第2章第2节原子的核式结构模型
- 格式:ppt
- 大小:6.71 MB
- 文档页数:31
原子物理 知识要点第一节 电子的发现与汤姆孙模型 1、阴极射线 2、汤姆孙的研究3. 汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。
第二节 原子的核式结构模型 1、粒子散射实验原理、装置 (1)粒子散射实验原理:(2)粒子散射实验装置 主要由放射源、金箔、荧光屏、望远镜几部分组成。
(3)实验的观察结果 入射的粒子分为三部分。
大部分沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。
2、原子的核式结构的提出三个问题:用汤姆生的葡萄干布丁模型能否解释粒子大角度散射?(1)粒子出现大角度散射有没有可能是与电子碰撞后造成的?(2)按照葡萄干布丁模型,粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?小结:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。
①绝大多数粒子不偏移→原子内部绝大部分是“空”的。
②少数粒子发生较大偏转→原子内部有“核”存在。
③极少数粒子被弹回 表明:作用力很大;质量很大;电量集中。
3、原子核的电荷与大小4.卢瑟福原子核式结构模型 第三节 波尔的原子模型卢瑟福原子核式结构学说与经典电磁理论的矛盾丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。
1、玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为En )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
【课堂新坐标】(教师用书)20212021学年高中物理第2章第2节原子的核式结构模型课后知能检测鲁科版选修351.下列能揭示原子具有核式结构的实验是( )A.光电效应实验B.伦琴射线的发觉C.α粒子散射实验D.氢原子光谱的发觉【解析】光电效应现象证明了光的粒子性本质,与原子结构无关,选项A错误;伦琴射线的发觉以及氢原子光谱的发觉都与原子的能级结构有关,差不多上原子能级跃迁的结论,选项B、D错误;卢瑟福的α粒子散射实验证实了原子的核式结构模型,选项C正确.【答案】 C2.关于α粒子散射实验装置,下列说法正确的是( )A.实验装置应放在真空中B.金箔的厚度对实验无阻碍C.假如把金箔改为铝箔,更容易观看到大角度散射现象D.实验时,金箔、荧光屏和显微镜均能在圆周上运动【解析】依照α粒子散射实验装置的要求,不在真空中实验可能会受到空气中尘埃等微粒的阻碍,A对.当金箔偏厚时,α粒子可能无法穿过,B错,金箔改为铝箔,由于铝原子核质量较小,而不容易观看到大角度散射,C错误.实验中金箔、荧光屏不动,显微镜沿圆周运动,D错.【答案】 A3.卢瑟福用α粒子散射实验探究原子结构说明( )A.能够用人工的方法产生放射现象B.电子是原子的组成部分C.α粒子带正电D.原子具有核式结构【解析】依照α粒子散射实验现象分析,原子应具有核式结构,故选D.【答案】 D4.(2020·汉中检测)卢瑟福原子核式结构理论的要紧内容有( )A.原子的中心有个核,叫原子核B.原子的正电荷平均分布在整个原子中C.原子的全部正电荷和几乎全部的质量都集中在原子核里D.带负电的电子在核外绕核旋转【解析】由卢瑟福依据α粒子散射实验建立的原子的核式结构模型可知,A、C、D 正确.【答案】ACD5.(2020·漳州检测)在卢瑟福的α粒子散射实验中,有少数α粒子发生大角度偏转,其缘故是( )A.原子的正电荷和绝大部分质量集中在一个专门小的核上B.正电荷在原子中是平均分布的C.原子中存在着带负电的电子D.原子中的质量平均分布在整个原子范畴内【解析】原子的正电荷和绝大部分质量集中在一个专门小的核上,才使在α粒子散射实验中,只有少数的α粒子离核专门近,受到较大的库仑斥力,发生大角度的偏转,因此选项A正确.【答案】 A图2-2-46.(2020·青岛二中检测)如图2-2-4所示,实线表示金原子核电场的等势线,虚线表示α粒子在金核电场中散射时的运动轨迹.设α粒子通过a、b、c三点时速度分别为v a、v b、v c,电势能分别为εa、εb、εc,则( )A.v a>v b>v c,εb>εa>εcB.v b>v c>v a,εb<εa<εcC.v b>v a>v c,εb<εa<εcD.v b<v a<v c,εb>εa>εc【解析】金原子核和α粒子都带正电,α粒子在接近金核过程中需不断克服库仑力做功,它的动能减小,速度减小,电势能增加;α粒子在远离金核过程中库仑力不断对它做功,它的动能增大,速度增大,电势能减小.因此这三个位置的速度大小关系和电势能大小关系为v b<v a<v c,εb>εa>εc.【答案】 D7.(2020·福建高考)在卢瑟福α粒子散射实验中,金箔中的原子核能够看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是( )【解析】 明白得α粒子散射实验现象,关键是弄清α粒子遇到金原子核时受到强大的斥力作用,才能发生大角度散射,选项C 正确.【答案】 C8.已知电子质量为×10-31 kg ,带电荷量为-×10-19 C ,若氢原子核外电子绕核旋转时的轨道半径为×10-10 m ,电子绕核运动的线速度v =______ m/s.