函数的任意性和存在性求解
- 格式:doc
- 大小:169.50 KB
- 文档页数:2
高考核心素养提升之一逻辑推理——突破双变量“存在性或任意性”问题逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达.解决双变量“存在性或任意性”问题关键就是将含有全称量词和存在量词的条件“等价转化”为两个函数值域之间的关系(或两个函数最值之间的关系),目的在于培养学生的逻辑推理素养和良好的数学思维品质.类型1 形如“对任意x 1∈A ,都存在x 2∈B ,使得g (x 2)=f (x 1)成立”的问题【例1】 已知函数f (x )=x 3+(1-a )x 2-a (a +2)x ,g (x )=196x -13,若对任意x 1∈[-1,1],总存在x 2∈[0,2],使得f ′(x 1)+2ax 1=g (x 2)成立,求实数a 的取值范围.解 由题意知,g (x )在[0,2]上的值域为⎣⎢⎡⎦⎥⎤-13,6. 令h (x )=f ′(x )+2ax =3x 2+2x -a (a +2),则h ′(x )=6x +2,由h ′(x )=0得x =-13.当x ∈⎣⎢⎡⎭⎪⎫-1,-13时,h ′(x )<0;当x ∈⎝ ⎛⎦⎥⎤-13,1时,h ′(x )>0,所以[h (x )]min =h ⎝ ⎛⎭⎪⎫-13=-a 2-2a -13.又由题意可知,h (x )的值域是⎣⎢⎡⎦⎥⎤-13,6的子集, 所以⎩⎪⎨⎪⎧h (-1)≤6,-a 2-2a -13≥-13,h (1)≤6,解得实数a 的取值范围是[-2,0].思维升华 理解全称量词与存在量词的含义是求解本题的关键,此类问题求解的策略是“等价转化”,即“函数f (x )的值域是g (x )的值域的子集”,从而利用包含关系构建关于a 的不等式组,求得参数的取值范围.类型2 形如“存在x 1∈A 及x 2∈B ,使得f (x 1)=g (x 2)成立”的问题【例2】 已知函数f (x )=⎩⎪⎨⎪⎧2x 3x +1,x ∈⎝ ⎛⎦⎥⎤12,1,-13x +16,x ∈⎣⎢⎡⎦⎥⎤0,12,函数g (x )=k sin πx 6-2k +2(k >0),若存在x 1∈[0,1]及x 2∈[0,1],使得f (x 1)=g (x 2)成立,求实数k 的取值范围.解 由题意,易得函数f (x )的值域为[0,1],g (x )的值域为⎣⎢⎡⎦⎥⎤2-2k ,2-3k 2,并且两个值域有公共部分.先求没有公共部分的情况,即2-2k >1或2-32k <0,解得k <12或k >43,所以,要使两个值域有公共部分,k 的取值范围是⎣⎢⎡⎦⎥⎤12,43. 思维升华 本类问题的实质是“两函数f (x )与g (x )的值域的交集不为空集”,上述解法的关键是利用了补集思想.另外,若把此种类型中的两个“存在”均改为“任意”,则“等价转化”策略是利用“f (x )的值域和g (x )的值域相等”来求解参数的取值范围.类型3 形如“对任意x 1∈A ,都存在x 2∈B ,使得f (x 1)<g (x 2)成立”的问题【例3】 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________.解析 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎢⎡⎦⎥⎤12,1上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫12=172. 又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a ,因此172≤8+a ,则a ≥12.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 思维升华 理解量词的含义,将原不等式转化为[f (x )]max ≤[g (x )]max ;利用函数的单调性,求f (x )与g (x )的最大值,得关于a 的不等式,求得a 的取值范围.思考1:在[例3]中,若把“∃x 2∈[2,3]”变为“∀x 2∈[2,3]”时,其它条件不变,则a 的取值范围是________.问题“等价转化”为[f (x )]max ≤[g (x )]min ,请同学们完成.思考2:在[例3]中,若将“∀x 1∈⎣⎢⎡⎦⎥⎤12,1”改为“∃x 1∈⎣⎢⎡⎦⎥⎤12,1”,其它条件不变,则a 的取值范围是______.问题“等价转化”为f (x )min ≤g (x )max ,请同学们自行求解.分层训练题A级基础巩固一、选择题1.(2020·宜昌调研)命题p:“∀x>1,x2-1>0”,则⌝p为()A.∀x>1,x2-1≤0B.∀x≤1,x2-1≤0C.∃x0>1,x20-1≤0D.∃x0≤1,x20-1≤02.第32届夏季奥林匹克运动会将于2020年7月24日在日本东京隆重开幕.在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(⌝p)∨(⌝q)B.p∨(⌝q)C.(⌝p)∧(⌝q)D.p∨q3.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n04.已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧qB.p∧⌝qC.⌝p∧qD.⌝p∧⌝q5.(2020·河南六校联考)已知命题p:对任意x∈R,总有2x>x2,q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.(⌝p)∧qC.p∧(⌝q)D.(⌝p)∧(⌝q)6.已知命题“∃x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)7.命题p:函数y=log2(x-2)的单调递增区间是[1,+∞),命题q:函数y=13x+1的值域为(0,1).下列命题是真命题的为()A.p∧qB.p∨qC.p∧(⌝q)D.⌝q8.已知函数f(x)=a2x-2a+1.若命题“∀x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是()A.⎝ ⎛⎭⎪⎫12,1 B.(1,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 二、填空题 9.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 10.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________________________.11.(2020·湖南百校大联考改编)下列四个命题:p 1:任意x ∈R ,2x >0;p 2:存在x ∈R ,x 2+x +1≤0;p 3:任意x ∈R ,sin x <2x ;p 4:存在x ∈R ,cos x >x 2+x +1.其中是真命题的为________.12.已知命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为________.B 级 能力提升13.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A.∀x ∈R ,∃n ∈N *,使得n <x 2B.∀x ∈R ,∀n ∈N *,使得n <x 2C.∃x ∈R ,∃n ∈N *,使得n <x 2D.∃x 0∈R ,∀n ∈N *,使得n <x 2014.(2020·南昌质检)下列有关命题的说法正确的是( )A.命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B.命题p :∃x 0∈R ,sin x 0=62;命题q :∀x ∈R ,x >sin x ,则命题p ∨q 为真C.命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1<0”D.命题“若x =y ,则sin x =sin y ”的逆否命题是真命题15.已知函数f (x )=⎩⎨⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解;命题q :若m =19,则f [f (-1)]=0,那么,下列命题为真命题的是____________(填序号).①p ∧q ;②(⌝p )∧q ;③p ∧(⌝q );④(⌝p )∧(⌝q ).16.(2020·漳州八校联考)设p :函数f (x )=ax 2-x +14a 的定义域为R ,q :∃x ∈(0,1),使得不等式3x -9x -a <0成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则实数a 的取值范围为________.C 级 创新猜想17.(组合选择题)(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②⌝p ∨q ③p ∧⌝q ④⌝p ∧⌝q这四个命题中,所有真命题的编号是( )A.①③B.①②C.②③D.③④答案解析1.解析 命题p :“∀x >1,x 2-1>0”,则綈p 为:∃x 0>1,x 20-1≤0.答案 C2.解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(⌝p )∨(⌝q ).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p ∧q ”的否定,选A.答案 A3.解析 ∵全称命题的否定为特称命题,∴该命题的否定是:∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0.答案 D4.解析 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,所以p 为真命题,则⌝p 为假命题;当a =1,b =-2时,满足a 2<b 2,但不满足a <b ,所以q 为假命题,则⌝q 为真命题,根据且命题同真则真的原则,p ∧⌝q 为真命题.答案 B5.解析 当x =2时,2x =x 2,所以p 是假命题;由a >2,b >2可以推出ab >4;反之不成立,例如a =2,b =4,所以“ab >4”是“a >2,b >2”的必要不充分条件,故q 是假命题;所以(⌝p )∧(⌝q )是真命题.答案 D6.解析 因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定命题“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题.则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4.答案 D7.解析 由于y =log 2(x -2)的单调递增区间是(2,+∞),所以命题p 是假命题.由3x >0,得3x +1>1,所以0<13x +1<1, 所以函数y =13x +1的值域为(0,1),故命题q 为真命题. 所以p ∧q 为假命题,p ∨q 为真命题,p ∧(⌝q )为假命题,⌝q 为假命题.答案 B8.解析 ∵函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题,∴原命题的否定:“∃x 0∈(0,1),使f (x 0)=0”是真命题,∴f (1)f (0)<0,即(a 2-2a +1)(-2a +1)<0,∴(a -1)2(2a -1)>0,解得a >12,且a ≠1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案 D9.解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1,依题意,m ≥y max ,即m ≥1.∴m 的最小值为1.答案 110.解析 因为p 是⌝p 的否定,所以只需将全称量词变为存在量词,再对结论否定即可. 答案 ∃x 0∈(0,+∞),x 0≤x 0+111.解析 ∀x ∈R ,2x >0恒成立,p 1是真命题.又x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴p 2是假命题. 由sin ⎝ ⎛⎭⎪⎫-32π=1>2-32π,知p 3是假命题.取x =-12时,cos ⎝ ⎛⎭⎪⎫-12>cos ⎝ ⎛⎭⎪⎫-π6=32, 但x 2+x +1=34<32,则p 4为真.综上,p 1,p 4为真命题,p 2,p 3是假命题.答案 p 1,p 412.解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立,即Δ=m 2-4<0,可得-2<m <2,若p ∧q 为真命题,则-2<m ≤-1,因为p ∧q 为假命题,所以m ≤-2或m >-1.答案 (-∞,-2]∪(-1,+∞)13.解析 改变量词,否定结论.∴该命题的否定应为:∃x 0∈R ,∀n ∈N *,使得n <x 20.答案 D14.解析 选项A ,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,∴A 选项错误.选项B ,∵sin x 0=62>1,∴命题p 是假命题.命题q :当x =0时,x =sin x ,∴命题q 是假命题,则命题p ∨q 为假.∴B 选项错误.选项C ,命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,∴C 选项错误.选项D ,∵x =y ,∴sin x =sin y ,∴该命题的逆否命题为真命题.∴D 选项正确. 答案 D15.解析 因为3x >0,当m <0时,m -x 2<0,所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f [f (-1)]=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0, 所以命题q 为真命题;逐项检验可知,只有(⌝p )∧q 为真命题.答案 ②16.解析 若命题p 为真,则ax 2-x +14a ≥0恒成立,则⎩⎪⎨⎪⎧a >0,Δ=(-1)2-4a ·14a ≤0,解得a ≥1. 设y =3x -9x .令3x =t ,则y =3x -9x =t -t 2,当x ∈(0,1)时,t ∈(1,3),所以y =3x -9x 的值域为(-6,0).若命题q 为真,则a >-6.由命题“p ∨q ”为真命题,“p ∧q ”为假命题,可知p ,q 一真一假, 当p 真q 假时,a 不存在;当p 假q 真时,-6<a <1,所以实数a 的取值范围是(-6,1).答案 (-6,1)17.解析 由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知命题p 正确,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 错误. ∴⌝p 为假,⌝q 为真,∴p ∨q 为真,⌝p ∨q 为假,p ∧⌝q 为真,⌝p ∧⌝q 为假.故真命题的编号为①③.答案 A。
任意性和存在性的综合问题:1.已知函数,其中m ,a 均为实数. (1)求的极值;(2)设,若对任意的,恒成立,求的最小值;(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围.2.设2()()x f x x ax b e =++(1)若2,2a b ==-,求()f x 极大值(2)若1x =是函数()f x 的一个极值点,用a 表示b ,并确定()f x 的增区间(3)在(2)的条件下,设0a >,函数24()(14)x g x a e +=+,若[]12,0,4x x ∃∈使得12()()1f x g x -<成立,求a 的取值范围。
