神经-肌肉接头兴奋的传递
- 格式:pptx
- 大小:626.47 KB
- 文档页数:9
简述神经肌肉接头兴奋传递过程。
神经肌肉接头,也称为神经肌肉突触,是神经系统与肌肉之间传递神经冲动的特殊结构。
神经肌肉接头兴奋传递过程,是指神经冲动从神经元传递到肌肉纤维,引发肌肉的收缩和运动。
神经肌肉接头的兴奋传递主要涉及到三个主要参与者:神经元、突触和肌肉纤维。
其中,神经元是神经系统的基本单位,负责传递神经冲动;突触是神经元与肌肉纤维之间的连接点,负责传递神经冲动;肌肉纤维是肌肉的基本单位,负责收缩和运动。
兴奋传递的过程可以分为三个阶段:兴奋传导、突触传递和肌肉收缩。
首先是兴奋传导阶段。
当神经冲动到达神经元的末梢时,会引起神经元膜内外电位的快速变化,形成动作电位。
动作电位的传导是通过神经细胞膜上的离子通道进行的,主要有钠离子通道和钾离子通道参与。
当动作电位传导到神经细胞轴突的末梢时,就会到达突触。
接下来是突触传递阶段。
突触是神经肌肉接头中神经元和肌肉纤维之间的连接点。
突触分为突触前膜、突触间隙和突触后膜三部分。
当动作电位到达突触前膜时,会引起钙离子通道的开放,使得钙离子从突触间隙外进入突触间隙内。
钙离子的进入会促使突触小泡与突触后膜融合,释放出储存的神经递质。
神经递质是一种化学物质,可以跨越突触间隙,作用于突触后膜上的受体,从而传递神经冲动。
最后是肌肉收缩阶段。
当神经递质与突触后膜上的受体结合时,会引起肌肉纤维内钙离子的释放。
钙离子与肌纤维蛋白质结合,使得肌纤维蛋白质发生构象变化,从而促使肌肉纤维的收缩。
当神经冲动结束后,钙离子会被重新吸收,肌纤维蛋白质恢复原状,肌肉也会恢复松弛状态。
神经肌肉接头的兴奋传递过程可以看作是一种信息传递的过程。
神经冲动作为信息的载体,通过神经元和突触传递到肌肉纤维,最终引发肌肉的收缩和运动。
这个过程需要多种离子通道、神经递质和蛋白质的参与,需要各个环节的协调配合,以保证信息的准确传递和肌肉的正常功能。
总结起来,神经肌肉接头的兴奋传递过程是一个复杂而精密的过程,涉及到神经元、突触和肌肉纤维之间的相互作用。
1、兴奋在神经肌肉接点外的传递有什么特点?①化学传递,神经和肌肉之间的兴奋传递时通过化学传递进行的。
②兴奋传递的节律是1对1的:即每次神经纤维兴奋都可引起一次肌肉细胞兴奋。
③单向传递,兴奋只能有神经末梢传向肌肉,而不能相反。
④时间延搁,兴奋的传递要经历地址的释放,扩散和作用等各个环节,因而传递速度缓慢。
⑤高敏感性,容易受化学和其他环境因素变化的影响,容易疲劳。
⒉肌肉的兴奋一收缩偶联:①电兴奋通过横管系统穿向肌肉细胞深处。
②三联管结构处的信息传递。
③肌浆网中ca2+释放入胞浆以及ca2+由胞浆肌浆网的再聚集。
2、人体三个能量供应系统是什么?其供能各有什么特点?①磷酸供应系统。
无氧代谢,磷肌酸cp供能,供能足,持续时间短。
②乳酸能供能系统无氧代谢。
③有氧化供能系统。
有氧代谢。
糖,脂肪,蛋白质,氧化分解供能多。
3、能量代谢的特征。
ATP供能的连续性,耗能与产能之间的匹配性,供能途径与强度的对应性,无氧供能的暂时性,有氧代谢的基础性。
4、快慢肌肉纤维的生理特征及其发生的机制。
