) 当 a = 2时,证明:对任意的X 1 € (2, +s ),都存在x ?€ (1 , +s ),使得f(X 1)= g(X 2). [方法演示]2解: (1) •- f(x)= X 2 — 3ax 3, /• f ' (x) = 2x — 2ax 2= 2x(1 — ax).1令f ' (x)=0, 得 x =0 或x =a .当 x € (— a, 0)时,f ' (x)<0 ,••• f(x)在(一a,— 1]上单调递减,a故f(x)在(—a,— 1]上的值域为1 + 2^,+ a }2•••g(x) = -T-1—, • g ' (x)= 3x 2xX (1 — X ) 1当 x<—1 时,g ' (x)>0, g(x)单调递增,g(x)<g—a,— 2,使得 f(X 1)=g(X 2),则 1 + 2a<3,解得 0<玄<2,故实数a 的取值范围是 0, 5 .⑵证明:当a =舟时,f(x)= x 2 — x 3, 所以 f ' (x)= 2x — 3X 2= 3x 3— x .当x>1时,f ' (x)vo ,所以f(x)在(1 ,+s )上单调递减,且 f(2) =- 4. 所以f(x)在(2,+a )上的值域为(一a,— 4). 4则g(x)= 严 =-^在(1 ,+a )上单调递增,X (1 — X ) f (X ) 所以g(X)=' 在(1 , + a )上的值域为(—a, 0).X (1 — X ) 因为(一a ,— 4)( — a , 0),所以对于任意的(2 , + a ),都存在(1 , + a ),使得f(X 1)= g(X 2). [解题师说]本例第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共 部分;第(2)问等价转化的基本思想是: 函数f(x)的任意一个函数值都与函数 g(x)的某一函数值相等,即f(x)的值域都在g(x)的值域中.[应用体验]2•已知函数 f(x)=弓^,x € [0,1]. (1) 求f(x)的单调区间和值域;(2) 设 a > 1,函数 g(x) = x 3— 3a 2x - 2a, x € [0,1].若对于任意 X 1 € [0,1],总存在 x °€ [0,1], 使得g(x °)= f(X 1)成立,求实数a 的取值范围.—4x + 16x — 7 2x — 1 2x — 72— x 2 , X €[0,1].3x — 2~2 T"2 = 3 “ . X — X x 1 — X一 1L 8 、2厂故g(x)在 —a,— 2上的值域为 — a 8] ,3 .若?捲€ (—a, — 1] , ? 解: (1)f' (X)=2— x1 7令f' (x)= 0,解得x= 2或X = 2(舍去).当x变化时,f' (x), f(x)的变化情况如下表:所以f(x)的递减区间是0, 2,递增区间是2,1 .所以f(x)min= f 2 =- 4.又f(0) = -7, f(1) = - 3,所以f(x)max= f(1) =—3.故当x € [0,1]时,f(x)的值域为 B = [—4,—3].(2) “对于任意x i€ [0,1],总存在x°€ [0,1],使得g(x o) = f(x i)成立”等价于“在x€ [0,1] 上,函数f(x)的值域B是函数g(x)的值域A的子集,即B? A”.因为a> 1,当x€ (0,1)时,g' (x)= 3(x2—a2)<0,所以g(x)为减函数,故g(x)的值域A= [1 —2a —3a2,—2a].由B? A,得 1 —2a—3a2< — 4 且—2a> —3,解得1< a< 号.所以实数a的取值范围为1, 3 .技法三f(x), g(x)是闭区间D上的连续函数,“ ?冷,X2€ D,使得f(x“>g(x2)”与“ ?X1,x2€D,使得f(x1)>g(X2)” 的辨析(1)f(x), g(x)是在闭区间D上的连续函数且?X1, x2€ D,使得f(xd>g(x2),等价于f(x)min>g(x)max.其等价转化的目标是函数y= f(x)的任意一个函数值均大于函数y= g(x)的任意一个函数值•如图⑤.图⑤国⑥⑵存在X1, x2 € D,使得f(x1)>g(X2),等价于f(x)max>g(x)min.其等价转化的目标是函数y=f(x)的某一个函数值大于函数y= g(x)的某些函数值.如图⑥.2 a[典例] 已知 f(x)= x + 一(a>0), g(x) = x + In x.(1) 若对任意的x i , X 2^ [1, e ],都有f(X i )A g (x 2)成立,求实数a 的取值范围; (2) 若存在x i ,X 2^ [1, e ],使得f(X i )vg (x 2),求实数a 的取值范围. [方法演示]解: (1)对任意的 X i,X 2€ [1 ,e ],都有 f(x i )> g(X 2)成立,等价于 x € [1 ,e ]时,f(x)min > g(X )max .1当 x € [1, e ]时,g ' (x)= 1 + ->0,所以 g(x)在[1, e ]上单调递增,所以 g(x)max = g(e)= e +1.2只需证 f(x)> e + 1,即 x + — > e + 1? a 2> (e + 1)x - x 2在[1, e ]上恒成立即可. 