(若将""∃改成""∀呢?)变式训练:若2()25f x x ax =-+在(],2-∞上是减函数,且[]12,1,1x x a ∀∈+时总有12()()4f x f x -≤,求a 的范围。
e ()ln ,()ex x f x mx a x m g x =--=()g x 1,0m a =<12,[3,4]x x ∈12()x x ≠212111()()()()f x f xg x g x -<-a 2a =0(0,e]x ∈(0,e]1212,()t t t t ≠120()()()f t f t g x ==m3.函数()ln f x x a x =-,(1)求函数的单调区间(2)若0a <,(]12,0,1x x ∀∈且12x x ≠,121211()()4f x f x x x -<-恒成立,求a 的取值范围(变式训练)已知函数f(x)=(a +1)lnx +ax 2+1.(1) 讨论函数f(x)的单调性;(2) 设a<-1.如果对任意x 1,x 2∈(0,+∞),|f(x 1)-f(x 2)|≥4|x 1-x 2|,求a 的取值范围.4.已知2(),()ln a f x x g x x x x=+=-,若对[]12,1,x x e ∀∈都有12()()f x g x ≥成立,求a 的范围。
函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1已知函数和函数,若存在,使得成立,则实数的取值范围是()解设函数与在上的值域分别为与,依题意.当时,,则,所以在上单调递增,所以即.当时,,所以单调递,所以即.综上所述在上的值域.当时,,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011湖北八校第二次联考)设,.①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围.解(1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.当时,由得,故在上单调递减,所以即,于是.因,由得.①当时,,故在上单调递增,所以即,于是.因为,则当且仅当,即.②当时,同上可求得.综合①②知所求实数的取值范围是.3.已知是在闭区间的上连续函,则对使得,等价于.例4已知,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.解(1)略;(2) 对,有,等价于有.当时,,所以在上单调递增,所以.因为,令得,又且,.①当时,,所以在在上单调递增,所以.令得这与矛盾。
函数的存在性和任意性问题辨析
函数的存在性和任意性是数学中的重要概念,它们在数学中有着重要的作用。
函数的存在性指的是函数的存在性,即函数是否存在。
函数的存在性是指函数是否存在,它可以是一元函数、多元函数或者更复杂的函数。
函数的存在性可以通过函数的定义来判断,如果函数的定义满足一定的条件,则该函数存在,否则不存在。
函数的任意性指的是函数的任意性,即函数的值可以任意取值。
函数的任意性是指函数的值可以任意取值,它可以是实数、复数或者更复杂的数值。
函数的任意性可以通过函数的定义来判断,如果函数的定义满足一定的条件,则该函数的值可以任意取值,否则不可以。
函数的存在性和任意性是数学中的重要概念,它们在数学中有着重要的作用。
函数的存在性可以帮助我们判断函数是否存在,而函数的任意性可以帮助我们判断函数的值是否可以任意取值。
因此,函数的存在性和任意性是数学中不可或缺的重要概念,它们对我们理解和研究函数具有重要的意义。
浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。
它们既有区别又有联系,意义和转化方法各不相同,容易混淆。
对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。
下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。
1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。
例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。
所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。
1双变量的“任意性”与 “存在性”五种题型的解题方法 一、“存在=存在”型∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 与函数g (x )在D 2上的值域B 的交集不为空集,即A ∩B ≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.【例1】 已知函数f (x )=x 2-23ax 3,a >0,x ∈R .g (x )=1x 2(1-x ).若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】∵f (x )=x 2-23ax 3,∴f '(x )=2x -2ax 2=2x (1-ax ).令f '(x )=0,得x =0或x =1a .∵a >0,∴1a>0,∴当x ∈(-∞,0)时, f '(x )<0,∴f (x )在(-∞,-1]上单调递减, f (x )在(-∞,-1]上的值域为1+2a3,+∞ .∵g (x )=1x 2(1-x ),∴g '(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.∵当x <-12时,g '(x )>0,∴g (x )在-∞,-12 上单调递增,∴g (x )<g -12 =83,∴g (x )在-∞,-12 上的值域为-∞,83.若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),则1+2a 3<83,a <52.故实数a 的取值范围是0,52.【变式1】 已知函数f (x )=-16x +112,0≤x ≤12,x 3x +1,12<x ≤1 和函数g (x )=a ·sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A.12,32 B.[1,2)C.12,2D.1,32【答案】选C 【解析】设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠⌀”.当0≤x ≤12时, f (x )=-16x +112单调递减,所以0≤f (x )≤112;当12<x ≤1时, f '(x )=x 2(2x +3)(x +1)2>0,所以f (x )=x 3x +1单调递增,112<f (x )≤12,故f (x )在[0,1]上的值域A =0,12.当x ∈[0,1]时,π6x ∈0,π6 ,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =1-a ,1-a 2.2由A ∩B ≠⌀,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.故选C .二、“任意=存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 是函数g (x )在D 2上的值域B 的子集,即A ⊆B .其等价转化的基本思想:函数f (x )的任意一个函数值都与函数g (x )的某一个函数值相等,即f (x )的函数值都在g (x )的值域之中.【例2】 已知函数f (x )=4x 2-72-x,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.【解析】(1)f '(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f '(x )=0,解得x =12或x =72(舍去).当x 变化时, f '(x ), f (x )的变化情况如下表所示:x 00,121212,11f '(x )-0+f (x )-72↘-4↗-3 所以f (x )的递减区间是0,12,递增区间是12,1 .f (x )min =f 12=-4,又f (0)=-72, f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时, f (x )的值域为[-4,-3].(2)“对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,且g '(x )=3(x 2-a 2)<0,所以当x ∈[0,1]时,g (x )为减函数,所以g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,又a ≥1,故1≤a ≤32.【变式2】 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.【解析】 解析 (1)由已知,有f '(x )=2x -2ax 2(a >0).令f '(x )=0,解得x =0或x =1a .当x 变化时, f '(x ), f (x )的变化情况如下表:x(-∞,0)0,1a 1a 1a ,+∞3f '(x )-0+0-f (x )↘↗13a 2↘所以, f (x )的单调递增区间是0,1a;单调递减区间是(-∞,0),1a ,+∞ .当x =0时, f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f 1a =13a2.(2)由f (0)=f 32a=0及(1)知,当x ∈0,32a 时, f (x )>0;当x ∈32a,+∞ 时, f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f 32a=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞, f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B .所以,A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =1f (1),0,A =(-∞, f (2)),所以A 不是B 的子集.综上,a 的取值范围是34,32.三、“任意≥(≤、>、<)任意”型∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,等价于f (x )min >g (x )max ,或等价于f (x )>g (x )max 恒成立,或等价于f (x )min >g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均大于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)<g (x 2)恒成立,等价于f (x )max <g (x )min ,或等价于f (x )<g (x )min 恒成立,或等价于f (x )max <g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均小于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)>k 恒成立,等价于[f (x 1)-g (x 2)]min >k 恒成立,也等价于f (x )min-g (x )max >k .∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)<k 恒成立,等价于[f (x 1)-g (x 2)]max <k 恒成立,也等价于f (x )max-g (x )min <k .【例3】 设函数f (x )=x 3-x 2-3.(1)求f (x )的单调区间;(2)设函数g (x )=a x+x ln x ,如果对任意的x 1,x 2∈12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】解析 (1)f '(x )=3x 2-2x .f '(x )>0时,x <0或x >23,f '(x )<0时,0<x <23.所以, f (x )的递增区间是(-∞,0),23,+∞;递减区间是0,23.4(2)由(1)知,函数f (x )在12,23 上单调递减,在23,2 上单调递增,而f 12=-258, f (2)=1,故f (x )在区间12,2上的最大值f (x )max =f (2)=1.“对任意的x 1,x 2∈12,2 ,都有f (x 1)≤g (x 2)成立”等价于“对任意的x ∈12,2,g (x )≥f (x )max 恒成立”,即当x ∈12,2时,g (x )=a x+x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x 12≤x ≤2,则有a ≥u (x )max .u '(x )=1-x -2x ln x ,可知u '(1)=0.当x ∈12,1时,1-x >0,2x ln x <0,则u '(x )>0,所以u (x )在12,1上递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u '(x )<0,所以u (x )在(1,2)上递减.故u (x )在区间12,2上的最大值u (x )max =u (1)=1,所以实数a 的取值范围是[1,+∞).【点拨】 (1)∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,通常等价转化为f (x )min >g (x )max .这是两个独立变量--双变量问题,不等式两边f (x 1),g (x 2)中自变量x 1,x 2可能相等,也可能不相等;(2)对任意的x ∈[m ,n ],不等式f (x )>g (x )恒成立,通常等价转化为[f (x )-g (x )]min >0.这是单变量问题,不等式两边f (x ),g (x )的自变量x 相等.【变式3】 函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R ).(1)直接写出函数f (x )的单调区间;(2)当m >0时,若对于任意的x 1,x 2∈[0,2], f (x 1)≥g (x 2)恒成立,求a 的取值范围.【解析】 (1)当m >0时,f (x )的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞).当m <0时,f (x )的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m >0时,“对于任意的x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对于任意的x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减,因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1,故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g '(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,此时g (x )max =g (2)=4,不满足1≥g (x )max .