快肌纤维收缩力量大,收缩速度大,但容易疲劳;慢肌纤维力量小,收缩速度慢,但不易疲劳。
理由:快肌纤维肌质网发达,接受胞体大的运动神经元支配;而慢肌纤维转细肌浆丰富,毛细血管多,线粒体容积密度大。
接受细胞体小的运动神经支配。
6、肌肉收缩过程包括:①兴奋在神经一肌肉接点的传递。
②肌细胞的兴奋一收缩偶联。
③横桥运动引起肌丝滑行,肌肉收缩。
④兴奋终止后,收缩肌肉舒张。
7、现阶段爱国主义表现的内容是什么?在经济全球化背景下弘扬爱国主义应该树立哪些观念?答:在现阶段爱国主义主要表现为弘扬民族精神与时代精神献身于建设和保卫深灰主义现代化事业,献身于促进祖国统一大业。
观念:第一。
人有地域和信仰的不同,惨报效祖国之心不应有差别;第二。
科学没有国界,惨科学家有祖国;第三。
经济全球化过程中要始终维护国家的主权和尊严。
8,怎样理解材料中“一部中国共产党史就是马克思主义中国化史”?答:马克思主义中国化就是将马克思主义基本原理同中国具体实际相结合,中国共产党的历史就是一部马克思主义中国化的历史,以毛泽东为代表的中国共产党人,在毛泽东领导中国革命和建设化过程中,第一次实现了马克思主义中国化,创造了毛泽东思想,在毛泽东思想的指导下,中国共产党领导人民取得了新民主主义革命的胜利,建立了中华人民共和国,经过社会主义改造确立了神会注意制度,进行了社会主义建设的理论探讨,初步探索了社会主义建设的道路。
神经肌肉接头处的兴奋传递过程及其影响的因素有哪些?(1)传递过程运动神经兴奋(AP)至神经末梢↓接头前膜去极化↓电压门控Ca2+通道开放↓Ca2+内流↓突触囊泡与接头前膜融合、ACh 释放↓N2-ACh受体通道激活↓通道开放→Na+内流>K+外流↓接头后膜去极化(终板电位)↓电紧张扩布至邻近普通肌膜(2)影响因素1.接头间隙中的细胞外液低Ca2+或(和)高Mg2+:ACh释放减少。
2.筒箭毒,a-银环蛇毒:特异性地阻断终板膜上的Ach受体通道→阻断神经―骨骼肌接头处的兴奋传递→骨骼肌松弛3.胆碱酯酶抑制剂①新斯的明→抑制胆碱酯酶活性→ACh在接头间隙的浓度提高→改善肌无力患者的症状。
②有机磷农药中毒→ACh在接头间隙蓄积→中毒症状(出现肌束颤动,全身肌肉抽搐等表现,严重时转为抑制,导致死亡)。
运动与健康题目:体育锻炼对运动系统的影响指导老师:欧阳靜仁班级:热能092班姓名:林灿雄学号:200910814223摘要:这篇文章通过对人体运动系统组成的介绍,以及体育锻炼对运动系统的作用和影响的一点点描述,给平时不重视锻炼的人说明了体育锻炼的好处,希望能够有更多的人重视体育锻炼。
本文部分地方参考相关文件,可信度在一定程度上得到提高,同时也未免有疏落之处,请指正。
参考:/view/63163.htm/view/5df244d728ea81c758f5787c.html关键词:骨,骨连接,骨骼肌,支架作用、保护作用和运动作用,合理的体育锻炼,三磷酸腺苷(ATP)酶前言体育锻炼与我们息息相关,在我们的身边,无时无刻都有人在运动,各种球类运动、跑步、游泳等等...大家都知道体育锻炼对人体是有好处的,然而具体有些什么好处呢?这个答案有多少人知道。
通过这篇文章,希望可以增加大家对体育锻炼的认识。