令 h(x)= (e + 1)x — x 2.当x € [1, e ]时,h(x) = (e + 1)x — x 2的最大值为h 宁=号 2.所以a 2> 宁 2,即故实数a 的取值范围是号,+R }(2)存在 X i , x 2 € [1, e ],使得 f(x i )v g(X 2),等价于 X € [1 , e ]时,f(x)min <g(x)max .1 当 x € [1, e ]时,g ' (x)= 1+ x>0 ,所以 g(x)在[1, e ]上单调递增,所以 g(x)max = g (e)=e+1.2a又 f ' (x)= 1 — p ,令 f ' (x)= 0,得 X = a , 2故f(x) = x + °(a>0)在(0 , a)上单调递减,在(a , +)上单调递增.当 ovavi 时,f(x)在[1, e ]上单调递增,f(x)min = f(1) = 1 + a 2vi + e ,符合题意;当 1 < a w e 时,f(x)在 [1 , a ]上单调递减,在[a , e ]上单调递增,f(x)min = f(a)= 2a ,1 -4- e 此时,2avi + e ,解得 i w av -;最咼点.[应用体验]2 2a a _当 a>e 时,f(x)在[1, e ]上单调递减,f(x)min = f(e)= e + —,此时,e + —vi + e ,即 av e , e e 与a>e 矛盾,不符合题意.综上可知,实数a 的取值范围为o , 粤. [解题师说](1)本例第(1)问从数的角度看,问题的本质就是 f(x)min > g(x)max .从形的角度看,问题的本质就是函数f(x)图象的最低点也不低于g(x)图象的最高点.⑵本例第⑵问从形的角度看,问题的本质就是函数f(x)图象的最低点低于g(x)图象的a >e + 1 2 .a + 33.已知函数f(x)= 4ln x—ax+-^(a》0),(1)求f(x)的单调区间;⑵当a> 1 时,设g(x)= 2e x—4x + 2a,若存在x i, X2^ 2, 2 ,使f(x“>g(x2),求实数a的取值范围.24 a+ 3 ax —4x + a + 3解:(1)由题意得f (x)=-一a—厂=— 2 (x>0).x x x ' '令f' (x)= 0,即ax2—4x+ a + 3 = 0.4x 一3 3 3当 a = 0 时,f' (x) =― .由f' (x)>0 ,得x>3;由f' (x)<0 ,得Ovxv;,所以函数f(x) x44的单调递增区间为4,+m,单调递减区间为o, 3.当a>0 时,ax2—4x+ a+ 3= 0 的判别式△=—4(a—1)(a+ 4).若a> 1, AC 0,贝U f' (x)w 0,所以f(x)的单调递减区间为(0,+a).A c 1 空若0va<1,贝U 少0.因为X1+ X2= —>0 , X1X2= >0,a a所以X1= j一a—L吐纟>0 ,aX2= J—归1⑴ >0.a由f'(X)>0,得X1<x<X2 ;由f ' (X)<0,得X>X2或0VXVX1,所以f(x)的单调递增区间为(X1, X2),单调递减区间为(0, X1) , (X2,+ a).综上,当a= 0时,函数f(x)的单调递增区间为4,+ a ,单调递减区间为0, 3 .当0va<1时,函数f(x)的单调递增区间为 1L一归1吐4,a a单调递减区间为0, J一1吐*,a2+ P-(j—Hj±Z),+ a.a '当a> 1时,f(x)的单调递减区间为(0,+ a).(2) “存在X1 , x2 € 22〔使f(x1)>g(X2)” 等价于“x€ 2 2 时,f(x)max>g(x)min . 由(1)知,当x€ 1, 2 时,f(x)max= f 1 =—4ln 2 + ;a+ 6.由g' (x)= 2e x—4= 0,得x= In 2.当x €殳,ln 2时,g ' (x)vo , g(x)单调递减; 当 x € (In 2,2]时,g ,(x)>0, g(x)单调递增.所以当 x € 2,2 时,g(x)min = g(ln 2) = 4 — 4ln 2 + 2a.3由 f(x)max >g(x)min ,得—4ln 2 + qa + 6>4 — 4ln 2 + 2a ,解得 1< a<4,故实数 a 的取值范 围为[1,4).技法四 “?捲€ D i, ? x 2€ D 2,使 f(X i )>g(x 2)” 与 “? x i € D i , ? x 2€ D 2,使 f(x°vg(x 2)” 的辨析(1)? x i € D i , ? X 2€ D 2,使f(X i )>g(x 2),等价于函数f(x)在D i 上的最小值大于 g(x)在D 2上的最小值,即f(x)min >g(x)min (这里假设f(x)min , g (x)min 存在)•其等价转化的目标是函数 y = f(x)的任意一个函数值大于函数 y = g(x )的某一个函数值.