②当a ≠0时,令g '(x )=0,得x =0或x =-2a .(i )当-2a≥2,即-1≤a <0时,在[0,2]上,g '(x )≥0,g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ii )当0<-2a <2,即a <-1时,在0,-2a上,g '(x )≥0,g (x )递增;在-2a ,2 上,g '(x )<0,g (x )递减.g (x )max =g -2a =4a 2e 2,由1≥4a 2e 2,得a ≤-2e ,所以a <-1.5(iii )当-2a<0,即a >0时,显然在[0,2]上,g '(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a >4,此时不满足1≥g (x )max .综上,a 的取值范围是(-∞,-ln 2].四、“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )min >g (x )min .其等价转化的基本思想是函数f (x )的任意一个函数值大于函数g (x )的某一个函数值,但并不要求大于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max .其等价转化的基本思想是函数f (x )的任意一个函数值小于函数g (x )的某一个函数值,但并不要求小于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于f (x )min -g (x )min >k .∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于f (x )max -g (x )max <k .【例4】 函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,求实数b 的取值范围.【解析】 “对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立”等价于“f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min (*)”.f '(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,当x ∈(0,1)时, f '(x )<0, f (x )单调递减;当x ∈(1,2)时, f '(x )>0, f (x )单调递增.故当x ∈(0,2)时, f (x )min =f (1)=-12.又g (x )=(x -b )2+4-b 2,x ∈[1,2],①当b <1时,g (x )min =g (1)=5-2b >3,此时与(*)矛盾;②当b ∈[1,2]时,g (x )min =g (b )=4-b 2≥0,同样与(*)矛盾;③当b ∈(2,+∞)时,g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综上,实数b 的取值范围是178,+∞ .【变式4】 已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求a 的最小值;(2)若g (x )=x ex ,∀x 1∈12,2 ,∃x 2∈12,2 ,使得f '(x 1)≤g (x 2)成立,求a 的取值范围.【解析】 (1)由题设知f '(x )=x 2+2x +a ≥0,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)上单调递减,则y max =-3,∴a ≥-3,∴a min =-3.(2)“∀x 1∈12,2,∃x 2∈12,2 ,使f '(x 1)≤g (x 2)成立”等价于“x ∈12,2 时,f '(x )max ≤g (x )max 恒成立”.∵f '(x )=x 2+2x +a =(x +1)2+a -1在12,2上递增,∴f '(x )max =f '(2)=8+a ,又g '(x )=e x -xe x e 2x =1-x e x,6∴g (x )在(-∞,1)上递增,在(1,+∞)上递减.∴当x ∈12,2时,g (x )max =g (1)=1e ,由8+a ≤1e 得,a ≤1e -8,所以a 的取值范围是-∞,1e-8 .五、“存在≥(≤、>、<)存在”型若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )max ≥g (x )min .其等价转化的基本思想是函数f (x )的某一个函数值大于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )min <g (x )max .其等价转化的基本思想是函数f (x )的某一个函数值小于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于[f (x 1)-g (x 2)]max >k ,也等价于f (x )max-g (x )min >k .若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于[f (x 1)-g (x 2)]min <k ,也等价于f (x )min -g (x )max <k .【例5】 已知函数f (x )=4ln x -ax +a +3x(a ≥0).(1)直接写出函数f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈12,2,使f (x 1)>g (x 2),求实数a 的取值范围.【解析】 (1)当a =0时,函数f (x )的递减区间为0,34,递增区间为34,+∞ .当0<a <1时,函数f (x )的递减区间为0,2--(a -1)(a +4)a,2+-(a -1)(a +4)a,+∞,递增区间为2--(a -1)(a +4)a ,2+-(a -1)(a +4)a.当a ≥1时, f (x )的递减区间为(0,+∞).(2)“存在x 1,x 2∈12,2 ,使f (x 1)>g (x 2)”等价于“ 当x ∈12,2时, f (x )max >g (x )min ”.由(1)知,当x ∈12,2时, f (x )max =f 12 =-4ln 2+32a +6,由g '(x )=2e x -4>0,得x >ln 2,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x ∈12,2时,g (x )min =g (ln 2)=4-4ln 2+2a ,由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,又a ≥1,所以1≤a <4.【变式5】 设函数f (x )=xln x-ax .(1)若函数f (x )在(1,+∞)上为减函数,求实数a 的最小值;(2)若存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立,求实数a 的取值范围.【解析】 (1)由题设知f '(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,则只需f '(x )max ≤0.又f '(x )=ln x -1(ln x )2-a =-1ln x -12 2+14-a ,7所以当1ln x =12,即x =e 2时, f '(x )max =14-a ,由14-a ≤0得a ≥14,故a 的最小值为14.(2)“存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e ,e 2]时, f (x 1)min ≤f '(x 2)max +a ”.由(1)知,当x ∈[e ,e 2]时, f '(x )max =f '(e 2)=14-a ,所以f '(x )max +a =14.则问题等价于“当x ∈[e ,e 2]时, f (x )min ≤14”.①当a ≥14时,由(1)得f '(x )max =14-a ≤0, f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-ae 2,由f (x )min ≤14,得a ≥12-14e 2.②当a <14时, f '(x )=-1ln x -12 2+14-a 在[e ,e 2]上的值域为-a ,14-a .(i )当-a ≥0,即a ≤0时, f '(x )≥0在[e ,e 2]恒成立,故f (x )在[e ,e 2]上为增函数,于是f (x )min =f (e )=e -ae ≥e >14,与f (x )min ≤14矛盾.(ii )当-a <0,即0<a <14时,由f '(x )的单调性和值域知,存在唯一的x 0∈(e ,e 2),使f '(x )=0,且满足:当x ∈(e ,x 0)时, f '(x )<0, f (x )为减函数;当x ∈(x 0,e 2)时, f '(x )>0, f (x )为增函数,所以f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈(e ,e 2).所以a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾.综上,a 的取值范围是a ≥12-14e2.。
2020高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题08 巧辨“任意性问题”与“存在性问题”一.方法综述含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.本专题举例说明辨别“任意性问题”与“存在性问题”的方法、技巧.二.解题策略类型一 “∀x ,使得f(x)>g(x)”与“∃x ,使得f(x)>g(x)”的辨析(1)∀x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.如图①.(2)∃x ,使得f (x )>g (x ),只需h (x )max =[f (x )-g (x )]max >0.如图②. 【例1】【2020·河南濮阳一中期末】已知函数1()ln (0),()a f x a x a g x x x x=-≠=--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a >时,若存在0[1,]x e ∈,使得()()00f x g x <成立,求实数a 的取值范围.【解析】(I )()f x 的定义域为'221(0,),().a a x f x a x x x ++∞=--=- 所以,当0a >时,()'0f x <,()f x 在(0,)+∞上递减;当0a <时,()'0fx >,所以,()f x 在(0,)+∞上递增.(II )在[]1e ,上存在一点0x 使00()()f xg x <成立, 即函数1()ln a h x a x x x x=-++在[]1,e 上的最小值小于0, ()'222(1)1+1()1x x a a a h x x x x x+-⎡⎤⎣⎦=--+-=.①当1+a e ≥,即1a e ≥-时,()h x 在[]1,e 上单调递减, 所以()h x 在[]1,e 上的最小值为()h e ,由()10ah e e a e+=+-<, 得222111,1,111e e e a e a e e e +++>>-∴>---Q ; ②当11a +≤,即0a ≤时,0a >Q ,不合乎题意;③当11a e <+<,即01a e <<-时,()h x 的最小值为()1h a +,0ln(1)1,0ln(1),a a a a <+<∴<+<Q 故(1)2ln(1)2h a a a a +=+-+>. 此时(1)0h a +<不成立.综上所述,a 的取值范围是211e a >e +-. 【指点迷津】(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f (x 0)≥g (x 0),即f (x 0)-g (x 0)≥0(注意不是f (x )min ≥g (x )max ),可以转化为当x ≥0时,h (x )=f (x )-g (x )≥0恒成立问题.(2)存在x ≥0,使得f (x )≥g (x ),即至少有一个x 0≥0,满足f (x 0)-g (x 0)不是负数,可以转化为当x ≥0时,h (x )=f (x )-g (x )的函数值至少有一个是非负数. 【举一反三】【2020·江西瑞金一中期中】已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2h x x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln 20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为3类型二 “若1122x D x D ∃∈∃∈,,,使得()()12f x g x =”与“1122x D x D ∀∈∃∈,,使得()()12f x g x =”的辨析(1) 1122x D x D ∃∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2) 1122x D x D ∀∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中. 说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影. 【例2】【2020河北衡水中月考】已知函数()()()11ln 1f x a x x =---+,()1xg x xe -=.(1)求()g x 在区间(]0,e 上的值域;(2)是否存在实数a ,对任意给定的(]00,x e ∈,在[]1,e 存在两个不同的()1,2i x i =使得()()0i f x g x =,若存在,求出a 的范围,若不存在,说出理由. 【解析】(1)()()1'1xg x x e-=-,()0,1x ∈时,()'0g x >,()g x 单调递增,(]1,x e ∈时,()'0g x <,()g x 单调递减,()00g =,()11g =,()10e g e e e -=⨯>,∴()g x 在(]0,e 上值域为(]0,1. (2)由已知得1()1f x a x='--,且[]1,x e ∈, 当0a ≤时,()'0f x ≥,()f x 在[]1,e 上单调递增,不合题意. 当11a e≥-时,()'0f x ≤,()f x 在[]1,e 上单调递减,不合题意. 当101a e <<-时,()0f x '=得011x a=-.当1(1,)1x a∈-时()'0f x <,()f x 单调递减, 当1()1x e a ,∈-时,()'0f x >,()f x 单调递增,∴()min 11f x f a ⎛⎫= ⎪-⎝⎭.由(1)知()g x 在(]0,e 上值域为(]0,1,而()11f =,所以对任意(]00,x e ∈,在区间[]1,e 上总有两个不同的()1,2i x i =,使得()()0i f x g x =.当且仅当()1101fe f a ⎧≥⎪⎨⎛⎫≤ ⎪⎪-⎝⎭⎩,即()()()()()1111ln 1102a e a a ⎧--≥⎪⎨+-+≤⎪⎩, 由(1)得111a e ≤--. 设()()ln 11h a a a =+-+,10,1a e ⎛⎫∈- ⎪⎝⎭,()1'111a h a a a =-=--, 当10,1a e ⎛⎫∈- ⎪⎝⎭,()'0h a <,()h a 单调递减,∴()11110h a h e e⎛⎫>-=-> ⎪⎝⎭. ∴()0h a ≤无解.