体育锻炼既可增强关节的稳固性,又可提高关节的灵活性。
体育锻炼可使肌纤维变粗,肌肉体积增大,因而肌肉显得发达、结实、健壮、匀称而有力。
. 神经肌肉接头处的兴奋传递过程及其影响的因素有哪些1.神经肌肉接头处的兴奋传递过程有三个重要的环节:一是钙离子促进神经轴突中的囊泡膜与接头前膜发生融合而破裂;二是囊泡中的乙酰胆碱释放到神经肌肉接头间隙;三是乙酰胆碱与接头后膜上的受体结合,引发终板电位。
2.神经肌肉接头处的兴奋传递特征有三个:一是单向性、二是时间延搁、三是易受环境等因素的影响。
3.影响神经肌肉接头处兴奋传递的的因素主要有四个:一是对乙酰胆碱释放的影响,其中钙离子可以促进释放;肉毒杆菌毒素有阻止释放的作用;二是对乙酰胆碱与接头后膜上的受体结合的影响,箭毒能与乙酰胆碱竞争受体;三是有机磷农药能抑制胆碱脂酶从而阻止乙酰胆碱的清除,延长其作用时间。
二.当兴奋通过神经-- 心肌肌肉接头时,乙酰胆碱与受体结合,最终导致终板膜的变化是?A 对钠通透性增加,去极化B 对氯钾通透性增加,超极化C 仅对钙通透性增加,去极化D 对乙酰胆碱通透性增加,超极化为什么 B 正确?一般兴奋型递质不是发生去极化吗?兴奋性突触后电位是去极化,抑制性突触后电位是超级化。
这个结论正确。
你注意看清题目,在心肌,M 受体兴奋引起心脏抑制,所以应该是抑制性突触后电位。
三. 兴奋在神经肌肉-接头的传递过程?兴奋信号传到肌接头处时,兴奋引起钙离子大量释放.释放的钙离子促进神经轴突中的囊泡膜与接头前膜(突触前膜)发生融合而破裂而释放囊泡中的乙酰胆碱(递质),乙酰胆碱(递质)经过神经肌肉接头间隙(突触间隙);与接头后膜(突触后膜)上的受体结合,引发终板电位。
过程包括三个阶段.一是钙离子促进神经轴突中的囊泡膜与接头前膜发生融合而破裂;二是囊泡中的乙酰胆碱释放到神经肌肉接头间隙;三是乙酰胆碱与接头后膜上的受体结合,终引发板电位。
神经-肌肉接头传递动物最显著的特点是运动功能,各种运动都是由肌肉收缩完成的。
骨骼肌属于随意肌,在中枢神经控制下接受躯体运动神经的支配。
只有当神经纤维上有传出神经冲动,并经骨骼肌的神经-肌接头把兴奋传递给骨骼肌,才能引起骨骼肌的兴奋和收缩。
神经-肌肉接头(neuromuscular junction)概念和结构概念:神经-肌肉接头是由运动神经纤维末稍和它接触的骨骼肌细胞膜所构成,是一种特化的突触(synapse)。
神经末梢在接近骨骼肌细胞处失去髓鞘,每一个裸露的轴突末梢进入肌肉后又广泛分支形成大量末端呈膨大的突触前终扣(presynaptic terminal button),每个终扣各嵌入一条与它相对应的、有肌膜向内下陷形成的凹陷(或称终板)中,共同形成一个神经-肌接头。
组成部分:①接头前膜(prejunctional membrane):嵌入肌细胞膜凹陷中的突触前终扣的膜;②接头后膜(postjunctional membrane):与接头前膜相对应的肌膜,也称为终板膜(endplate membrane);③接头间隙(junctional cleft):接头前膜与接头后膜之间的一个达50 nm的间隙,充满细胞外液。