如图⑦ .(2)? x i € D i , ? x ?€ D 2,使f(X i )vg(X 2),等价于函数f(x)在D i 上的最大值小于 g(x)在D 2上的最大值,即f(x)max Vg(X)max .其等价转化的目标是函数 y = f(X)的任意一个函数值小于函数y = g(x)的某一个函数值•如图⑧.i 3[典例]已知函数 f(x) = ln x — 4X + 4X — i , g(x)= X 2— 2bx + 4,若对任意的 X i € (0,2), 总存在X 2€ [i,2],使f(x i ) > g(x 2),求实数b 的取值范围.[方法演示]解:依题意知f(x)在(0,2)上的最小值不小于 g(x)在 [i,2]上的最小值,即f(x)min 》g(x)min .则当Ovxvi 时,f ' (x)<0, f(x)单调递减; 当 ivxv2 时,f ,(x)>0 , f(x)单调递增,i 所以当 X € (0,2)时,f(x)min = f(i) =— 2又 g(x)= x 2— 2bx + 4,①当 bvi 时,可求得 g(x)min = g(i) = 5— 2b. i ii由5 — 2b < — ?,解得b >匚■,这与bvi 矛盾; ②当 i w b < 2 时,可求得 g(x)min = g(b) = 4 — b 2. 1 9由4 — b 2w — ,得b 2> 9,这与 K b w 2矛盾;所以 5 X -i -4?=x — i x —324x :HI ⑦RJ③当 b>2 时,可求得 g(x)min = g(2) = 8— 4b. 1 17由 8 — 4b w — 2,得 b 》—.[解题师说]“对任意%€ (0,2),总存在 x € [1,2],使 哄) > 如”等价于“ f(x)在(0,2)上的最小值 大于或等于g(x)在[1,2]上的最小值”.[应用体验]1 3 24.已知函数 f(x) = ^x + x + ax.(1) 若f(x)在区间[1,+^ )上单调递增,求实数 a 的最小值;(2) 若g(x)=家,对?刈€ 1, 2 , ? X 2€ 2, 2 I,使f 网< g(x 2)成立,求实数a 的取 值范围. 解:(1)由题设知 f (x) = x 2 + 2x + a > 0在[1 ,+s )上恒成立,即a 》一(x + 1)2+ 1在[1, + 8)上恒成立,而y =— (x + 1)2+ 1在[1,+8)单调递减,则 y max =— 3,••• a 》一3,二a 的最小值为一 3.(2) “对? X 1 €2 2 L ? x 2€j2,2 ",使 f ' (x 1)w g(X 2)成立”等价于 “x € 2 2 时,f !(x)maxw g(x)max .f ' (x) = x + 2x + a = (x +1) + a — 1 在?,2〔上递增, •- f (x)max = f ' (2) = 8 + a. , 1 — x又 g (x)=~e~,由 g ' (x)>0,得 x<1, 由 g ' (x)<0,得 x>1 ,• g(x)在(—8, 1)上单调递增,在(1, +8)上单调递减.由 8 + a w —,得 aw —— 8,•实数a 的取值范围为[升级增分训练]g(x)max = g(1)=e.-1x+舟O W X W 2,6 12 21.已知函数f(x) = 和函数g(x)= asir^x— a + 1(a>0),若存在x3 1XT1,2<x W 1X1, x2^ [O,1】,使得f(x1)= g(x2)成立,求实数a的取值范围.解:设函数f(x), g(x)在[0,1]上的值域分别为A, B,则“存在论,x?€ [0,1],使得f(x“ =g(x2)成立”等价于“A n B M ?”.1 1 1当0 W X W -时,f(x) =—&X +在单调递减,1所以0W f(x) W —.2当W 1 时,f' (x) = X 3 >0 ,3所以f(x)=4单调递增,X + 11 1 所以1"2<f(x)< 2;故f(x)在[0,1]上的值域A= 0,1.n n 丨n n 当X € [0,1 ]时,6X € 0, 6,y= sin^x 在[0,1]上单调递增.又a>0 ,所以g(x)= asi%x —a+ 1在[0,1]上单调递增,其值域 B = 1 —a, 1 —111 a 1由A n B工?,得0 W 1 —a W 2或0 W 1 —云W云,解得2< a w 2.所以实数a的取值范围是2,2 .12.已知函数f(x)= ln x + - + ax.(1) 若函数f(x)在[1,+^ )上是单调函数,求实数a的取值范围;1(2) 已知函数g(x) = x+ -,对于任意X1€ [1, e],总存在灭?€ [1, e],使得f(xj w g(x2)成立,求正实数a的取值范围.21 1 ax + x—1解:(1)f (x)= x—~2+ a= X2,x € [1, + ),•••函数f(x)在[1 , + )上是单调函数,••• f' (x) > 0 或f' (x)w 0 对任意x€ [1 ,+^ )恒成立.