综上,满足条件的a 不存在. 【指点迷津】本例第(2)问等价转化的基本思想是:函数g (x )的任意一个函数值都与函数f (x )的某两个函数值相等,即f (x )的值域都在g (x )的值域中. 【举一反三】【2020·河南南阳一中期中】已知函数1()ln 1f x x x=+-, 32()324g x x a x a =--+, []0,1x ∈,其中0a ≥.(1)求函数()f x 的单调区间;(2)若对任意[]11,x e ∈,总存在[]20,1x ∈,使得()()12f x g x =成立,求a 的取值范围. 【解析】(1)函数()f x 的定义域为(0,)+∞,22111()x f x x x x-'=-+=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,∴函数()f x 的减区间为(0,1),增区间为(1,)+∞;(2)依题意,函数()f x 在[]1,e 上的值域包含于函数g x ()在[]0,1上的值域,由(1)可知,函数()f x 在[]1,e 上单调递增,故值域为10,e ⎡⎤⎢⎥⎣⎦,由32()324g x x a x a =--+得22()333()()g x x a x a x a '=-=+-, ①当0a =时,()0g x '≥恒成立,故函数g()x 在[]0,1上单调递增,此时值域为[]224,3254,5a a a ⎡⎤-+--+=⎣⎦,故0a =不符合题意;②Q 当0a >时,()0g x '>的解集为(,)a +∞,()0g x '<的解集为(0,)a ,∴ 故函数()g x 在(0,)a 上单调递减,在(,)a +∞上单调递增,且2(0)42,(1)325g a g a a =-=--+,()i 当01a <<时,函数g()x 在(0,)a 上单调递减,在(,1)a 上单调递增,此时值域为{}32224,42,325a a max a a a ⎡⎤--+---+⎣⎦,则此时需要32240a a --+≤,即320a a +-≥,当01a <<时,320a a +-≥不可能成立,故01a <<不符合题意; ()ii 当1a ≥时,()0g x '≤在[]0,1上恒成立,则函数g()x 在[]0,1上单调递减,此时值域为2325,42a a a ⎡⎤--+-⎣⎦,则23250142a a a e ⎧--+≤⎪⎨-≥⎪⎩,解得1122a e ≤≤-; 综上所述,实数a 的取值范围为11,22e ⎡⎤-⎢⎥⎣⎦. 类型三 f (x ),g (x )是闭区间D 上的连续函数,“∀x 1,x 2∈D ,使得f (x 1)>g (x 2)”与“∃x 1,x 2∈D ,使得f (x 1)>g (x 2)”的辨析(1)f (x ),g (x )是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )min >g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值均大于函数y =g (x )的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )max >g (x )min .其等价转化的目标是函数y =f (x )的某一个函数值大于函数y =g (x )的某些函数值.如图⑥.【例3】【2020·甘肃天水一中月考】已知函数(1)(1ln )()3x x f x m x++=-,()ln g x mx x =-+(R)m ∈.(1)求函数()g x 的单调区间与极值.(2)当0m >时,是否存在[]12,1,2x x ∈,使得12()()f x g x >成立?若存在,求实数m 的取值范围,若不存在,请说明理由.【解析】(1)1()(0)g x m x x =-+>', 当0m ≤时,1()0g x m x=-+>'恒成立,即函数()g x 的单调增区间为∞(0,+),无单调减区间,所以不存在极值.当0m >时,令1()0g x m x =-+=',得1x m =,当10x m <<时,()0g x '>,当1x m>时,()0g x '<,故函数()g x 的单调增区间为10m (,),单调减区间为1m+∞(,),此时函数()g x 在1x m =处取得极大值,极大值为111()ln 1ln g m m m m m=-⨯+=--,无极小值.综上,当0m ≤时,函数()g x 的单调增区间为()0+∞,,无单调减区间,不存在极值.当0m >时,函数()g x 的单调增区间为10m ⎛⎫ ⎪⎝⎭,,单调减区间为1m ⎛⎫+∞⎪⎝⎭,,极大值为1ln m --,无极小值 (2)当0m >时,假设存在[]12,1,2x x ∈,使得12()()f x g x >成立,则对[]1,2x ∈,满足max min ()()f x g x > 由(1)(1ln )()3x x f x m x++=-[]1,2x ∈()可得,221(1ln 1)(1)(1ln )ln ()x x x x x x x f x x x +++-++-=='. 令[]()ln 1,2h x x x x =-∈(),则1()10h x x'=-≥,所以()h x 在[]1,2上单调递增,所以()(1)1h x h ≥=,所以()0f x '>,所以()f x 在[]1,2上单调递增,所以max (21)(1ln 2)3(1ln 2)()(2)3322f x f m m +++==-=-由(1)可知,①当101m<≤时,即m 1≥时,函数()g x 在[]1,2上单调递减,所以()g x 的最小值是(2)2ln 2g m =-+.②当12m ≥,即102m <≤时,函数()g x 在[]1,2上单调递增, 所以()g x 的最小值是(1)g m =-.③当112m <<时,即112m <<时,函数()g x 在11,m ⎡⎤⎢⎥⎣⎦上单调递增,在1,2m ⎡⎤⎢⎥⎣⎦上单调递减.又(2)(1)ln 22ln 2g g m m m -=-+=-,所以当1ln 22m <<时,()g x 在[]1,2上的最小值是(1)g m =-.当ln 21m ≤<时,()g x 在[]1,2上的最小值是(2)ln 22g m =-所以当0ln 2m <<时,()g x 在[]1,2上的最小值是(1)g m =-,故3(1ln 2)32m m +->-, 解得3(1ln 2)4m +>,所以ln 20m >>. 当ln 2m ≤时,函数()g x 在[]1,2上的最小值是(2)ln 22g m =-,故3(1ln 2)3ln 222m m +->-, 解得3ln 22m +>,所以3ln 2ln 22m +≤<.故实数m 的取值范围是3ln 20,2+⎛⎫⎪⎝⎭【指点迷津】1.本例第(2)问从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.2.题设中,使得成立可转化为,进而求出参数.【举一反三】【2020·四川石室中学月考】已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;②若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ∴函数()f x 的最大值为(1)1f =-; (2)∵()a g x x x=+,∴2()1a g x x =-',(Ⅰ)由(1)知,1x =是函数()f x 的极值点,又∵函数()f x 与()ag x x x=+有相同极值点, ∴1x =是函数()g x 的极值点,∴(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(ⅱ)∵211()2f ee =--,(1)1f =-,(3)92ln 3f =-+, ∵2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,∴1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(ⅰ)知1()g x x x =+,∴21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,∵11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,∴1(1)()(3)g g g e <<,∴1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立 12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,又∵1k >,∴1k >, ②当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+,又∵1k <, ∴342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 类型四 “∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧. 【例4】【2020·江西抚州二中期末】已知函数()42ln af x a x x x-=-++. (1)当4a ≥时,求函数()f x 的单调区间;(2)设()26xg x e mx =+-,当22a e =+时,对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2122f x e g x +≥,求实数m 的取值范围.【解析】(1)函数()f x 的定义域为(0,)+∞,224()1a a f x x x -'=-++2(2)[(2)]x x a x---=, 由()0f x '=,得2x =或2=-x a .当4a >即22a ->时,由()0f x '<得22x a <<-, 由()0f x '>得02x <<或2x a >-;当4a =即22a -=时,当0x >时都有()0f x '≥;∴当4a >时,单调减区间是(2,2)a -,单调增区间是(0,2),(2,)a -+∞;当4a =时,单调增区间是()0,∞+,没有单调减区间.(2)当22a e =+时,由(1)知()f x 在()22,e 上单调递减,在()2,e +∞上单调递增,从而()f x 在[)2,+∞上的最小值为22()6f e e =--.对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2212g x f x e ≤+,即存在[)21x ∈+∞,,使()g x 的值不超过()22e f x +在区间[)2,+∞上的最小值26e -.由2266xe e mx ≥+--,22e e xm x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()22222()x x e x e xh x e x ---'=Q ()232x x e xe e x+-=-,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22xxe xe e +-20xx xee >-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而2m e e ≤-. 【指点迷津】“对任意x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2)”等价于“f (x )在(0,2)上的最小值大于或等于g (x )在[1,2]上的最小值”. 【举一反三】【2020重庆西南大学附中月考】已知函数()()()11ln x x f x x++=,()()ln g x x mx m R =-∈ .(1)求函数()g x 的单调区间;(2)当0m >时,对任意的[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,试确定实数m 的取值范围.【解析】(1)由()()ln 0g x x mx x =->,得()'1g x m x=-.当0m ≤时,()'0g x >,所以()g x 的单调递增区间是()0,∞+,没有减区间.当0m >时,由()'0g x >,解得10x m <<;由()'0g x <,解得1x m>,所以()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭.综上所述,当0m ≤时,()g x 的单调递增区间是()0,∞+,无递减区间;当0m >时,()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭. (2)当0m >时,对任意[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,只需()()min min 3f x m g x ->成立.由()()()11ln ln 1ln 1x x x f x x xxx++==+++,得()'2221ln 11ln x x xf x x xx x--=+-=.令()()ln 0h x x x x =->,则()'1x h x x-=.所以当()0,1x ∈时,()'0h x <,当()1,x ∈+∞时,()'0h x >.所以()h x 在()0,1上递减,在()1,+∞上递增,且()11h =,所以()()()min 110h x h x h ≥==>.所以()'0f x >,即()f x 在()0,∞+上递增,所以()f x 在[]1,2上递增,所以()()min 12f x f ==.由(1)知,当0m >时,()g x 在10,m ⎛⎫ ⎪⎝⎭上递增,在1,m ⎛⎫+∞ ⎪⎝⎭上递减,①当101m<≤即m 1≥时,()g x 在[]1,2上递减,()()min 2ln22g x g m ==-; ②当112m <<即112m <<时,()g x 在11,m ⎡⎫⎪⎢⎣⎭上递增,在1,2m ⎛⎤⎥⎝⎦上递减,()()(){}min min 1,2g x g g =,由()()()21ln22ln2g g m m m -=---=-, 当1ln22m <≤时,()()21g g ≥,此时()()min 1g x g m ==-, 当ln21m <<时,()()21g g <,此时()()min 2ln22g x g m ==-, ③当12m ≥即102m <≤时,()g x 在[]1,2上递增,()()min 1g x g m ==-, 所以当0ln2m <≤时,()()min 1g x g m ==-, 由0ln223m m m<≤⎧⎨->-⎩,得0ln2.m <≤当ln2m >时,()()min 2ln22g x g m ==-,由ln223ln22m m m>⎧⎨->-⎩,得 ln22ln2m <<-.∴ 02ln2m <<-.综上,所求实数m 的取值范围是()0,2ln2-.三.强化训练1.【2020·江西萍乡一中期中】已知函数ln ()xx af x e+=. (1)当1a =时,求()f x 的极值; (2)设()xg x xe a -=-,对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,求实数a 的取值范围.【解析】(1)当1a =时,ln 1()xx f x e+=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()xx x xf x xe--'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10,ln 0x x x -><, 所以()1ln 0h x x x x =-->. 