突触前终扣的胞质内存在大量突触囊泡(synaptic vesicle),直径约50~60 nm,每个囊泡含有6000到10000个乙酰胆碱(acetylcholine,Ach)分子。
ACh 分子能够与终板膜上的烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor,nAChR)特异性结合。
nAChR集中分布于终板膜皱褶的顶部,属于化学门控阳离子通道。
N-M接头处兴奋传递的主要步骤N-M接头之间的信号传递是通过神经递质乙酰胆碱的介导完成的。
概括为“神经-乙酰胆碱-肌肉”或者“电信号-化学信号-电信号定向转换”过程。
神经冲动沿神经纤维传到轴突末梢时,接头前膜首先发生去极化;膜的去极化引起该处膜上存在的电压门控钙通道开放,钙离子内流,接着接头前膜胞质内钙离子浓度快速增高;钙浓度的增高促使突触小泡向接头前膜内侧移动、进而小泡膜与接头前膜融合、融合处出现小孔,经胞出过程将小泡中的ACh分子全部释放至接头间隙;ACh分子经扩散与终板膜上的nAChR结合,并激活这种受体而使其分子结构中的通道样结构开放,于是出现钠离子内流为主的跨膜离子移动,使终板膜发生去极化,产生终板电位(endplate potential, EPP);EPP以电紧张形式扩布至临近的肌细胞膜,引起肌细胞爆发动作电位,最终完成电信号由接头前膜到肌细胞膜的一次兴奋传递。
试述神经肌接头兴奋的过程及机制【实用版】目录1.神经肌肉接头兴奋传递的过程2.神经肌肉接头兴奋传递的机制3.神经肌肉接头兴奋传递的特点正文一、神经肌肉接头兴奋传递的过程神经肌肉接头兴奋传递过程主要包括三个重要环节:1.钙离子促进神经轴突中的囊泡膜与接头前膜发生融合而破裂:当神经冲动到达神经肌肉接头时,轴膜去极化,改变轴膜对钙离子的通透性,导致钙离子通道开放,使囊泡向轴突靠近。
随后,膜融合,破裂呈量子式释放乙酰胆碱(ACh)到接头间隙。
2.囊泡中的乙酰胆碱释放到神经肌肉接头间隙:在钙离子的作用下,囊泡膜与接头前膜发生融合,使囊泡内的乙酰胆碱量子式地释放到神经肌肉接头间隙。
3.乙酰胆碱与接头后膜上的受体结合,引发终板电位:释放到接头间隙的乙酰胆碱与接头后膜上的乙酰胆碱受体结合,引发终板电位,从而完成神经肌肉接头兴奋传递的过程。
二、神经肌肉接头兴奋传递的机制神经肌肉接头兴奋传递的机制主要包括以下几个方面:1.电化学传递:神经冲动到达神经肌肉接头时,轴膜去极化,改变轴膜对钙离子的通透性,导致钙离子进入轴膜内。
钙离子进而促进神经轴突中的囊泡膜与接头前膜发生融合而破裂,释放乙酰胆碱。
2.化学传递:乙酰胆碱作为神经递质,通过释放到接头间隙,与接头后膜上的乙酰胆碱受体结合,引发终板电位。
3.结构基础:神经肌肉接头处的结构基础是囊泡、接头前膜和接头后膜。
乙酰胆碱通过囊泡膜和接头前膜的融合破裂,进入接头间隙,与接头后膜上的受体结合,完成兴奋传递。
三、神经肌肉接头兴奋传递的特点神经肌肉接头兴奋传递具有以下特点:1.单向性:神经肌肉接头兴奋传递是单向的,即从神经末梢到肌肉纤维。
2.时间延搁:神经肌肉接头兴奋传递存在时间延搁,即从神经冲动到达神经肌肉接头,到引发肌肉纤维收缩,需要经过一定的时间。
西医综合考研复习:神经骨骼肌接头处的兴奋传递神经肌肉接头是运动神经元轴突末梢在骨骼肌肌纤维上的接触点。