即ax2+ x—1 > 0 或ax2+ x— 1 w 0 对任意x € [1, + )恒成立,11 11••• a>-2- 一或a< -2- 一对任意x€ [1,+ a)恒成立.xx x x1令t= 一,由于x€ [1,+ a)则t€ (0,1],设h(t)= t2-1= t- 2 2-4,1 1 因此一一w h(t) W 0,故a> 0 或a w —:,•••实数a的取值范围为一a,- 4 u [0, + a ).(2)由(1)知,当a > 0时,函数f(x)在[1, e]上为增函数,1 故f(1) w f(x)w f(e),即1 + a w f(x)w 1 + ae+ .e1x2-1「g (x) = 1-严 h ,•••当x € [1, e]时,g' (x)》0, g(x)单调递增,1 • g(1) w g(x) w g(e),即2w g(x)w e+ .eT对任意为€ [1, e],总存在X2€ [1, e],使得f(x1)w g(X2)成立,1 1•- f(X1)max W g(X2)max,即1 + ae+Y e+_ ,e e1解得0 v a w 1--,e故所求正实数a的取值范围为0, 1-一.2 2 33.已知函数f(x)= x - 3ax (a>0), x € R.(1) 求f(x)的单调区间和极值;(2) 若对任意的X1 € (2,+a ),都存在X2 € (1 ,+a ),使得f(x“ q x2)= 1,求实数a的取值范围.解:(1)f' (x)= 2x- 2ax2(a>0),1令f' (x)= 0,得X= 0 或X = -.a当x(2)由 f(0) = f 3= 0 及(1)知,当 x € 0, 2a 时,f(x)>0 ; 当 x € 2a ,+g 时,f(x)<0. 设集合 A = {f(x)|x € (2, + g )},J iI吐1,+g)f (x r 叮贝y “对任意的x i € (2, +g ),都存在X 2€ (1, +g ),使得f(x i ) f (x 2)= 1 ”等价于A ? B , 显然0?B. 下面分三种情况讨论:①当2a>2,即0<a<3时,由f 2a =0知,0€ A ,而0?B ,所以A 不是B 的子集. ②当1三3 < 2,即3 < a w 3时,有f(2)三0,且此时f(x)在(2 ,+g )上单调递减,2a 4 2 故 A = (-g , f(2)),因而 A ? (-g, 0);由f(1) > 0,有f(x)在(1, + g )上的取值范围包含(一g, 0),则(一g, 0)? B ,所以 A B.3 3③当-<1,即a>3时,有f(1)<0,且此时f(x)在(1, + g )上单调递减,2a 2 A = (-g, f(2)), A 不是B 的子集._im^x2 ax4.(理)已知函数 f(x) = ~2~^ + 1(m r 0), g(x) = x e (a € R). (1) 求函数f(x)的单调区间;(2) 当m>0时,若对任意X 1, x 2€[0,2], f(x 1) > g(X 2)恒成立,求实数a 的取值范围.2解: (1f (x 戶X = 一寺^.当 m>0 时,由 f ' (x)>0,得一1<x<1 ;由 f ' (x)<0 ,得 x>1 或 x< — 1,所以 f(x)的单调 递增区间是(一1,1),单调递减区间是(一g,- 1), (1 ,+g ).当 m<0 时,由 f ' (x)>0,得 x>1 或 x< — 1 ;由 f ' (x)<0,得一1<x<1,所以 f(x)的单调 递增区间是(一g,- 1), (1, + g ),单调递减区间是(一1,1).⑵依题意,当m>0时,"对任意X 1, x 2€[0,2], f(x 1) > g(x 2)恒成立”等价于"对任意xf(x)的极小值为f(0) = 0,极大值为 f综上,实数 a 的取值范围是3 31-4’ 2:所以f(x)的单调递增区间是单调递减区间是 (-m , 0),1 3a 2.€ [0,2], f(x) min 》g(x) max 成立”.当m>0时,由 ⑴知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减, 因为 f(0) = 1 , f(2)= 2m + 1>1,所以 f(x)min = f(0) = 1.故应满足 1> g(x)max .5 因为 g(x)= x 2e ax ,所以 g ' (x)= (ax 2 + 2x)e ax .① 当 a = 0 时,g(x)= x 2,对任意 x € [0,2], g(x)max = g(2) = 4,不满足 1>g(x)max . ② 当a 丰0时,令g ' (x) = 0,得x = 0或x =- 2.a2(i )当- -> 2,即—1W a<0 时,在[0,2]上, g ' (x) > 0,所以 g(x)在[0,2]上单调递增,g(x)maxa =g(2)= 4e 2a .