【解析】 库仑力提供电子做圆周运动的向心力, 由ke 2r 2=mv 2r ,得 v =ek mr =×10-19× 9×109×10-10××10-31 m/s =×106 m/s.【答案】 ×1069.如图2-2-5所示,M 、N 为原子核外的两个等势面,已知U NM =100 V .一个α粒子以×105 m/s 从等势面M 上的A 点运动到等势面N 上的B 点,求α粒子在B 点时速度的大小.(已知m α=×10-27 kg)图2-2-5【解析】 α粒子在由A 到B 的过程中,依照动能定理-2eU NM =12m αv 2-12m αv 20 由此得v =v 20-4eU NM m α =×1052-4××10-19×100×10-27 m/s =×105 m/s.【答案】 ×105m/s10.α粒子散射实验是让α粒子射向金箔去碰撞金原子,结果发觉:大部分α粒子穿过金箔后不发生偏转,少数α粒子发生偏转,有的偏转角度专门大,问:(1)什么缘故有的α粒子会发生大角度的偏转?(2)已知金的原子序数为79,当α粒子距原子中心为×10-13 m 时受到的库仑力多大?【解析】 (1)按照卢瑟福的原子核式结构模型,原子中全部正电荷和几乎全部质量都集中在专门小的原子核上,核外分布着带负电荷的电子,当α粒子穿过金原子时,假如离核专门远,受到原子核的库仑力就专门小,运动方向的改变就专门小.然而,有少数α粒子穿过金原子时,离核专门近,这些α粒子受到的库仑力就较大,因此,它们的偏转角度也就越大.(2)由库仑定律F =kQq r 2得:α粒子受到的库仑力 F =错误! N= N.【答案】 (1)见解析 (2) N11.卢瑟福的原子核式结构模型认为,核外电子绕核运动.设想氢原子的核外电子绕核做匀速圆周运动,氢原子中电子离核最近的轨道半径r 1=×10-10 m ,用经典物理学的知识,试运算在此轨道上电子绕核转动的加速度.【解析】 因为电子在原子核外绕核高速运转,此即带负电的电子绕带正电的原子核做圆周运动,电子所需的向心力恰好由电子和原子核间的库仑力来提供.设电子绕核运转的加速度为a ,已知:电子质量m e 等于×10-30 kg电子电量q e 等于质子电量q H =×10-19 C. 因为F 库=F 向,因此kq e q H r 21=m e a因此a =kq e q H m e r 21=9×109××10-19××10-19×10-30××10-102 m/s 2 =×1022 m/s 2.【答案】 ×1022 m/s 2。
第二章原子结构第1节电子的发现与汤姆孙模型一、物质结构的早期探究①我国西周的“五行说”;古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成;古希腊哲学家德谟克利特等人建立了早期的原子论。
②1661年,玻意耳以化学实验为基础建立了科学的元素论.③19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.④1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.结论:在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.二、电子的发现及汤姆孙模型19世纪末物理学的三大发现:①1895年伦琴发现了X射线;②X射线发现后不久,贝克勒尔发现了放射性;③1897年汤姆孙发现了电子汤姆孙的原子模型:原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样三、“阴极射线”性质(1)电性的确定方法一:让阴极射线进入已知电场,由所受电场力方向确定带电的性质.方法二:让阴极射线进入磁场,由所受洛伦兹力的方向,根据左手定则确定带电的性质.(2)比荷的测定方法①让粒子通过正交的电磁场,如图所示,让其做直线运动,根据二力平衡条件,即F洛=F电(Bq v=qE)得到粒子的运动速度v=E B.②在其他条件不变的情况下,撤去电场,如图2-1-2所示,保留磁场,让粒子只在磁场中运动,由洛伦兹力提供向心力即Bq v=m v2R,根据磁场情况和轨迹偏转情况,由几何知识求出其半径R.③由以上方法确定粒子比荷的表达式:qm=EB2R.1.早期原子论是由谁创立的()A.阿伏伽德罗B.汤姆孙C.玻意耳D.德谟克利特2.下列说法不正确的是()A.汤姆孙研究阴极射线,用测定粒子比荷的方法发现了电子B.电子的发现证明了原子是可分的C.汤姆孙认为原子里面带正电荷的物质应充斥整个原子,而带负电的电子,则镶嵌在球体的某些固定位置D.汤姆孙原子模型是正确的3.历史上第一个发现电子的科学家是()A.贝可勒尔B.道尔顿C.伦琴D.汤姆孙4.关于电荷的电荷量,下列说法错误的是()A.电子的电荷量是由密立根油滴实验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19C D.物体所带的电荷量都是元电荷的整数倍5.(多选)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”.关于电子的说法正确的是()A.任何物质中均有电子B.不同的物质中具有不同的电子C.电子质量是质子质量的1836倍D.电子是一种粒子,是构成物质的基本单元6.