位于脊髓前角和脑干一些神经核内的运动神经元,向被它们支配的肌肉各发出一根很长的轴突,即神经纤维。
这些神经纤维在接近肌细胞,即肌纤维处,各自分出数十或百根以上的分支。
一根分支通常只终止于一根肌纤维上,形成1对1的神经肌肉接头。
从神经纤维传来的信号即通过接头传给肌纤维。
神经肌肉接头是一种特化的化学突触,其递质是乙酰胆碱(ACh)。
无脊椎动物如螯虾的神经肌肉接头的递质是谷氨酸(兴奋性纤维的递质)或γ-氨基丁酸(抑制性纤维的递质)。
兴奋传递过程神经末梢的直径很小(如人的运动神经末梢的直径约2~3微米)故传导动作电位的速度很慢;如在蛙测得的速度为0.4米每秒。
当一个神经冲动传导到神经末梢时,即由它引起去极化,使接头前膜中的电压依赖性钙离子通道开放,钙离子沿浓度差内流入神经末梢,触发活动区处的突触泡与接头前膜融合并开口,将内含的乙酰胆碱释放到突触间隙(此过程称胞吐)。
据计算一个神经冲动可触发几百个突触泡同步地释放乙酰胆碱。
释放出的乙酰胆碱迅速扩散、通过突触间隙,到达终板膜,与乙酰胆碱受体结合,导致终板膜对钠离子与钾离子的通透性瞬时升高。
这种阳离子通透性变化,是由于受体与乙酰胆碱分子结合后引起了受体分子构型变化,使其离子通道开放造成的。
据计算一个突触泡所释放的乙酰胆碱可打开约2000条受体通道。
乙酰胆碱受体的离子通道既允许钠离子,也允许钾离子通过。
因此,当乙酰胆碱受体离子通道开放时钠离子沿浓度差内流,钾离子沿浓度差外流。
由它们所携带的净电流使终板膜瞬时去极化。
这种去极化叫做终板电位(EPP)。
中国神经生理学家冯德培(1939年)是最早发现终板电位的科学家之一。
当终板电位超过肌细胞的阈值,出现肌细胞动作电位,通过肌细胞内的兴奋-收缩耦联机制,使得肌细胞收缩。
释放出的乙酰胆碱不论是否与乙酰胆碱受体结合,迅速被突触间隙内的胆碱酯酶分解,或通过扩散离开突触间隙。
神经肌肉交头处的镇静传播历程及其效率的果素之阳早格格创做(1)历程:1.疏通神经镇静,动做电位传导到神经终梢,交头前膜去极化.2.电压门控通讲启搁,钙离子加进轴突终梢,促进终梢释搁递量乙酰胆碱至神经交头间隙.4.终板膜上化教门控阳离子通讲启搁,对于钠离子战钾离子通透性减少.5.钠离子内流大于钾离子中流,终板膜去极化而爆收终板电位仔细历程:A.交头前历程.a.乙酰胆碱的合成与贮存那是神经-肌肉交头的镇静传播的前提.乙酰胆碱正在神经终梢中由胆碱战乙酰辅酶A正在胆碱乙酰化酶的效率下合成的.乙酰辅酶A主要去自神经终梢内的线粒体,胆碱则是靠膜上的特殊载体转运到神经终梢内的,其中50%是释搁进交头间隙中的乙酰胆碱火解产品,被再摄与回去沉复利用的.合成与摄与回去的乙酰胆碱,均以囊泡形式包拆贮存,以备释搁.Ca2+内流是诱收乙酰胆碱释搁的需要关节.当动做电位到达神经终梢时,交头前膜的去极化使电压门控Ca2+通讲启搁,洪量Ca2+由胞中加进到突触前终梢内,那些Ca2+没有然而是一种电荷携戴者,可对消神经终梢内的背电位,而且自己便是一种疑使物量,不妨触收囊泡中的乙酰胆碱以胞吐的形式释搁到交头间隙中.一次动做电位引起的Ca2+内流,可引导200~300个囊泡险些共步天真足释搁出乙酰胆碱分子.