由 1》4e ?a ,得 a w — In 2,所以一1 w a w — In 2.(ii )当 0< — a<2,即 a< — 1 时,在 0,—彳 上, g ' (x)>0, g(x)单调递增;在a ,2 上, g ' (x)<0, g(x)单调递减.g(x)max = g —2 =令.由1》2 2,得a w —-,所以a< — 1.a e e2(iii )当— -<0 ,即 a>0 时,显然在[0,2]上,g ' (x)>0, g(x)单调递增,于是 g(x)max = g(2) a =4e 2a ,此时不满足 1> g(x)max .综上,实数a 的取值范围是(一m, — ln 2].2a 24.(文)已知函数f(x) = (1 + b)x + — — aln x(a > 0)在x = 2a 处取得极值. (1)求函数f(x)的单调区间;⑵设函数g(x)= x 2— 2cx + 4— ln 2,当a = 1时,若对任意的乂1尽€ [1 ,e]都有f(x“>g(x 2), 求实数c 的取值范围.又f(x)在x = 2a 处取得极值,1 1所以 f ' (2a) = 1+ b — — 2 = b = 0, 所以 f(x)= x + 2- — aln x ,2222a a x— ax — 2a(x + a (x — 2a } f ' (x)= 1— p — _=2 = 2, x x xx'又a >0,且函数f(x)的定义域为(0,+ g ), 所以由 f ' (x)> 0,得 x > 2a ; 由 f (x)v 0,得 O v x v 2a ,即函数f(x)的单调递增区间是(2a ,+s ),单调递减区间为(0,2a). 2(2)当 a = 1 时,f(x)= x + x - In x , x € (0, +),由⑴知x € [1, e ]时,f(x)在[1,2]上单调递减,在(2, e ]上单调递增,所以 f(x)min解:(1)由 f(x)= (1+ b)x + 2a— aln x , a >0, x >0,得 f ' (x)= 1 + b —2a 2 ~2 x ax .f(2)=3- In 2.对任意的x i,冷€ [1, e]都有f(x i)> g(x2),即f(x)min》g(x), x€ [1 , e]恒成立.即 3 —In 2 > x2- 2cx+ 4—In 2, x€ [1, e]恒成立,即2c>x + £ x€ [1, e]恒成立,1 1令h(x) = x+ x,则h' (x)= 1 —-2 >0, x € [1, e],1即h(x)= x + -在[1, e]上单调递增,故h(x)max= e+ e,所以O丁 e+ * .故实数c的取值范围为:+占+T。
函数中存在性与任意性问题分类解析全称量词、特称量词以及全称命题与特称命题在近几年新课标高考卷与模拟卷中频频亮相成为高考的热点问题、特别就是全称量词”任意”与特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势、两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化与新意、解决这类问题的关键就是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考、1、,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即、例1已知函数与函数,若存在,使得成立,则实数的取值范围就是()解设函数与在上的值域分别为与,依题意、当时,,则,所以在上单调递增,所以即、当时,,所以单调递,所以即、综上所述在上的值域、当时,,又,所以在在上单调递增,所以即,故在上的值域、因为,所以或解得,故应选、2、对,,使得,等价于函数在上的值域就是函数在上的值域的子集,即、例2(2011湖北八校第二次联考)设,、①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就就是函数的值域、设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围就是、②依题意实数的取值范围就就是使得函数的值域就是函数的值域的子集的实数的取值范围、由①知,易求得函数的值域,则当且仅当即,故实数的取值范围就是、例3已知,它们的定义域都就是,其中就是自然对数的底数,、(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围、解(1)略;(2)依题意实数的取值范围就就是使得在区间上的值域就是的值域的子集实数的取值范围、当时,由得,故在上单调递减,所以即,于就是、因,由得、①当时,,故在上单调递增,所以即,于就是、因为,则当且仅当,即、②当时,同上可求得、综合①②知所求实数的取值范围就是、3、已知就是在闭区间的上连续函,则对使得,等价于、例4已知,其中、(1)若就是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围、解(1)略;(2) 对,有,等价于有、当时,,所以在上单调递增,所以、因为,令得,又且,、①当时,,所以在在上单调递增,所以、令得这与矛盾。