又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=. 同理当01x <<时,()0f x '>; 当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减, 所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()xm x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,所以()()12min max m x g x >.因为()()ln xm x xe f x ax x x =-=, 所以()1ln m x x '=+.令()0m x '>,即1ln 0x +>,解得1x e>; 令()0m x '<,即1ln 0x +<,解得10x e<<.所以()m x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以min 11()m x m e e⎛⎫==- ⎪⎝⎭. 因为()xg x xea -=-,所以()(1)xg x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >. 所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max 1()(1)g x g a e==-, 所以11a e e->-, 所以2a e >,即实数a 的取值范围为2,e ⎛⎫+∞ ⎪⎝⎭. 2.【2020·河北邯郸期末】已知函数()f x 满足:①定义为R ;②2()2()9xxf x f x e e +-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x xg x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解. 【解析】(1)2()2()9xx f x f x e e+-=+-Q ,…① 所以2()2()9xx f x f x ee ---+=+-即1()2()29xx f x f x e e-+=+-…② 由①②联立解得:()3xf x e =-.(2)设2()(2)6x x a x ϕ=-+-+,()()()1333x x x F x x e e xe x =--=+--,依题意知:当11x -≤≤时,min max ()()x F x ϕ≥()()33x x x x F x e e xe xe '+=-+=-+Q又()(1)0xF x x e ''=-+<Q 在(1,1)-上恒成立, 所以()F x '在[1,1]-上单调递减()(1)30min F x F e ∴'='=-> ()F x ∴在[1,1]-上单调递增,max ()(1)0F x F ∴==(1)70(1)30a a ϕϕ-=-≥⎧∴⎨=+≥⎩,解得:37a -≤≤实数a 的取值范围为[3,7]-. (3)()g x 的图象如图所示:令()T g x =,则()1g T =1232,0,ln 4T T T ∴=-==当()2g x =-时有1个解3-,当()0g x =时有2个解:(12)-、ln3,当()ln 4g x =时有3个解:ln(3ln 4)+、12(1ln 2)--. 故方程[()]10g g x -=的解分别为:3-,(12)-、ln3,ln(3ln 4)+、12(1ln 2)--3.【2020·天津滨海新区期末】已知函数()2ln h x ax x =-+.(1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=-- 化简得:322ln 220x y +-+=()2对函数求导可得,()()221'0ax ax f x x x-+=>令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得121,1x x a a=-=+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q2112x a ∴=+<+()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在12⎡⎤⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意②当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦4.【2020·全国高三专题练习】已知函数()321(1)32a x x ax f x +=-+.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)对于任意1x ,2[02]x ∈,,都有122()()3f x f x -≤,求实数a 的取值范围.【解析】(Ⅰ)当1a =时,因为()3213x x x f x =-+所以()221x x f x =-+',(0)1f '=.又因为(0)0f =,所以曲线()y f x =在点()0,(0)f 处的切线方程为y x =. (Ⅱ)因为()321(1)32a x x ax f x +=-+,所以2()(1)0f x x a x a '=-++=. 令()0f x '=,解得x a =或1x =. 若1a >,当()0f x '>即1x <或x a >时, 故函数()f x 的单调递增区间为()(),1,,a -∞+∞;当()0f x '<即1x a <<时,故函数()f x 的单调递减区间为()1,a . 若1a =,则22()21(1)0f x x x x '=-+=-≥,当且仅当1x =时取等号,故函数()f x 在(),-∞+∞上是增函数. 若1a <,当()0f x '>即x a <或1x >时, 故函数()f x 的单调递增区间为()(),,1,a -∞+∞;当()0f x '<即1<<a x 时,故函数()f x 的单调递减区间为(),1a .综上,1a >时,函数()f x 单调递增区间为(1)()a -∞∞,,,+,单调递减区间为(1,)a ; 1a =时,函数()f x 单调递增区间为(,)-∞+∞;1a <时,函数()f x 单调递增区间为()(1)a -∞∞,,,+,单调递减区间为(,1)a .(Ⅲ) 由题设,只要()()max min 23f x f x -≤即可. 令2()(1)0f x x a x a '=-++=,解得x a =或1x =.当0a ≤时,随x 变化,(),()f x f x ' 变化情况如下表:由表可知(0)0(1)f f =>,此时2(2)(1)3f f ->,不符合题意.当01a <<时,随x 变化,()()'f x f x , 变化情况如下表:由表可得3211112(0)0()(1)(2)62263f f a a a f a f ==-+=-=,,,,且(0)()f f a <,(1)(2)f f <,因()()2203f f -=,所以只需()(2)(1)(0)f a f f f ≤⎧⎨≥⎩,即3211262311026a a a ⎧-+≤⎪⎪⎨⎪-≥⎪⎩ ,解得113a ≤<. 当1a =时,由(Ⅱ)知()f x 在[]0,2为增函数, 此时()()()()max min 2203f x f x f f -=-=,符合题意. 当12a <<时,同理只需(1)(2)()(0)f f f a f ≤⎧⎨≥⎩,即3211226311062a a a ⎧-≤⎪⎪⎨⎪-+≥⎪⎩ ,解得513a <≤. 当2a ≥时,2()(1)32f f >=,()2()0(311)f f f =->,不符合题意. 综上,实数a 的取值范围是15,33⎡⎤⎢⎥⎣⎦.5.【2020·河南安阳期末】已知函数()ln f x x x x =+,()x xg x e=. (1)若不等式()()2f xg x ax ≤对[)1,x ∈+∞恒成立,求a 的最小值; (2)证明:()()1f x x g x +->.(3)设方程()()f x g x x -=的实根为0x .令()()()00,1,,,f x x x x F x g x x x ⎧-<≤⎪=⎨>⎪⎩若存在1x ,()21,x ∈+∞,12x x <,使得()()12F x F x =,证明:()()2012F x F x x <-.【解析】(1)()()2f xg x ax ≥,即()2ln x x x x x ax e +⋅≥,化简可得ln 1x x a e+≤. 令()ln 1xx k x e +=,()()1ln 1xx x k x e -+'=,因为1x ≥,所以11x ≤,ln 11x +≥. 所以()0k x '≤,()k x 在[)1,+∞上单调递减,()()11k x k e≤=.所以a 的最小值为1e.(2)要证()()1f x x g x +->,即()ln 10x xx x x e+>>.两边同除以x 可得11ln x x x e+>.设()1ln t x x x =+,则()22111x t x x x x-'=-=.在()0,1上,()0t x '<,所以()t x 在()0,1上单调递减.在()1,+∞上,()0t x '>,所以()t x 在()1,+∞上单调递增,所以()()11t x t ≥=. 设()1x h x e=,因为()h x 在()0,∞+上是减函数,所以()()01h x h <=. 所以()()t x h x >,即()()1f x x g x +->.(3)证明:方程()()f x g x x -=在区间()1,+∞上的实根为0x ,即001ln x x e=,要证()()2012F x F x x <-,由()()12F x F x =可知,即要证()()1012F x F x x <-.当01x x <<时,()ln F x x x =,()1ln 0F x x '=+>,因而()F x 在()01,x 上单调递增. 当0x x >时,()x x F x e =,()10xxF x e -'=<,因而()F x 在()0,x +∞上单调递减. 因为()101,x x ∈,所以0102x x x ->,要证()()1012F x F x x <-.即要证01011122ln x x x x x x e--<. 记()0022ln x xx xm x x x e--=-,01x x <<. 因为001ln x x e =,所以0000ln x x x x e =,则()00000ln 0x xm x x x e =-=.()0000022212121ln 1ln x x x x x xx x x xm x x x e e e---+--'=++=++-. 设()t t n t e =,()1t tn t e-'=,当()0,1t ∈时,()0n t '>.()1,t ∈+∞时,()0n t '<,故()max 1n t e=.且()0n t >,故()10n t e <<,因为021x x ->,所以002120x x x xe e ---<<.因此()0m x '>,即()m x 在()01,x 上单调递增.所以()()00m x m x <=,即01011122ln x x x x x x e --<.故()()2012F x F x x <-得证.6.【2020·山东邹平一中期末】已知函数()()sin ,ln f x x a x g x x m x =-=+. (1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立; (2)求函数()g x 的极值; (3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <. 【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤Q ,()11cos 0a f x a x '∴≤=-≥,, ()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立; (2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=> 当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值 当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值. (3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数, 由(2)知,当0m ≥,()g x 在()0+∞,上为增函数, 这时,()()f x g x +在()0+∞,上为增函数, 所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠ 所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--② 由①②式可得:()()()2121211ln ln 22m x x x x x x -->--- 即()()21213ln ln 02m x x x x -->-> 又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③ 又要证12249x x m <,即证21294m x x > 120,0m x x <<<Q即证m ->④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x -> 设211x t x =>,只需证1ln t t->即证()ln 01t t >> 令()()ln 1h t t t =-> 由()()()2101h t t h t '=>>,在()1+∞,上为增函数, ()()10h t h∴>=2121ln ln x x x x -∴>-,所以由③知,0m ->>成立, 所以12249x x m <成立. 7.【2020·陕西西安中学高三期末】已知函数21()ln 1()2f x x a x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若20a -≤<,对任意[]12,1,2x x ∈,不等式121211()()f x f x m x x -≤-恒成立,求实数m 的取值范围.【解析】(1)∵依题意可知:函数()f x 的定义域为()0,∞+,∴2()a x af x x x x-'=-=,当0a ≤时,()0f x '>在()0,∞+恒成立,所以()f x 在()0,∞+上单调递增. 当0a >时,由()0f x'>得x ()0fx '<得0x <<综上可得当0a ≤时,()f x 在()0,∞+上单调递增; 当0a >时,()f x 在(上单调递减;在)+∞上单调递增.(2)因为20a -≤<,由(1)知,函数()f x 在[]1,2上单调递增,不妨设1212x x ≤≤≤,则121211()()f x f x mx x -≤-, 可化为2121()()m m f x f x x x +≤+, 设21()()ln 12m mh x f x x a x x x=+=-++,则12()()h x h x ≥, 所以()h x 为[]1,2上的减函数, 即2()0a mh x x x x=--≤'在[]1,2上恒成立,等价于3m x ax ≥-在[]1,2上恒成立, 设3()g x x ax =-,所以max ()m g x ≥,因20a -≤<,所以2()30>'=-g x x a ,所以函数()g x 在[]1,2上是增函数,所以max ()(2)8212g x g a ==-≤(当且仅当2a =-时等号成立) 所以12m ≥.8.