由于每个囊泡中所含的乙酰胆碱分子数相等,约5000~10000个,故那种以囊泡为单位的倾囊释搁,被称为量子释搁.如果落矮细胞中Ca2+ 浓度或者用Mg2+阻断Ca2+ 内流,动做电位到达时本去没有克没有及引起乙酰胆碱释搁,证明Ca2+ 正在前膜的镇静战乙酰胆碱递量释搁历程中起奇联战触收效率.那里Ca2+的加进量也决断囊泡释搁的数量.乙酰胆碱正在交头间隙后,经扩集与终板膜上的胆碱能受体特同性分离,触收交头后历程.正在终板膜上的N型乙酰胆碱受体,是集受体与通讲为一体的一个蛋黑大分子结构.当乙酰胆碱分子与受体分离后,使受体-通讲分子通讲启搁,允许Na+、K+以起码量的Ca2+通过.由于那几种离子正在细胞内中分集特性,故主假如使Na+内流,少量K+中流,截止是终板膜本有静息电位背值缩小,背整电位靠拢即出现终板膜的去极化,终板膜那种去极化电位为终板电位.一次动做电位所引起到200~300个囊泡释搁的乙酰胆碱,脚以正在终板膜上爆收约60mV、持绝1~2ms的终板电位.而每一个囊泡释搁的乙酰胆碱所引起的终板膜0.1~1mV的去极化电位,称微终板电位.乙酰胆碱收挥效率后可通过3办法扫除,即扩集、酶落解战再摄与.由于多个囊泡险些是共步释搁乙酰胆碱至交头间隙,乙酰胆碱的浓度突然降下,乙酰胆碱与受体分离可引起洪量化教门控通讲挨启,出现很快Na+、K+跨膜移动,故终板电位降下很快.然而交头间隙中的乙酰胆碱很快被突触后膜上的胆碱酯酶火解,乙酰胆碱浓度落矮,递量门控通讲关关,终板电位下落,包管下次到去的神经冲动效力,被火解的产品主动天再摄与到轴突终梢,可动做再合成乙酰胆碱的本料.(2)效率果素:①效率乙酰胆碱的释搁,如细胞中Mg2+浓度删下,与Ca2+比赛,使Ca2+内流缩小,递量释搁量缩小;②效率递量与受体的分离,如沉症肌无力是果为自己免疫性抗体损害了终板膜上的N2受体通讲,肉毒杆菌中毒是果为肉毒毒素压造递量释搁;③效率乙酰胆碱的落解.新斯的明战有机农药可压造胆碱脂酶活性,碘解磷定可回复被压造了的胆碱脂酶的活性.。
[论述题,3分] 简述骨骼肌接头处兴奋传递的过程及其
机制。
骨骼肌接头处兴奋传递的过程及其机制,是指由神经元发出的化学信号刺激骨骼肌细胞接头处,在接头处发生化学和物理性变化,从而兴奋传播到肌细胞负责收发信息的突触尾状体,使肌细胞收到脉冲信号,从而产生肌肉收缩的过程。
具体的机理是:当神经元发出化学信号,如神经传导物质环路酸(Ach)到神经末梢接头处时,激活神经-肌节接头上的受体,受体激活后产生膜通道,使钠离子经由这些通道进入肌节。
由于肌节外钠离子浓度(150mmol/L)多于肌节内的浓度(5-10mmol/L),因此形成的钠离子浓度梯度使得钠离子从肌节外进入肌节内。
这一波导电作用的“小触发”传导进入轴突并进入踝突,到达肌细胞膜的另一头,再次引发由钾离子浓度梯度形成的另一波“小触发”,这样钠离子流入到肌节内,使肌节内钠离子浓度升高。
当钠离子浓度升高足够触发钠通道活化时,这样就会恢复膜电位,从而触发肌节内的膜流动,最终导致肌细胞收到脉冲信号,使肌肉收缩。
影响神经肌肉接头兴奋传递的其他相关疾病
除了肌萎缩侧索硬化症(ALS)之外,还有其他一些疾病会影响神经肌肉接头的兴奋传递。
这些疾病包括:
