习题一:真空中的静电场习题详解
- 格式:pdf
- 大小:214.81 KB
- 文档页数:7
真空中的静电场答案练习一一 填空题1.021εq q + 1q 、2q 、3q 2.不一定 3.06εq 4.304Rqr πε 5.023εσ-=A E ,0023,2εσεσ=-=C B E E 6. 0,rR 0εσ 二 计算题1. 解(1)2004rqQ F πε= 由对称性可知N F F x 71022.3-⨯== 沿x 轴正向(2)θπεcos 4220rqQ F F x == 01.0)01.0(42220++=x x x qQπε 令0=dxdF 可得:m x 071.0202=±=时,Q 受力最大 2.解:为带正电荷闭合圆环在圆心o 点的电场强度为带正电荷空隙在圆心o 点的电场强度由于空隙很小,因此空隙处正电荷可看作点电荷y F =02cos x F F θ=012E E E =-1E 2E 10E =l l R Q R R qE ⋅-==ππεπε241420202 所以C N E E /72.02==,方向指向空隙3解取线元dl ,有:∴∴负号表示场强方向沿y 轴负向4解作半径r 的同心球面,,由高斯定理:① 若r <R 1,则: ∴ E =0② 若R 1<r <R 2 则:∴③ 若r >R 2,则:∴练习二一. 填空题1.J 15108-⨯-,V 4105⨯-2.有源场,无旋场3.电势降低的方向4 . =,=二.计算题1.解电场分布:由高斯定理得当1R r < 01=E当12R r R ≥> 2024r QE πε=当2R r > 03=E电势分布:由叠加原理得当1R r < 2010144R Q R QV πεπε-= 当12R r R ≥> 200244R Q r QV πεπε-= 当2R r > 03=V2.解取同心球面为高斯面得当R r < 3020144RQr r V E πεπερ== 当R r > 2024r QE πε= 当R r < 302020********R Qr R Q dr rQ dr R Qr V R r R πεπεπεπε-=+=⎰⎰∞当R r > rQV 024πε=当R r = RQV R 04πε=3解(1) 设内、外球面所带电荷分别为、∴C(2) 由 有cm4解.取同心圆柱面为高斯面,得:当a r <022επρπhr rhE ⋅= 02ερr E =当a r >22επρπha rhE ⋅=022ερr a E =电势分布当a r <⎰-==002042rr dr r V ερερ 当a r >020200024ln 222ερερερερa r a a dr r dr r a V a a r -=+=⎰⎰静电场中的导体和电介质练习三一.填空题 1.022εS Q 2.r ε,r ε,r ε3.2041U C 4. 3q 5.R qd q0044πεπε-6. 减小,增大,减小,减小二.计算题1.解:(1).在介质内取同轴圆柱面为高斯面,则有: ∑⎰=⋅内0q S d D S l rl D λπ=⋅2rD πλ2=又E D ε= rE πελ2= (2).电势差为:⎰==BAR R A B AB R R dr r U ln 22πελπελ (3).电容为:ABA B AB R R l R R l U Q C ln 2ln 2πεπελ=== 2解:(1)在介质内取同心球面作为高斯面,由高斯定理得: ∑⎰=⋅内0q S d D S Q r D =⋅24π24r Q D π= 24rQ E πε= (2)电势差⎰⎰-==⋅=21211)11(44212R R R R R R Q dr r Q r d E U πεπε (3)由电容定义得:12214R R R R U Q C -==πε (4)2121228)(2R R Q R R C Q W πε-== 3.解:设C 板右表面带电 -q 1 ,A 板左右表面分别带电q 1、q 2,B 板左表面带电- q 2 AC 板间距d 1,AB 板间距d 2(1) 由题意可知,(1) (2)(1)(2)联解得(2)12q qQ +=AC ABV V =1122E d E d =1212o o q q d d S Sεε=1122q d d q =1121Q q d d =+2211Q q d d =+AC A V V V C=-V 0C =1021101111d Sd d Q d S q d E V V AC A εε+==== 4.解:由D 高斯定理有得到即此时两种介质中的D 是相等的。
一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ(x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D)()j i a+π04ελ. 【提示】左侧与右侧半无限长带电直线在(0,a )处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。
据Guass 定理:SE dS=iiq ε∑⎰r R ≤时,有:()22012rL=r E L R λππεπ⎛⎫ ⎪⎝⎭,即:20r =2E R λπε r R >时,有:()012rL=E L πλε ,即:0=2rE λπε [ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)06εq . (B) 012εq. (C) 024εq . (D) 048εq .【提示】添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体的外表面构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
另一方面,该高斯面可看成由24个面积与侧面abcd 相等的面组成,且具有对称性。
所以,通过侧面abcd 的电场强度通量等于24εq [ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-.【提示】200248P a M M aq qU E dl dr r a πεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 【提示】根据带电球面在球内外所激发电势的公式,以及电势叠加原理即可知结果。
20XX年复习资料大学复习资料专业:班级:科目老师:一、日期:真空中的静电场一、 选择题:1.下列几个说法哪一个是正确的?(A ) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B ) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C ) 场强方向可由/F E =q 定出,其中q 为试验电荷的电量,q 可正可负,F 为试验电荷所受的电场力。
(D ) 以上说法都不正确。
[ ]2.关于静电场中某点电势值的正负,下列说法中正确的是:(A ) 电势值的正负取决于置于该点的试验电荷的正负。
(B ) 电势值的正负取决于电场力对试验电荷作功的正负。
(C ) 电势值的正负取决于电势零点的选取。
(D ) 电势值的正负取决于产生电场的电荷的正负。
[ ]3、某电场的电力线分布情况如图所示。
一负电荷从M 点移到N 点。
有人根据这个图作出下列几点结论,其中哪点是正确的?(A ) 电场强度N M E E <。
(B )电势N M U U <。
(C )电势能N M W W <。
(D )电场力的功A>0。
[ ]4、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A)F /q 0 比P 点处原先的场强数值大.(B)F /q 0 比P 点处原先的场强数值小.(C)F /q 0 等于原先P 点处场强的数值.(D)F /q 0 P 点处场强数值关系无法确定,[ ]5、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M 为:(A) F =0,M =0, (B) F =0,M ≠0,(C) F ≠0,M =0, (D) F ≠0,M ≠0, [ ]6、已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A ) 高斯面上各点场强均为零。
(B ) 穿过高斯面上每一面元的电通量均为零。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。