【2020·浙江温州期末】已知函数()()2log ln a f x x x x =+-,1a >. (1)求证:()f x 在()1,+∞上单调递增;(2)若关于x 的方程()1f x t -=在区间()0,∞+上有三个零点,求实数t 的值;(3)若对任意的112,,x x a a -⎡⎤∈⎣⎦,()()121f x f x e -≤-恒成立(e 为自然对数的底数),求实数a 的取值范围.【解析】(1)()()2ln 1'21ln x f x xx a =⋅+-,∵1x >,∴()'0f x >,故()f x 在()1,+∞上单调递增.(2)()()()()2222ln ln ln 'ln x x a a f x x a +-=,令()()()222ln ln ln g x x x a a =+-,()()22'ln 0g x a x=+>,()10g =, 故当()0,1x ∈,()'0g x <,()1,x ∈+∞,()'0g x >,即()f x 在()0,1x ∈上单调递减;在()1,x ∈+∞上单调递增.()11f =, 若()()11f x t f x t -=⇔=±在区间()0,∞+上有三个零点,则11t -=,2t =.(3)()f x 在1,1x a -⎡⎤∈⎣⎦上单调递减;在(]1,x a ∈上单调递增.故()()min 11f x f ==,()()max 1max ,f x f f a a ⎧⎫⎛⎫=⎨⎬⎪⎝⎭⎩⎭, 令()()112ln h a f f a a a a a ⎛⎫=-=+-⎪⎝⎭,∴()0h a <, 故()max 1ln f x a a =+-,∴ln 1ln 1a a e a a e -≤-⇒-≤-, 因为1a >,设()ln a a a ϕ=-则1'()10a aϕ=->,故()ln a a a ϕ=-为增函数, 又()ln 1e e e e ϕ=-=-. ∴(]1,a e ∈.9.【2020·浙江台州期末】已知函数()ln f x a x x b =-+,其中,a b ∈R . (1)求函数()f x 的单调区间;(2)使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【解析】(1)因()f x 的定义域为()0,∞+,()()'10af x x x=->, 当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; (2)()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x+-++-+-=⇒=, 由(1)()ln p x x x b ⇒=-+-在()1,+∞上递增;(1)当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增;∴()()min 122c g x g b b c b ===⇒+==.(2)当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减; ∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.(3)当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,则当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 10.【2020·蒙阴实验中学期末】设函数()212ln 222af x ax x x -=+++,a R ∈. (1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)2x =是函数()f x 的极值点,求函数()f x 的单调区间; (3)在(2)的条件下,()217ln 422g x x x x ⎛⎫=-++-⎪⎝⎭,若[)11,x ∀∈+∞,()20,x ∃∈+∞,使不等式()()1122mf xg x x x -≥+恒成立,求m 的取值范围. 【解析】(1)()f x 的定义域为()0,∞+,2a =时,()2ln 2f x x x =++,()12f x x x'=+, ()13f '=,()13f =,所以切线方程为()331y x -=-,即30x y -=.(2)()()22221222ax a x a f x ax x x+-+-'=++=, 2x =是函数的极值点,()8422204a a f +-+'==,可得1a =-,所以()2232(0)2x x f x x x-++'=>,令()0f x '>,即22320x x --<,解得1,22x ⎛⎫∈-⎪⎝⎭,结合定义域可知()f x 在()0,2上单调递增,在()2,+∞上单调递减. (3)令()()()2ln ln 26h x f x g x x x x x =-=+++,[)11,x ∀∈+∞,[)20,x ∃∈+∞, 使得()()1122m f x g x x x -≥+恒成立,等价于()()2min 21mh x x x x ≥+≥⎡⎤⎣⎦, ()12ln 2h x x x x x'=++-,因为1x ≥,所以2ln 0x x ≥,12x x+≥,即()'0h x ≥, 所以()h x 在[)1,+∞上单调递增,()()14h x h ≥=, 即()20,x ∃∈+∞使得函数4mx x+≤,即转化为240x x m -+≤在()0,∞+有解, ()22424x x m x m -+=--+,所以40m -+≤,4m ≤.。
任意性与存在性在函数问题中的解题策略黄 京武汉六中关键词:全称量词,特称量词,值域,唯一,打比方。
近两年,全称命题和特称命题的否定经常被考以外,全称命题和特称命题与函数结合的题型,在高考卷和模拟卷中频频出现,并成为一大热点。
两种量词插足函数,使得函数问题意深难懂,神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意。
怎样揭开量词所含的神秘面纱,找到解决这类问题的基本方法,本文通过典型题目分类解析,仅供参考。
一 举例打比方,使学生弄清关于函数在满足全称命题和特称命题对应的值域要求。
命题1 已知函数是闭区间上的连续函数,对于都有,则。
命题2 已知函数是闭区间上的连续函数,对于,都有,则。
以上两种关于函数不等关系的情况,学生较易理解。
不管是两个函数的变量都是任意性;还是其中一个是任意性,另一个是存在性,既可归纳为对函数的最大值与最小值提出一定要求,所以笔者不再熬述。
相反,关于函数相等关系的情况却显得要费脑筋些。
例如:命题3 ,使得,设的值域分别为,则.对命题3 的理解,我们可以用甲班和乙班的成绩打比方:要满足命题3即要在甲班中找一个同学的成绩和乙班的某个同学的成绩相同,那么甲班和乙班同学的成绩表中至少有一个相同的分数,用集合的语言理解,即两个班的成绩要有公共元素。
命题4 ,使得,设的值域分别为,则.对命题4的理解,我们仍然可以用甲班和乙班的成绩打比方:要满足命题4,即要甲班中所有同学的成绩都要在乙班中分别找出某个同学的成绩与其相同,用集合的语言理解,即甲班的成绩都应该在乙班成绩表中要有,即为。
二典型题型:1 已知,,,若对,都有成立,求实数的取值范围。
2 (2010山东卷)已知,,当时,,使得,求实数的取值范围3若,使得成立,求实数的取值范围。
4 (2011湖北八校二次联考)设,,,使成立,求实数的取值范围。
若,使得成立,求实数的取值范围。
5. (2013湖北黄冈模拟卷)已知,。
是否存在正实数,对任意的,都有唯一的使得成立,若存在,求出的取值范围;若不存在,请说明理由。
考点15 任意性和存在性问题“任意性问题”与“存在性问题”是一类形同质异的问题,同时也是各类考试的高频考点,求解这两类问题的策略是转化为等价问题,恒成立问题与能成立问题,而后进行求解.“任意性问题”与“存在性问题”的求解策略:1.任意性问题转化为恒成立问题2.存在性问题转化为有解问题3.等式问题转化为值域关系问题4.不等式问题转化为最值关系问题对于一个不等式一定要看清楚是对“”恒成立,还是对“”使之成立,同时还要看清楚不等式两边中同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件.1、单函数恒成立、能成立、恰成立问题的求解1.恒成立问题的转化:恒成立;恒成立2.能成立问题的转化:能成立;能成立·3.恰成立问题的转化:在M上恰成立的解集为另一转化方法:若,在D上恰成立,等价于在D上的最小值,若,在D上恰成立,则等价于在D上的最大值.注:含参不等式恒成立问题一般较为复杂.仅运用不等式的性质,往往很难找到使不等式恒成立的条件,使问题顺利得解.这就需要采用不同思路,如函数性质、变换主元、分离参数、分类讨论、数形结合等来解题.1、函数性质法(1)一次函数——单调性法给定一次函数,若在内恒有,则根据函数的图像可得上述结论等价于(1)或(2)可合并定成同理,若在内恒有,则有(2)二次函数——利用判别式①一元二次不等式在R上的恒成立问题设上恒成立;(2)上恒成立.②一元二次不等式在给定区间上的恒成立或有解问题二次函数在区间D上大于(小于)零恒成立,讨论的标准是二次函数的图象的对称轴与区间D的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论。
“同号要分类,异号看端点”设(1)当时,上恒成立上恒成立(2)当时,上恒成立上恒成立(3)其它函数:恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0).2、分离参数法——极端化原则分离参数法是解答含参不等式恒成立问题的重要方法.运用分离参数法求解不等式恒成立问题,需先将不等式进行变形,使参数分离,得到形如的式子,只要使,就能确保不等式恒成立.在求的最值时,往往可根据导数的性质、函数的单调性,或利用基本不等式.3、主参换位——反客为主法某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度“反客为主”,即把习惯上的主元变与参数变量的“地位”交换一下,变个视角重新审查恒成立问题,往往可避免不必要的分类讨论或使问题降次、简化,起到“山穷水尽疑无路,柳暗花明又一村”的出奇制胜的效果.运用变更主元法解答含参不等式恒成立问题,需先找出所要求证不等式中的变量与参数,然后将两者进行互换,得到新不等式,根据新主元的取值或者限制条件,列出满足题意的不等式或不等式组,从而解题.4、分类讨论法含参不等式恒成立问题中参数的取值往往不确定,因而在求解含参不等式恒成立问题时,需灵活运用分类讨论法,对参数或某些变量进行分类讨论,从而求得问题的答案.而确定分类讨论的标准是解题的关键,可根据一元二次方程的判别式大于、等于、小于0进行分类讨论;也可根据二次函数的二次项系数大于、小于0进行分类讨论;还可根据导函数值大于、等于、小于0进行分类讨论.5、数形结合——直观求解法若所给不等式进行合理的变形化为(或)后,能非常容易地画出不等号两边函数的图像,则可以通过画图直接判断得出结果.尤其对于选择题、填空题这种方法更显方便、快捷.2、单变量双函数“任意性问题”与“存在性问题”的求解策略1.(1)若不等式在区间D上恒成立,则等价于在区间D上函数的图象在函数图象上方;即有(2)若不等式在区间D上恒成立,则等价于在区间D上函数的图象在函数图象下方.2.(1)对,使得不等式成立,则问题等价于. (2)若,使得不等式成立,则问题等价于3、双变量双函数“任意性问题”与“存在性问题”的求解策略一般地,已知函数,1、不等关系(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有成立,故.2、相等关系记的值域为A, 的值域为B,(1)若,,有成立,则有;(2)若,,有成立,则有;(3)若,,有成立,故;考点一单变量不等式恒成立问题(一)函数性质法1.(2022·四川南充·高一期末(理))不等式的解集为,则实数的取值范围是()A. B. C.D.【答案】B【解题思路】由题意列不等式组求解【解题过程】当即时,恒成立,满足题意,当时,由题意得,解得,综上,的取值范围是,故选:B2.(2022·陕西汉中·高一期末)若关于x的一元二次不等式对于一切实数x都成立,则实数k的取值范围为__________.【答案】【解题思路】由判别式小于0可得.【解题过程】由题意,.故答案为:.3.(2022·浙江·杭州高级中学高一期末)已知函数满足,若在区间上恒成立,则实数的取值范围是()A.B.C.D.【答案】C【解题思路】首先判断函数的单调性,依题意恒成立,再根据对数函数的性质得到不等式组,解得即可.【解题过程】解:因为且,又单调递减,在定义域上单调递增,所以在定义域上单调递减,因为在区间上恒成立,所以恒成立,所以,解得,即;故选:C4.(2022·河南·新乡市第一中学高一期末)已知定义在上的函数是奇函数.(1)求实数的值;(2)若对任意的,不等式恒成立,求实数的取值范围.【答案】(1)(2)【解题思路】(1)根据奇函数的性质得到,即可取出,再代入检验即可;(2)首先判断函数的单调性,依题意可得恒成立,则,即可求出参数的取值范围;(1)解:函数是定义域上的奇函数,,即,解得.此时,则,符合题意;(2)解:因为,且在定义域上单调递增,在定义域上单调递减,所以在定义域上单调递增,则不等式恒成立,即恒成立,即恒成立,即恒成立,所以,解得,即;(二)分离参数法5.(2022·广东揭阳·高一期末)对任意的,恒成立,则的取值范围为()A.B.C.D.【答案】D【解题思路】采用分离变量的方式,结合基本不等式可求得,进而得到所求范围. 【解题过程】当时,由得:,(当且仅当,即时取等号),,解得:,即的取值范围为.故选:D.6.(2022·云南·昆明一中高一期末)已知对恒成立,则实数的取值范围___________.【答案】【解题思路】将不等式分离参数,换元构造函数,利用单调性求得最小值,可得结论. 【解题过程】因为对恒成立,即在时恒成立,令,则代换为,令,由对勾函数可知,在上单增,所以,所以.故答案为:7.(2022·湖南·湘阴县教育科学研究室高一期末)已知函数为奇函数.(1)求实数的值;(2)若对任意的,有恒成立,求实数的取值范围.【答案】(1)(2)【解题思路】(1)根据奇函数的性质可求得b的值,验证符合题意,即可得答案;(2)求得,确定其为增函数,且,从而将恒成立,转化为在上恒成立,构造函数,求得其最值,即可得答案. (1)∵函数的定义域为,且为奇函数,∴,解得,经验证:为奇函数,符合题意,故;(2)∵,∴在上单调递增,且.∵,则,又函数在上单调递增,则在上恒成立,∴在上恒成立,设,令,则,函数在上递减,在上递增,当时,,当时,,故,则,∴实数的取值范围为.8.(2022·福建省福州高级中学高一期末)已知函数,.(1)若对于任意的,恒成立,求实数k的取值范围;(2)若,且的最小值为,求实数k的值.【答案】(1),(2)【解题思路】(1)问题转化为对于任意的,恒成立,然后利用基本不等式求出的最大值即可得答案,(2)化简变形函数得,令,则,然后分,和求其最小值,从而可求出实数k的值.(1)由,得恒成立,所以对于任意的,恒成立,因为,当且仅当,即时取等号,所以,即实数k的取值范围为(2),令,当且仅当,即时取等号,则,当时,为减函数,则无最小值,舍去,当时,最小值不是,舍去,当时,为增函数,则,最小值为,解得,综上,9.(2022·河南濮阳·高一期末(文))已知对任意恒成立,则实数的取值范围为_________.【答案】【解题思路】对任意恒成立,利用参变分离,可等价为对任意恒成立,即,然后利用复合函数值域的求法,求出的最小值,从而求出的取值范围. 【解题过程】依题意,对任意恒成立,可等价为对任意恒成立,即,令,,,,解得,实数的取值范围为.故答案为:.10.(2022·湖南·邵阳市第二中学高一期末)若,不等式恒成立,则实数的取值范围为___________.【答案】【解题思路】分离参数,将恒成立问题转化为函数最值问题,根据单调性可得.【解题过程】因为,不等式恒成立,所以对恒成立.