1. 重症肌无力:重症肌无力是一种自身免疫性疾病,导致肌肉无法正常收缩。
免疫系统攻击神经肌肉接头的神经肌肉接头板,阻止神经冲动的传递,导致肌肉无力和疲劳。
2. 林格-伴德尔综合征:这是一种遗传性疾病,导致神经肌肉接头的缺陷和肌肉无力。
该综合征主要影响自主神经系统和眼睑肌肉,导致眼睑下垂、视力模糊和瞳孔异常。
3. 兰登伯格-京斯综合征:这是一种罕见的遗传性疾病,主要影响神经肌肉接头。
患者出现肌肉无力、眼睑下垂、眼球运动障碍和呼吸肌无力等症状。
4. 脑肌病:脑肌病是一种特发性肌肉抽搐和痉挛的疾病,可能与神经肌肉接头的过度兴奋传递有关。
这些抽搐和痉挛可能导致肌肉无力和运动障碍。
5. 肌病:某些肌肉病可以直接影响神经肌肉接头的功能,例如先天性肌无力和药物性肌无力。
以上这些疾病都会影响神经肌肉接头的正常兴奋传递,导致肌肉无力和其他相关症状。
及时诊断和治疗这些疾病对于改善患者的生活质量至关重要。
叙述述神经—肌肉接头的兴奋传递过程。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!神经—肌肉接头的兴奋传递过程1. 神经—肌肉接头的结构组成。
神经-肌接头兴奋传递过程:
动作电位达到运动神经元轴突末梢,接头前膜去极化,Ca2+通道(电压门控通道)开放,钙离子内流,引起含有乙酰胆碱的囊泡向接头前膜移动,和接头前膜发生融合破裂,释放乙酰胆碱,乙酰胆碱与接头后膜(终板膜)N2型受体结合,引起Na+通道开放,Na+内流,终板膜去极化,产生终板电位(局部电位),扩布到邻近肌细胞膜,肌膜去极化到阈电位水平,产生动作电位。
兴奋-收缩耦联过程:
动作电位在肌膜上传导到横管(肌膜),引起横管膜上电压敏感L型Ca2+通道变构,引起终池(肌浆网)膜Ca2+通道开放,终池内钙离子流入肌浆内,肌浆内钙离子浓度升高,肌浆内钙离子与肌钙蛋白C 结合,肌钙蛋白构象发生改变,原肌球蛋白受到牵拉,使横桥(肌球蛋白结构一部分)和肌动蛋白结合的位点暴露,横桥和肌动蛋白结合,拉动细肌丝向M线移动,发生肌肉收缩。
心肌兴奋收缩耦联:动作电位在心肌细胞膜传导,发生去极化,使L 型钙通道开放,钙内流,内流的钙诱导肌浆网钙离子通道开放,释放钙,引起肌浆内钙离子水平升高,引起肌肉收缩。
影响神经-肌肉接头兴奋传递的因素有哪些【术语与解答】神经-肌肉接头是许多药物和病理因素作用的靶点,而ACh又是神经-肌肉接头处的核心传递性物质,故凡能影响ACh神经递质的因素均可影响神经-肌肉接头兴奋性传递。
1. 影响接头前膜ACh的释放因素①如细胞外Ca2 +浓度下降,易使Ca2 +内流不足,从而易导致ACh释放也减少;②细胞外Mg2 +增高,则可与Ca2 +存在竞争,常致使Ca2 +内流下降,容易引起ACh释放量减少,故细胞外液Ca2 +浓度降低或Mg2 +浓度增高,均可影响神经-肌肉接头处兴奋性传递;③肌无力综合征患者其病变主要损害了接头前膜的钙离子通道,神经动作电位传导至接头前膜时不能激活足够的钙离子通道产生Ca2 +内流,最终干扰和阻碍了囊泡中的ACh向接头间隙量子式释放。