数学函数中存在性和任意性问题分类解析要想在高考数学函数的考试中取得好成绩,就必须复习好数学的知识点,而且我们还要对高考数学函数知识点进行强化复习。
下面是店铺为您整理的数学函数中存在性,希望对您有所帮助!数学函数中存在性数学函数的任意性高考数学复习攻略仔细研读教材,串联知识“成体系”高考数学试题往往会直接借助教材中的一个内容改编成高考题,例如,2017年全国Ⅱ卷23题(不等式选考题)第二问改编自湘教版选修1-2(文科)第51页例3,全国Ⅰ卷19题第二问中的第一小问答案直接来自人教版必修3第80页阅读材料。
在复习过程中,考生需要认真阅读和理解教材中相关内容,包括每个概念、例题、注释、图形,准确理解和记忆知识点。
在知识网络的交汇处设计试题是近几年高考数学的一大亮点。
考生可以将教材的数学知识串成串,连成线,汇成面,尽力和高考要求对位,处处体现各知识板块间的相互联系与综合,并加以训练。
夯实基础知识,不过多“玩技巧”最新修订的考试大纲中,考试目的第一条就是“我们高考命题要突出基础性”。
高考数学卷中基础题大约占80%,无论是一轮、二轮,还是三轮复习都必须把“三基”即基础知识、基本技能、基本思想方法作为重中之重。
这就提示我们在复习时,抓好抓牢基础题,夯实基础,拿严拿准拿稳基础分,做到基础得满分。
近年来,高考数学试题往往淡化特殊技巧,注重对通性通法的考查,在复习中不要过多“玩技巧”,以免影响考试心理。
优化解题策略,防止“小题大作”解题思路要优化,解题方法要简捷。
高考选填题,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。
不要在一两个小题上纠缠,防止“小题大做”“一算到底。
建议选填题一般不要超过40分钟,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
解题策略:会做的题目力求不失分,注意准确表达和规范书写;部分理解的题目力争多得分,如果遇到一个很困难的问题,确实做不来,可将它分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步,这叫“大题拿小分”。
函数的存在性和任意性问题辨析
函数的存在性和任意性是数学中的重要概念,它们在数学中有着重要的作用。
函数的存在性指的是函数的存在性,即函数是否存在。
函数的存在性是指函数是否存在,它可以是一元函数、多元函数或者更复杂的函数。
函数的存在性可以通过函数的定义来判断,如果函数的定义满足一定的条件,则该函数存在,否则不存在。
函数的任意性指的是函数的任意性,即函数的值可以任意取值。
函数的任意性是指函数的值可以任意取值,它可以是实数、复数或者更复杂的数值。
函数的任意性可以通过函数的定义来判断,如果函数的定义满足一定的条件,则该函数的值可以任意取值,否则不可以。
函数的存在性和任意性是数学中的重要概念,它们在数学中有着重要的作用。
函数的存在性可以帮助我们判断函数是否存在,而函数的任意性可以帮助我们判断函数的值是否可以任意取值。
因此,函数的存在性和任意性是数学中不可或缺的重要概念,它们对我们理解和研究函数具有重要的意义。
浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。
它们既有区别又有联系,意义和转化方法各不相同,容易混淆。
对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。
下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。
1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。
例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。
所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。
函数的任意和存在性问题中山纪念中学 李文东 528454函数中的任意性、存在性问题,也即函数中的恒成立和能成立问题,一直是高中数学考试乃至高考的重点和难点,这一类问题主要涉及到函数的最值和值域,基本模式如下:1.若不等式()f x A >对于任意的x D ∈成立⇔在区间D 上()min f x A >2.若不等式()f x B <对于任意的x D ∈成立⇔在区间D 上()max f x B <3.若在区间D 上存在实数x 使不等式()f x A >成立⇔在区间D 上()max f x A >;4.若在区间D 上存在实数x 使不等式()f x B <成立⇔在区间D 上的()min f x B <.而当题目中涉及到两个函数或者是存在性与任意性同时出现时,很多同学更是无从下手,本文拟通过下面的例子,帮助同学们解决这一难题。