记,,只需.因为在上单调递减,在上单调递减,所以在上单调递减,所以,所以.故答案为:11.(2022·云南楚雄·高一期末)已知函数.(1)当时,求的定义域;(2)若对任意的恒成立,求的取值范围.【答案】(1)(2)【解题思路】(1)根据对数函数、指数函数的性质计算可得;(2)依题意可得对任意的恒成立,参变分离可得对任意的恒成立,再根据指数函数的性质计算可得;(1)解:当时,令,即,即,解得,所以的定义域为.(2)解:由对任意的恒成立,所以对任意的恒成立,即对任意的恒成立,因为是单调递减函数,是单调递减函数,所以在上单调递减,所以,所以在上单调递减,所以,所以,即的取值范围为.(三)主参换位法12.(2022·陕西·永寿县中学高一阶段练习(理))已知,不等式恒成立,则的取值范围为___________.【答案】【解题思路】设,即当时,,则满足解不等式组可得x的取值范围.【解题过程】,不等式恒成立即,不等式恒成立设,即当时,所以,即,解得或故答案为:13.(2022·上海市复兴高级中学高一期中)若对于满足的一切实数t,不等式恒成立,则x的取值范围为______.【答案】【解题思路】不等式可化为,求出不等式的解集,再求出函数的最值,即可确定x的取值范围.【解题过程】不等式可化为∵,∴∴或∵在时,最大值为9;在时,最小值为,∴或故答案为:【点睛】本题考查了不等式的恒成立问题,转换为函数的最值是解题的关键. 14.(2022·陕西西安·高一期中(文))若存在,使得不等式成立,则实数x的取值范围为_________.【答案】或【解题思路】令,由题意得f(1)>0,或f(3)>0,由此求出实数x的取值范围.【解题过程】令,是关于a的一次函数,由题意得,①或②,解①可得或.解②可得或.∴实数x的取值范围为或.故答案为:或.15.(2022·江苏·南京市燕子矶中学高一期中)已知时,不等式恒成立,则x的取值范围为__________.【答案】【解题思路】由题意构造函数关于a的函数,则可得,从而可求出x的取值范围.【解题过程】由题意,因为当,不等式恒成立,可转化为关于a的函数,则对任意恒成立,则满足,解得,即x的取值范围为.故答案为:(四)分类讨论法16.(2022·全国·高一课时练习)已知f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,恒成立,则a的取值范围是_________.【答案】.【解题思路】g(x)=x2-2ax+2-a,根据对称轴与定义区间位置关系分类讨论:当时,;当时,;解不等式,再求并集得a的取值范围.【解题过程】解:法一:f(x)=(x-a)2+2-a2,此二次函数图象的对称轴为x=a.①当a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增,f(x)min=f(-1)=2a+3.要使f(x)≥a恒成立,只需f(x)min≥a,即2a+3≥a,解得-3≤a<-1;②当a∈[-1,+∞,)时,f(x)min=f(a)=2-a2,由2-a2≥a,解得-1≤a≤1.综上所述,所求a的取值范围为-3≤a≤1.法二:令g(x)=x2-2ax+2-a,由已知,得x2-2ax+2-a≥0在[-1,+∞)上恒成立,即Δ=4a2-4(2-a)≤0或解得-3≤a≤1.点睛:研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.(2)若已知f(x)=ax2+bx+c(a>0)在区间A上单调递减(单调递增),则A⊆(A⊆)即区间A一定在函数对称轴的左侧(右侧).17.(2022·云南玉溪·高一期末)设关于x的二次函数.(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围.【答案】(1);(2).【解题思路】(1)由题设有,解一元二次不等式求解集即可.(2)由题意在上恒成立,令并讨论m 范围,结合二次函数的性质求参数范围.【解题过程】(1)由题设,等价于,即,解得,所以该不等式解集为.(2)由题设,在上恒成立.令,则对称轴且,①当时,开口向下且,要使对恒成立,所以,解得,则.②当时,开口向上,只需,即.综上,.(五)数形结合法18.(2019·北京四中高三期中)已知函数f(x)=x2﹣a x(a>0且a≠1),当x∈(﹣1,1)时,恒成立,则实数a的取值范围是__.【答案】【解题过程】“当x∈(﹣1,1)时,恒成立”等价于“当x∈(﹣1,1)时,恒成立”.设,,则在区间(﹣1,1)上,函数的图象在函数图象的上方.在坐标系内画出函数的图象,由图象知,当时,需满足,即,解得;当时,需满足,即,解得.综上可得实数的取值范围为.答案:.点睛:解决函数的有关问题时要注意函数图象在解题中的应用,借助于函数的图象,可使解题过程变得简单、直观形象.所以在学习中要记住常见函数图象的形状,并能在解题时能准确画出它的图象,同时在解题中要根据函数图象的相对位置关系得到相关的不等式(组)进行求解.19.(2022·陕西·长安一中高一期末)设函数的定义域为R,满足,且当时,.若对任意,都有,则m的最大值是()A.B.C.D.【答案】A【解题思路】分别求得,,,,,,,时,的最小值,作出的简图,因为,解不等式可得所求范围.【解题过程】解:因为,所以,当时,的最小值为;当时,,,由知,,所以此时,其最小值为;同理,当,时,,其最小值为;当,时,的最小值为;作出如简图,因为,要使,则有.解得或,要使对任意,都有,则实数的取值范围是.故选:A.20.(2022·湖南常德·高一期末)已知.(1)若时,,求实数k的取值范围;(2)设若方程有三个不同的实数解,求实数k的取值范围.【答案】(1);(2)[,+∞)【解题思路】(1)将含参不等式,进行参变分离,转换为二次函数求最值即可求函数最值,得k的取值范围;(2)将原方程转换为,利用整体换元,结合二次函数的实根分布即可求解.【解题过程】(1)解:即,令,记.∴,∴即k的取值范围是.(2)解:由得,即,且,令,则方程化为.又方程有三个不同的实数解,由的图象可知,有两个根,且或.记,则或,解得或综上所述,k的取值范围是[,+∞).。
难点7 双变量的“任意性”与“存在性”问题1.“存在=存在”型∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A与函数g(x)在D2上的值域B的交集不为空集,即A∩B≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.典例1 已知函数f(x)=x2-ax3,a>0,x∈R.g(x)=.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),求实数a的取值范围.解析∵f(x)=x2-ax3,∴f '(x)=2x-2ax2=2x(1-ax).令f '(x)=0,得x=0或x=.∵a>0,∴>0,∴当x∈(-∞,0)时, f '(x)<0,∴f(x)在(-∞,-1]上单调递减, f(x)在(-∞,-1]上的值域为.∵g(x)=,∴g'(x)==.∵当x<-时,g'(x)>0,∴g(x)在上单调递增,∴g(x)<g=,∴g(x)在上的值域为.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),则1+<,a<.故实数a的取值范围是.对点练已知函数f(x)=和函数g(x)=a·sin x-a+1(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )A. B.[1,2)C. D.答案 C 设函数f(x),g(x)在[0,1]上的值域分别为A,B,则“存在x1,x2∈[0,1],使得f(x1)=g(x2)成立”等价于“A∩B≠⌀”.当0≤x≤时, f(x)=-x+单调递减,所以0≤f(x)≤;当<x≤1时, f '(x)=>0,所以f(x)=单调递增,<f(x)≤,故f(x)在[0,1]上的值域A=.当x∈[0,1]时,x∈,y=sin x在[0,1]上单调递增.又a>0,所以g(x)=asin x-a+1在[0,1]上单调递增,其值域B=.由A∩B≠⌀,得0≤1-a≤或0≤1-≤,解得≤a≤2.故选C.2.“任意=存在”型∀x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A是函数g(x)在D2上的值域B的子集,即A⊆B.其等价转化的基本思想:函数f(x)的任意一个函数值都与函数g(x)的某一个函数值相等,即f(x)的函数值都在g(x)的值域之中.典例2 已知函数f(x)=,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.解析(1)f '(x)==-,x∈[0,1].令f '(x)=0,解得x=或x=(舍去).当x变化时, f '(x), f(x)的变化情况如下表所示:x01f '(x)-0+f(x)-↘-4↗-3所以f(x)的递减区间是,递增区间是.f(x)min =f=-4,又f(0)=-, f(1)=-3,所以f(x)max=f(1)=-3.故当x∈[0,1]时, f(x)的值域为[-4,-3].(2)“对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立”等价于“在x∈[0,1]上,函数f(x)的值域B是函数g(x)的值域A的子集,即B⊆A”.因为a≥1,且g'(x)=3(x2-a2)<0,所以当x∈[0,1]时,g(x)为减函数,所以g(x)的值域A=[1-2a-3a2,-2a].由B⊆A,得1-2a-3a2≤-4且-2a≥-3,又a≥1,故1≤a≤.对点练已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x (-∞,0)f '(x)-0+0-f(x)↘0↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=,则“对于任意的x 1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.3.“任意≥(≤、>、<)任意”型∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,等价于f(x)min>g(x)max,或等价于f(x)>g(x)max恒成立,或等价于f(x)min>g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均大于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)<g(x2)恒成立,等价于f(x)max<g(x)min,或等价于f(x)<g(x)min恒成立,或等价于f(x)max<g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均小于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)>k恒成立,等价于[f(x1)-g(x2)]min>k恒成立,也等价于f(x)min -g(x)max>k.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)<k恒成立,等价于[f(x1)-g(x2)]max<k恒成立,也等价于f(x)max -g(x)min<k.典例3 设函数f(x)=x3-x2-3.(1)求f(x)的单调区间;(2)设函数g(x)=+xln x,如果对任意的x1,x2∈,都有f(x1)≤g(x2)成立,求实数a的取值范围.解析(1)f '(x)=3x2-2x.f '(x)>0时,x<0或x>,f '(x)<0时,0<x<.所以, f(x)的递增区间是(-∞,0),;递减区间是.(2)由(1)知,函数f(x)在上单调递减,在上单调递增,而f=-, f(2)=1,故f(x)在区间上的最大值f(x)max=f(2)=1.“对任意的x1,x2∈,都有f(x1)≤g(x2)成立”等价于“对任意的x∈,g(x)≥f(x)max恒成立”,即当x∈时,g(x)=+xln x≥1恒成立,即a≥x-x2ln x恒成立,记u(x)=x-x2lnx,则有a≥u(x)max.u'(x)=1-x-2xln x,可知u'(1)=0.当x∈时,1-x>0,2xln x<0,则u'(x)>0, 所以u(x)在上递增;当x∈(1,2)时,1-x<0,2xln x>0,则u'(x)<0,所以u(x)在(1,2)上递减.故u(x)在区间上的最大值u(x)max=u(1)=1,所以实数a的取值范围是[1,+∞).点拨(1)∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,通常等价转化为f(x)min>g(x)max.这是两个独立变量——双变量问题,不等式两边f(x1),g(x2)中自变量x1,x2可能相等,也可能不相等;(2)对任意的x∈[m,n],不等式f(x)>g(x)恒成立,通常等价转化为[f(x)-g(x)]min>0.这是单变量问题,不等式两边f(x),g(x)的自变量x相等.对点练函数f(x)=+1(m≠0),g(x)=x 2e ax (a∈R).(1)直接写出函数f(x)的单调区间;(2)当m>0时,若对于任意的x 1,x 2∈[0,2], f(x 1)≥g(x 2)恒成立,求a 的取值范围. 解析 (1)当m>0时,f(x)的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞). 当m<0时,f(x)的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m>0时,“对于任意的x 1,x 2∈[0,2],f(x 1)≥g(x 2)恒成立”等价于“对于任意的x∈[0,2],f(x)min ≥g(x)max 成立”.当m>0时,由(1)知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减,因为f(0)=1,f(2)=+1>1,所以f(x)min =f(0)=1,故应满足1≥g(x)max .因为g(x)=x 2e ax ,所以g'(x)=(ax 2+2x)e ax.①当a=0时,g(x)=x 2,此时g(x)max =g(2)=4,不满足1≥g(x)max .②当a≠0时,令g'(x)=0,得x=0或x=-.(i)当-≥2,即-1≤a<0时,在[0,2]上,g'(x)≥0,g(x)在[0,2]上单调递增,g(x)max =g(2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a≤-ln 2.(ii)当0<-<2,即a<-1时,在上,g'(x)≥0,g(x)递增;在上,g'(x)<0,g(x)递减.g(x)max =g =,由1≥,得a≤-,所以a<-1.(iii)当-<0,即a>0时,显然在[0,2]上,g'(x)≥0,g(x)单调递增,于是g(x)max =g(2)=4e 2a >4,此时不满足1≥g(x)max .综上,a 的取值范围是(-∞,-ln 2]. 4.“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f(x 1)>g(x 2)成立,等价于f(x)min >g(x)min .其等价转化的基本思想是函数f(x)的任意一个函数值大于函数g(x)的某一个函数值,但并不要求大于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)max<g(x)max.其等价转化的基本思想是函数f(x)的任意一个函数值小于函数g(x)的某一个函数值,但并不要求小于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于f(x)min-g(x)min>k.