(多选)关于阴极射线的性质,下列说法正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线中的负电粒子的比荷与氢离子的基本相同D.阴极射线中的负电粒子的带电荷量与氢离子的相同7.(多选)如图所示是汤姆孙的气体放电管的示意图,下列说法中正确的是()A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转8.如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将()A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转9.(多选)如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹往下偏,则()A.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的径迹与AB中的电流方向无关10.在汤姆孙测电子比荷的实验中,采用了如图所示的阴极射线管,从电子枪C出来的电子经过A、B间的电场加速后,水平射入长度为L的D、G 平行板间,接着在荧光屏中心F出现荧光斑.若在D、G间加上方向向下,场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的、磁感应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,电子向下偏转,偏转角为θ,试解决下列问题.(1)说明图中磁场沿什么方向;(2)根据L、E、B和θ,求出电子的比荷.【答案】(1)垂直纸面向里(2)em=E sin θB2L11.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域,平行极板间距为b.当极板间不加偏转电压时,电子束打在荧光屏和中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O′点,(O′点与O点的竖直间距为d,水平间距可忽略不计)此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点.求打在荧光屏O点的电子速度的大小.【答案】UBb第2节原子的核式结构模型一、α粒子散射实验汤姆孙的葡萄干面包模型卢瑟福的原子核式模型分布情况正电荷和质量均匀分布,负电荷镶嵌在其中正电荷和几乎全部质量集中在原子中心的一个极小核内,电子质量很小,分布在很大空间内受力情况α粒子在原子内部时,受到的库仑斥力相互抵消,几乎为零少数靠近原子核的α粒子受到的库仑力大,而大多数离核较远的α粒子受到的库仑力较小二、卢瑟福的原子模型及原子大小(1)核式结构模型:①原子的内部有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子绕核运动.②原子的核式结构模型又被称为行星模型.(2)原子的大小:①原子直径数量级:10-10 m.②原子核直径数量级:10-15_m. 1.下列能揭示原子具有核式结构的实验是()A.光电效应实验B.伦琴射线的发现C.α粒子散射实验D.氢原子光谱的发现2.卢瑟福提出原子的核式结构学说的根据是α粒子轰击金箔的实验,在实验中他发现α粒子()A.全部穿过或发生很小的偏转B.全部发生很大的偏转,甚至有的被反弹回C.绝大多数不发生或只发生很小的偏转,有极少数发生很大的偏转,个别甚至被反弹回D.绝大多数发生很大的偏转,甚至被反弹回,只有少数穿过3.(多选)α粒子散射实验结果表明()A.原子中绝大部分是空的B.原子中全部正电荷都集中在原子核上C.原子内有中子D.原子的质量几乎全部都集中在原子核上4.在α粒子散射实验中,不考虑电子和α粒子的碰撞影响,是因为() A.α粒子与电子根本无相互作用B.α粒子受电子作用的合力为零,是因为电子是均匀分布的C.α粒子和电子碰撞损失能量极少,可忽略不计D.电子很小,α粒子碰撞不到电子5.(多选)如图所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中A、B、C、D四个位置时,观察到的现象,下述说法中正确的是()A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察一些闪光,但次数极少6.(多选)英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象.如图所示,O表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的是()BD7.如图所示,根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a运动到b,再运动到c的过程中,下列说法中正确的是() A.动能先增大,后减小B.电势能先减小,后增大C.电场力先做负功,后做正功,总功等于零D.加速度先变小,后变大8.(多选)α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪种情况()A.动能最小B.势能最小C.α粒子与金原子组成的系统的能量最小D.所受原子核的斥力最大9.如图所示,实线表示金原子核电场的等势线,虚线表示α粒子在金核电场中散射时的运动轨迹.