例. 已知函数32()231f x ax ax =-+,3()42a g x x =-+,其中0a < (1)若存在0[0,2]x ∈,使得0()0f x =成立,求a 的取值范围.解:存在0[0,2]x ∈,使得0()0f x =成立⇔函数32()231f x ax ax =-+在区间[0,2]有零点.⇔方程()0f x =在区间[0,2]有实数根.而2()666(1).f x ax ax ax x '=-=-因为0a <,故要使方程()0f x =在区间[0,2]有实数根,则140a +≤⇒4a ≤-. (2)若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x =成立,求a 的取值范围. 解:若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x =成立⇔()f x 的值域与()g x 的值域的交集非空.由(1)可知,()f x 的值域(记为集合A )为[14,1]A a a =+-,又因为当0a <时,3()42a g x x =-+在[0,2]上是增函数, ()g x 的值域(记为集合B )为33,222a B ⎡⎤=-+⎢⎥⎣⎦,要使A B ≠∅,则312a ≤-⇒12a ≤-. (3)若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x >成立,求a 的取值范围. 解:由基本模式的3、4可知:若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x >成立⇔max min ()()f x g x >.而max ()1f x a =-,min 3()2g x =,故312a ->⇒12a <-. (4)若存在1[0,2]x ∈,使对于任意2[0,2]x ∈,12()()f x g x =成立,求a 的取值范围. 解:存在1[0,2]x ∈,使对于任意2[0,2]x ∈,12()()f x g x =成立⇔()g x 的值域是()f x 的值域的子集. 即33,[14,1]222a a a ⎡⎤-+⊆+-⎢⎥⎣⎦⇒3122a a -≥-+⇒12a ≤-. (5)若对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得12()()f x g x <成立,求a 的取值范围. 解:由基本模式的1、3可知:对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得12()()f x g x <成立⇔max max ()()f x g x <.即3122a a -<-+⇒1a >-,又0a <,故10a -<<. (6)若对任意1[0,2]x ∈,2[0,2]x ∈,使得12()()f x g x <成立,求a 的取值范围. 解:由基本模式的1、2可知:对任意1[0,2]x ∈,2[0,2]x ∈,使得12()()f x g x <成立⇔max min ()()f x g x <.即312a -<⇒12a >-,又0a <,故102a -<<. (7)若对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得0()()i f x g x =成立,求a 取值范围.解:在[0,2]上总存在两个不同的i x (1,2i =),使得0()()i f x g x =成立,于是0()[1,1]g x a ∈-,由于0x 的任意性知有33,[1,1]222a a ⎡⎤-+⊆-⎢⎥⎣⎦,只需3122a a -+≤-⇒ 1.a ≤- (8)若对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得102()()()f x g x f x ≤≤成立,求a 取值范围.解:由基本模式的1、2、3、4可知:对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得102()()()f x g x f x ≤≤成立 max max min min ()()()()g x f x f x g x ≤⎧⇔⎨≤⎩,即()g x 的值域是()f x 的值域的子集. 即33,[14,1]222a a a ⎡⎤-+⊆+-⎢⎥⎣⎦⇒3122a a -+≤-⇒ 1.a ≤-。
导数题中“任意、存在”型的归纳辨析导数题是高考题中的常客,而且大都以压轴题的面目出现,所以拿下导数题是迈入高分段的标志。
导数题虽年年有,但却悄然之中发生着些改变。
这其中,尤以关于“任意”、“存在”的内容最为明显。
“任意”、“存在”可以说是导数题最为明显的特色,从早期单一型,发展到现今的混合型。
下面对此作一归纳。
一.单一函数单一“任意”型例1.已知函数()ln()f x x x a =-+的最小值为0,其中0a >。