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于f(x)max-g(x)max<k.典例4 函数f(x)=ln x-x+-1,g(x)=x2-2bx+4,若对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.解析“对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立”等价于“f(x)在(0,2)上的最小值不小于g(x)在[1,2]上的最小值,即f(x)min ≥g(x)min(*)”.f '(x)=--=,当x∈(0,1)时, f '(x)<0, f(x)单调递减;当x∈(1,2)时, f '(x)>0, f(x)单调递增.故当x∈(0,2)时, f(x)min=f(1)=-.又g(x)=(x-b)2+4-b2,x∈[1,2],①当b<1时,g(x)min=g(1)=5-2b>3,此时与(*)矛盾;②当b∈[1,2]时,g(x)min=g(b)=4-b2≥0,同样与(*)矛盾;③当b∈(2,+∞)时,g(x)min=g(2)=8-4b,由8-4b≤-,得b≥.综上,实数b的取值范围是.对点练已知函数f(x)=x3+x2+ax.(1)若f(x)在区间[1,+∞)上单调递增,求a的最小值;(2)若g(x)=,∀x1∈,∃x2∈,使得f '(x1)≤g(x2)成立,求a的取值范围.解析(1)由题设知f '(x)=x2+2x+a≥0,即a≥-(x+1)2+1在[1,+∞)上恒成立,而y=-(x+1)2+1在[1,+∞)上单调递减,则ymax =-3,∴a≥-3,∴amin=-3.(2)“∀x1∈,∃x2∈,使f '(x1)≤g(x2)成立”等价于“x∈时,f '(x)max≤g(x)max恒成立”.∵f '(x)=x2+2x+a=(x+1)2+a-1在上递增,∴f '(x)max=f '(2)=8+a,又g'(x)==,∴g(x)在(-∞,1)上递增,在(1,+∞)上递减.∴当x∈时,g(x)max=g(1)=,由8+a≤得,a≤-8,所以a的取值范围是.5.“存在≥(≤、>、<)存在”型若∃x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)max≥g(x)min.其等价转化的基本思想是函数f(x)的某一个函数值大于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)min<g(x)max.其等价转化的基本思想是函数f(x)的某一个函数值小于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于[f(x1)-g(x2)]max>k,也等价于f(x)max -g(x)min>k.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于[f(x1)-g(x2)]min<k,也等价于f(x)min -g(x)max<k.典例5 已知函数f(x)=4ln x-ax+(a≥0).(1)直接写出函数f(x)的单调区间;(2)当a≥1时,设g(x)=2e x-4x+2a,若存在x1,x2∈,使f(x1)>g(x2),求实数a的取值范围.解析(1)当a=0时,函数f(x)的递减区间为,递增区间为.当0<a<1时,函数f(x)的递减区间为,,递增区间为.当a≥1时, f(x)的递减区间为(0,+∞).(2)“存在x1,x2∈,使f(x1)>g(x2)”等价于“ 当x∈时, f(x)max>g(x)min”.由(1)知,当x∈时, f(x)max=f=-4ln 2+a+6, 由g'(x)=2e x-4>0,得x>ln 2,所以g(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x∈时,g(x)min=g(ln 2)=4-4ln 2+2a,由f(x)max >g(x)min,得-4ln 2+a+6>4-4ln 2+2a,又a≥1,所以1≤a<4.对点练设函数f(x)=-ax.(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立,求实数a的取值范围.解析(1)由题设知f '(x)=-a≤0在(1,+∞)上恒成立,则只需f '(x)max≤0.又f '(x)=-a=-+-a,所以当=,即x=e2时, f '(x)max=-a,由-a≤0得a≥,故a的最小值为.(2)“存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立”等价于“当x1,x2∈[e,e2]时, f(x1)min≤f'(x2)max+a”.由(1)知,当x∈[e,e2]时, f '(x)max=f '(e2)=-a,所以f '(x)max+a=.则问题等价于“当x∈[e,e2]时, f(x)min≤”.①当a≥时,由(1)得f '(x)max=-a≤0, f(x)在[e,e2]上为减函数,则f(x)min =f(e 2)=-ae 2,由f(x)min ≤,得a≥-.②当a<时, f '(x)=-+-a 在[e,e 2]上的值域为.(i)当-a≥0,即a≤0时, f '(x)≥0在[e,e 2]恒成立,故f(x)在[e,e 2]上为增函数,于是f(x)min =f(e)=e-ae≥e>,与f(x)min ≤矛盾.(ii)当-a<0,即0<a<时,由f '(x)的单调性和值域知,存在唯一的x 0∈(e,e 2),使f '(x)=0,且满足:当x∈(e,x 0)时, f '(x)<0, f(x)为减函数;当x∈(x 0,e 2)时, f '(x)>0, f(x)为增函数,所以f(x)min =f(x 0)=-ax 0≤,x 0∈(e,e 2).所以a≥->->-=,与0<a<矛盾.综上,a 的取值范围是a≥-.。
函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.1.1x ∃,2x ∃,使得()()12fg x x =,等价于函数()f x 在1D 上的值域A 与函数在2D上的值域的交集不空,即A ∩B ≠Φ.例1已知函数()31,1,12111,06122x x f x x x x ⎧<≤⎪⎪+=⎨⎪-+≤≤⎪⎩和函数()()sin 106g x a x a a π=-+>,若存在12,[0,1]x x∈,使得()()12ff x x =成立,则实数的取值范围是( )解 设函数()f x 与()g x 在[0,1]上的值域分别为与,依题意.当112x <≤时,()31f x x x =+,则()()()2,22301x x x fx +=>+ ∴()f x 在1(,1]2单调递增∴()()112f f x f ⎛⎫<≤ ⎪⎝⎭即()11122f x <≤. 当102x ≤≤时,()11612f x x =-+,所以()f x 单调递,所以()()102f f x f ⎛⎫≤≤ ⎪⎝⎭即()1012f x ≤≤. 综上所述在上的值域A=10,2⎡⎤⎢⎥⎣⎦.当时,[0,]66x ππ∈,又a>0,所以()g x 在[0,1]上单调递增,所以即()112aa g x -≤≤-,故在上的值域[1,1]2a B a =--. 因为A ∩B ≠Φ,所以1012a ≤-≤或10122a ≤-≤解得122a ≤≤,故应选C.2.对11x D ∀∈,22x D∃∈,使得()()12fg x x =,等价于函数()f x 在上的值域是函数()g x 在2D上的值域的子集,即.例2(2011湖北八校第二次联考)设()2332x f x x x -+=-,.①若()02,x ∃∈+∞,使()0f m x =成立,则实数的取值范围为___;②若()12,x ∀∈+∞,,使得()()12fg x x =,则实数的取值范围为___解 ①依题意实数的取值范围就是函数()2332x f x x x-+=-的值域.设,则问题转化为求函数()()()()23231102t h t t t ttt -++==++>+的值域,由均值不等式得h(t)≥3(t=1时取等号),故实数的取值范围是. ②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域()2,B a =+∞,则当且仅当231a a ⎧<⎪⎨>⎪⎩即,故实数的取值范围是.例3已知()()ln f x x ax a R =-∈ (1)求()f x 的单调区间; (2)若,且,函数()313g x bx bx =-,若对任意的,总存在,使,求实数的取值范围.解 (1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围. 当a=1时, 由得(),1110xx x x f -=-=<,故在上单调递减,所以即,于是.因,由()313g x bx bx =-得()(),21x bg x =-.①当时,,故在上单调递增,所以即()2233b g x b -<<,于是22,33B b b ⎛⎫=- ⎪⎝⎭.因为A B ⊆,则当且仅当2ln 223213b b ⎧-≤-⎪⎪⎨⎪≥-⎪⎩,即33ln 22b ≥-时符合题意;②当时,同上可求得3ln 232b ≤-.时符合题意 综合①②知所求实数的取值范围是33(,ln 23][3ln 2,)22-∞--+∞U .3.已知f(x)、g(x)是在闭区间的上连续函,则对12,x x∀∈D 使得()()12fg x x ≤,等价于()()maxminf x gx ≥.例4已知()()2,ln f x x g x x x xa=+=+,其中a>0.(1)若是函数h(x)=f(x)+g(x)的极值点,求实数的值;(2)若对12,[1,]e x x∀∈都有()()12fg x x ≥成立,求实数的取值范围.解 (1)略;(2) 对12,[1,]e x x∀∈,有()()12fg x x ≥,等价于x ∈[1,e]有.当x ∈[1,e]时(),110x x g =+>,所以g(x)在[1,e]上单调递增,所以.因为()222,221x axaf xx-=-=, 令得,又且,.①当0<a<1时,(),x f >0,所以f(x)在[1,e]上单调递增,所以.令得这与矛盾。
高中数学任意性与存在性问题探究函数中任意性和存在性问题探究近年的高考中,全称命题和存在性命题与导数的结合成为了一大亮点。
本文将结合高考试题对此类问题进行归纳探究。
一、相关结论:结论1:对于任意的x1∈[a,b]和x2∈[c,d],若f(x1)>g(x2),则有[f(x)]min>[g(x)]max;【如图一】结论2:存在x1∈[a,b]和x2∈[c,d],使得f(x1)>g(x2),则有[f(x)]max>[g(x)]XXX;【如图二】结论3:对于任意的x1∈[a,b]和存在x2∈[c,d],使得f(x1)>g(x2),则有[f(x)]min>[g(x)]XXX;【如图三】结论4:存在x1∈[a,b]和任意的x2∈[c,d],使得f(x1)>g(x2),则有[f(x)]max>[g(x)]max;【如图四】结论5:存在x1∈[a,b]和x2∈[c,d],使得f(x1)=g(x2),则f(x)的值域和g(x)的值域交集不为空;【如图五】例题1】:已知两个函数f(x)=8x+16x-k,g(x)=2x+5x+4x,x∈[-3,3],k∈R;1) 若对于任意的x∈[-3,3],都有f(x)≤g(x),求实数k的取值范围;2) 若存在x∈[-3,3],使得f(x)≤g(x),求实数k的取值范围;3) 若对于任意的x1,x2∈[-3,3],都有f(x1)≤g(x2),求实数k的取值范围;解:1)设h(x)=g(x)-f(x)=2x-3x-12x+k,问题可转化为:对于x∈[-3,3],h(x)≥常数成立,即[h(x)]XXX≥常数。
由结论1可知,当f(x1)>g(x2)时,[f(x)]min>[g(x)]max,即h(x)的最小值出现在f(x)和g(x)的交点处。
因此,我们可以求出h(x)的导数h'(x)并列出变化情况表格,得到[h(x)]min=k-45.因此,k≥45,即k∈[45,+∞)。
专题复习—函数的任意性和存在性
已知两个函数k x x x f +-=2)(2,13)(3+-=x x x g
(1)[]2,0∈∀x ,都有)()(x g x f ≥成立,求k 的取值范围;
(2)[]2,00∈∃x ,使得)()(00x g x f ≥成立,求k 的取值范围;
(3)若[]2,0,21∈∀x x ,都有)()(21x g x f ≥成立,求k 的取值范围;
(4)[]2,0,21∈∃x x ,使得)()(21x g x f ≥成立,求k 的取值范围;
(5)[]2,01∈∀x ,[]2,02∈∃x ,使得)()(21x g x f ≥成立,求k 的取值范围;
(6)[]2,01∈∃x ,[]2,02∈∀x ,使得)()(21x g x f ≥成立,求k 的取值范围; 分析:
函数k x x x f +-=2)(2是一个二次函数,图像开口向上,对称轴为11
22=⨯--=x ,[]2,01∈,函数)(x f 在[]2,0上先减后增,且1)1()(min -==k f x f ,k f f x f ===)2()0()(max ; 函数13)(3+-=x x x g ,)1)(1(333)(2'-+=-=x x x x g ,令0)('=x g 得11=-=x x 或, 所以[]2,0)(在x g 上的1)1()(min -==g x g ,3)2()(max ==g x g ,
解(1)依题意得,[]2,0∈∀x ,0)()(≥-x g x f 恒成立,令)()()(x g x f x t -= 即01)(2
3≥-+++-=k x x x x t 恒成立,所以0)(min ≥x t
123)(2'++-=x x x t =)1)(13(+-+x x ,所以[]2,0)(在x t 上先↓↑后, 3)2(,1)0(-=-=k t k t ,03)(min ≥-=∴k x t ,解得3≥k
(2):p []2,00∈∃x ,使得)()(00x g x f ≥成立,
:p ⌝[]2,0∈∀x ,都有成立)()(x g x f <成立,令)()()(x g x f x t -=
即01)(2
3<-+++-=k x x x x t 恒成立,所以0)(max <x t
[]2,0)(在x t 上先↓↑后,0)1()(max <==∴k t x t ,所以p 命题成立的0≥k
(3)[]2,0,21∈∀x x ,都有)()(21x g x f ≥成立,只需要满足max min )()(x g x f ≥ 即31≥-k ,解得4≥k
(4):p []2,0,21∈∃x x ,使得)()(21x g x f ≥成立
:p ⌝[]2,0,21∈∀x x ,都有)()(21x g x f <成立,只需满足min max )()(x g x f < 即1-<k ,所以p 命题成立的1-≥k
(5)分两个方向讨论:(由图来解的话主要看存在的一方)
[]2,01∈∀x , )()(21x g x f ≥成立,)()(min x g x f ≥∴ []2,02∈∃x ,)()(21x g x f ≥)()(min x f x g ≤∴, 综上所求,只需满足min min )()(x g x f ≥∴即11-≥-k , 解得0≥k
(6)分两个方向讨论 []2,01∈∃x ,)()(21x g x f ≥成立,)()(max x g x f ≥∴ []2,02∈∀x ,)()(21x g x f ≥成立,)()(max x f x g ≤∴
综上所求,只需满足max max )()(x g x f ≥∴
即3≥k ,所以k 的取值范围为3≥k 。