2. 影响接头间隙ACh降解的因素①有机磷农药中毒是由于接头间隙中的乙酰胆碱酯酶被磷酰化而失去活性,导致ACh在接头间隙和接头后膜大量蓄积,从而造成ACh中毒症状;②解磷定等解毒药在体内及接头间隙能与磷酰化的乙酰胆碱酯酶的磷酰基结合,可将乙酰胆碱酯酶游离出来,以恢复其水解乙酰胆碱的活性;③新斯的明等乙酰胆碱酯酶抑制剂可阻断接头间隙乙酰胆碱酯酶的活性,可增加ACh在接头间隙和接头后膜的浓度,以达到改善相关肌无力患者的症状和非特异性拮抗非去极化类肌松药的残余作用。
3. 影响接头后膜ACh与N2胆碱受体相结合的因素①重症肌无力患者则是其病变破坏了接头后膜上的N2型ACh受体通道,阻断了ACh的作用;②临床上所使用的肌肉松弛剂均能与接头后膜上的N2型ACh受体相结合,故能阻断ACh的兴奋性传递,但该神经-肌肉接头的传递功能只是暂时性丧失,停止使用肌肉松弛药,神经-肌肉接头的传递功能则可逐渐恢复。
【麻醉与实践】①麻醉医师理解和明确影响神经-肌肉接头处兴奋性传递的因素,则可指导临床麻醉实践,如对肌无力综合征和重症肌无力患者全麻术后拮抗非去极化肌松药的残余作用时,新斯的明拮抗前者一般无效,而用于后者拮抗效果则明显;②麻醉术中应用硫酸镁则可影响术毕患者肌张力的恢复,因镁离子可通过钙通道阻滞作用而抑制运动神经-肌肉接头乙酰胆碱的释放,阻断神经肌肉连接处的传导,从而增强非去极化肌松药的作用。
简述神经肌肉接头兴奋传递过程。
神经肌肉接头又称为神经肌肉连接,是神经系统与肌肉系统之间的重要连接部位。
它起着传递神经冲动、实现肌肉收缩的关键作用。
接下来,让我们一起揭开神经肌肉接头兴奋传递的神秘面纱。
首先,我们来了解一下神经肌肉接头的结构。
神经肌肉接头由神经终末、突触间隙和肌肉纤维膜组成。
在接头上,神经末梢释放出一种化学物质称为乙酰胆碱。
乙酰胆碱通过突触间隙传递到肌肉纤维膜,从而引发肌肉兴奋传导。
当神经冲动到达神经肌肉接头时,神经终末释放的乙酰胆碱与肌肉纤维膜上的乙酰胆碱受体结合。
这种结合事件引起肌肉纤维膜上的离子通道的开放,尤其是钠通道。
这个过程会使肌肉纤维内部的电位变为正值,从而导致肌肉细胞内电位的改变,形成肌肉兴奋状态。
之后,肌肉细胞内兴奋传导的过程开始。
一旦细胞内电位超过一定阈值,肌肉细胞上的钙离子通道将会打开。
这些钙离子会从细胞外流入细胞内,与肌肉蛋白质相结合。
这个过程促使肌肉蛋白质发生构象变化,最终导致肌肉的收缩。
在肌肉兴奋传导过程中,有一个重要的概念是“全或无原则”。
也就是说,当神经冲动到达神经肌肉接头时,要么触发全部肌肉纤维的兴奋和收缩,要么不触发任何肌肉纤维的兴奋和收缩。
这意味着,在肌肉收缩时,一小部分肌肉纤维无法独立收缩,而是整个肌肉纤维束协同收缩。
这种“全或无原则”保证了肌肉的协调运动。
在整个神经肌肉接头兴奋传递过程中,乙酰胆碱的重要性不可忽视。
乙酰胆碱是传递神经冲动的媒介物质,同时也是兴奋传导的调节因子。
当乙酰胆碱被分解或被其他物质激活时,兴奋传导过程将被终止或调控。
总的来说,神经肌肉接头兴奋传递过程是一个复杂而精密的机制。
从神经冲动到肌肉收缩的传递,涉及到神经终末、突触间隙和肌肉纤维膜的相互作用。
了解这个过程对我们理解肌肉运动的原理和神经系统的功能至关重要。
希望本文对大家有所启发,加深对神经肌肉接头兴奋传递的理解。