设α粒子通过a、b、c三点时速度分别为v a、v b、v c,电势能分别为εa、εb、εc,则()A.v a>v b>v c,εb>εa>εcB.v b>v c>v a,εb<εa<εcC.v b>v a>v c,εb<εa<εcD.v b<v a<v c,εb>εa>εc10.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是()C第3节玻尔的原子模型一、玻尔理论的内容轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值能量量子化:与轨道量子化对应的能量不连续的现象跃迁假说:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即hν=E2-E1(或E1-E2).总而言之根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容二、氢原子的能级结构氢原子在不同能级上的能量和相应的电子轨道半径为E n=E1n(n=1,2,3,…);r n=n2r1(n=1,2,3,…),式中E1≈-13.6 eV,r1=0.53×10-10 m.三、原子能级跃迁(1)能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=n(n-1)2=C2n。
人教版选修3《原子的核式结构模型》教案及教学反思本文主要介绍人教版选修3《原子的核式结构模型》的教案及教学反思。
这是一门重要的高中物理课程,在理解和掌握原子核的基本原理方面起到了至关重要的作用。
教学目标通过本课程的学习,学生应该能够:1.掌握原子核的基本结构和核力的作用;2.了解原子核的基本性质,包括质量数、原子序数和同位素概念;3.掌握原子核的衰变过程,并了解主要的衰变方式;4.了解核反应和核能源的基本原理。
教学重难点本课程的重点和难点如下:1.原子核的基本结构和核力的作用;2.质量数、原子序数和同位素的概念;3.核衰变和主要衰变方式;4.核反应和核能源的基本原理。
教学内容第一节:原子核的基本结构和核力的作用教学目标1.理解原子核的基本结构;2.掌握原子核的基本性质;3.了解核力的作用。
1.原子核的基本结构;2.原子核的基本性质。
教学难点核力的作用。
教学方法讲解和实验演示相结合,让学生通过观察和实验来理解原子核的基本结构和核力的作用。
教学过程1.讲解原子核的基本结构和性质;2.实验演示,让学生观察和探究原子核的基本性质;3.讲解核力的作用。
第二节:质量数、原子序数和同位素的概念教学目标1.掌握质量数、原子序数和同位素的概念;2.了解同位素的性质和应用。
教学重点1.质量数、原子序数和同位素的概念;2.同位素的性质和应用。
教学难点同位素的性质和应用。
教学方法讲解和实验演示相结合,让学生通过观察和实验来掌握质量数、原子序数和同位素的概念,并了解同位素的性质和应用。
1.讲解质量数、原子序数和同位素的概念;2.实验演示,让学生通过观察和探究来了解同位素的性质和应用。
第三节:核衰变和主要衰变方式教学目标1.掌握核衰变的基本原理;2.了解主要的核衰变方式。
教学重点1.核衰变的基本原理;2.主要的核衰变方式。
教学难点主要的核衰变方式。
教学方法讲解和实验演示相结合,让学生通过实验来了解核衰变的基本原理,并掌握主要的核衰变方式。
原子的核式结构模型【教学任务分析】1.学生在初中物理和化学课中已经学过原子的核式结构,但并不了解这些知识是怎样获得的。
针对这一特点,介绍人类怎样一步一步地深入认识原子的结构;2.在我们日常所处的宏观世界中,可以直接用眼睛观察物体的结构,但在微观世界里,已经不能靠眼睛来获取信息了。
针对这一问题,了解最常用的获取微观世界的信息的方法;3.前一节电子的发现,说明原子可以再分割,在此基础上,汤姆孙建立了原子“枣糕模型”。
卢瑟福用发现的α粒子散射实验结果否定了汤姆孙的原子模型,提出了原子的核式结构模型。
α粒子散射实验和原子的核式结构的内容是本节教学的重点;4.科学假说是科学研究中一个非常重要的方法,科学家们通过对实验事实的分析,提出模型或假说,这些模型或假说又在实验中经受检验,正确的被肯定,经不起检验的被否定,在新的基础上再提出新的学说。
人类对原子结构的认识,生动地体现了科学发展的这种过程。
【学生情况分析】1.学生的整体素质及物理基础一般,学生的逻辑思维能力一般,因此根据现有学生的具体情况设计教案、一步步设计难度梯度,进行有效性教学。
2.新课程改革打破了以前的应试教育模式,教育教学过程中师生地位平等,充分贯彻以学生为本,坚持学生的主体地位,教师的主导地位;3.本节课是一节科学探究课,呈现在学生面前的是现象,是问题,而不是结论。
4.估计学生利用ɑ粒子散射实验现象进行讨论和通过观察实验现象推理出卢瑟福的原子的结构模型会有一定的困难;对提出的3个问题,前二个问题放手让学生进行小组讨论,对于问题3采用先让学生猜想,师生共同分析实验现象,然后再放手让学生小组讨论出原子的结构。
【教学目标】(一)知识与技能1.了解原子结构模型建立的历史过程及各种模型建立的依据;2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。
(二)过程与方法1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力;2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用;3.了解研究微观现象的方法。