(1)求a 的值;(2)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值。
解析:(1)1()x a f x x a+-'=+,()f x ∴在(,1)a a --单调递减,在(1,)a -+∞单调递增,所min ()f x (1)01f a a =-=⇒=。
(2)设2()ln()g x kx x x a =-++,则问题等价于()0g x ≥对[0,)x ∈+∞恒成立,即min ()0g x ≥。
因为当0k ≤时,x →+∞时,()f x →-∞,所以0k >。
由22(21)()1kx k x g x x +-'=+,若2104k k-->,则当21(0,)4k x k -∈-时,()0g x '<,()g x 单调递减,()(0)0g x g <=,矛盾。
从而2104k k--≤,解得12k ≥。
即实数k 的最小值是12。
点评:“任意”的意思是不管x 取给定集合中的哪一个值,得到的函数值都要满足给定的不等式,它有两种形式:“对任意的x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;“对任意的x A ∈,()()a f x <≤恒成立”等价于“当x A ∈时,min ()()a f x <≤”。
二.单一函数单一“存在”型例 2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围。
函数中存在性和任意性问题分类解析
全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.
1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.
例1已知函数和函数,若存在,使得成立,则实数的取值范围是()
解设函数与在上的值域分别为与,依题意.
当时,,则,所以在上单调递增,所以即.
当时,,所以单调递,所以即.
综上所述在上的值域.
当时,,又,所以在在上单调递增,所以即,故在上的值域.
因为,所以或解得,故应选.
2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即.
例2(2011湖北八校第二次联考)设,.
①若,使成立,则实数的取值范围为___;②若,
,使得,则实数的取值范围为___
解①依题意实数的取值范围就是函数的值域.设
,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.
②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.
例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围.
解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.
当时,由得,故在上单调递减,所以即,于是.
因,由得.
①当时,,故在上单调递增,所以
即,于是.因为,则当且仅当
,即.
②当时,同上可求得.
综合①②知所求实数的取值范围是.
3.已知是在闭区间的上连续函,则对使得,等价于.
例4已知,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.
解(1)略;(2) 对,有,等价于有.
当时,,所以在上单调递增,所以.
因为,令得,又且,.
①当时,,所以在在上单调递增,所以
.令得这与矛盾。
②当时,当时,当时,所以在
上单调递减在上单调递增,所以.令得
,又,所以。
③当时,,所以在上单调递减,所以
.令得,又,所以。
综合①②③得所求实数的取值范围是。
另解同上求得,要证时,,即.由上知求需对参数进行分类讨论过程繁而长,其实可避免分类讨论,不等式恒成立问题往往转化最值问题来解决,逆向思维,由于难求,将退回到恒成立问题: 证时,即恒成立,只需证当时,恒成立,只需证.因为,令得.当时,当时,故,所以,故所
求实数的取值范围是。
点评这里“另解”将不等式恒成立问题与最值问题的单向转化变成双向转化,将一个需要分类讨论的最值问题转化为另一个不需要分类讨论的最值问题.
练习:已知函数,,若函数的图象经过点,且在点处的切线线恰好与直线垂直.(1)求的值;(2)求函数的在上最大值和最小值;(3)如果对任意都有成立,求实数的取值范围.
4.若对,,使,等价于在上的最小值不小于
在上的最小值即(这里假设存在)。
例5(2010年山东)已知函数.(1)当时,讨论的单调性;(2)设,当时,若对任意,存在,使,求实数的取值范围.
解(1)略;(2)依题意在上的最小值不小于在上的最小值即,于是问题转化为最值问题.
当时,,所以,则当时,;当时,,所以当时,
.
,①当时,可求得,由得
这与矛盾.②当时,可求得,由得这与矛盾.③当时,可求得,由
得.
综合①②③得实数的取值范围是.
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。