习题一真空中的静电场习题详解
- 格式:pdf
- 大小:214.81 KB
- 文档页数:7
⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
真空静电场(一)一.选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度 [ ](A ) 处处为零 (B )不一定都为零 (C )处处不为零 (D )无法判断2. 设有一“无限大”均匀带负电荷的平面,取X 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标X 变化的关系曲线为(规定场强方向沿X 轴方向为正,反之为负) []3. 下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ](A ) 点电荷Q 的电场: 204QE r πε=(B ) 无限长均匀带电直线(线密度λ)的电场: 302E r rλπε= (C ) 无限大均匀带电平面(面密度σ)的电场:02E σε= (D ) 半径为R 的均匀带电球面(面密度σ)外的电场:230R E r r σε= 4. 将一个试验电荷Q (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F 。
若考虑到电量Q 不是足够小,则 [ ](A) F/Q 比P 点处原先的场强数值大(B) F/Q 比P 点处原先的场强数值小(C) F/Q 与P 处原先的场强数值相等(D) F/Q 与P 处原先的场强数值关系无法确定。
5. 根据高斯定理的数学表达式0s q E dS ε=∑⎰可知下列各种说法中,正确的是 [ ] (A ) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零(B ) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零(C ) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零(D ) 闭合面上各点场强均为零时,闭合面内一定处处无电荷6. 当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心处产生的电场强度E 和电势U 将 [ ](A )E 不变,U 不变; (B )E 不变,U 改变;(C )E 改变,U 不变 (D ) E 改变,U 也改变7. 在匀强电场中,将一负电荷从A 移至B ,如图所示,则: [ ](A ) 电场力作正功,负电荷的电势能减少(B ) 电场力作正功,负电荷的电势能增加(C ) 电场力作负功,负电荷的电势能减少(D ) 电场力作负功,负电荷的电势能增加8. 真空中平行放置两块大金属平板,板面积均为S ,板间距离为d ,(d 远小于板面线度),板上分别带电量+Q 和-Q ,则两板间相互作用力为 [ ](A )2204Q d πε (B )220Q S ε (C )2205k Q S ε+ (D )2202Q S ε 二.填空题1 带有N 个电子的一个油滴,其质量为m ,电子的电量的大小为e ,在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为________________,大小为____________________。
(真空中的静电场(习题课后作业)(22)1、真空中半径为R 的球体均匀带电,总电量为q ,则球面上一点的电势U=R q 04/πε;球心处的电势U 0=R q 08/3πε 。
(将均匀带电球体微分成球面,利用电势叠加求得结果)2、无限大的均匀带电平面,电荷面密度为σ,P 点与平面的垂直距离为d ,若取平面的电势为零,则P 点的电势Up==-Ed 02/εσd -,若在P 点由静止释放一个电子(其质量为m,电量绝对值为e)则电子到达平面的速率V=0/εσm ed 。
(221mv Ue p=)3.如图,在真空中A 点与B 点间距离为2R,OCD 是以B 点为中心,以R 为半径的半圆路径。
AB两处各放有一点电荷,带电量分别为:+q (A 点)和-q (B 点),则把另一带电量为Q(Q <0)的点电荷从D 点沿路径DCO 移到O 点的过程中,电场力所做的功为=-=)(o D U U Q A R Qq 06/πε-。
4、点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示。
则引入q 前后:( B )(A)曲面S 的电通量不变,曲面上各点场强不变;(B)曲面S 的电通量不变,曲面上各点场强变化;(C)曲面S 的电通量变化,曲面上各点场强不变;(D)曲面S 的电通量变化,曲面上各点场强变化。
5、选择正确答案:( B )(A)高斯定理只在电荷对称分布时才成立。
(B)高斯定理是普遍适用的,但用来计算场强时,要求电荷分布有一定的对称性。
(C)用高斯定理计算高斯面上各点场强时,该场强是高斯面内电荷激发的。
(D)高斯面内电荷为零,则高斯面上的场强必为零。
6、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:利用圆环在其轴线上任一点场强结果2/3220)(4/x R Qx E +=πε任取一细环ρ~ρ+d ρ,ρπρσd dq 2= 2/3220)(4ρπε+=r rdqdE⎰=∞R dE E 222Rr r+=εσ217、真空中一长为L 的均匀带电细直杆,总电量为q ,(1)试求在直杆延长线上距杆的一端距离为a 的p 点的电场强度和电势。
第9章 真空中的静电场9.1 两个电量都是q +的点电荷分别固定在真空中两点A 、B ,相距2a 。
在它们连线的中垂线上放一个电量为q '的点电荷,q '到A 、B 连线的中点的距离为r 。
求q '所受的静电力,并讨论q '到A 、B 连线的中垂线上哪一点受力最大?若q '在A 、B 的中垂线上某一位置由静止释放,它将如何运动?分别就q '与q 同号和异号两种情况进行讨论。
解: ()12202cos 24qq F F r aαπε'==⨯⨯+()322202qq r r aπε'=+当0dF dr=时,有极值()()()()3222310222222232202302qq r d r a qq r a r r a drr aπεπε⎛⎫'⎪ ⎪ ⎪+'⎡⎤⎝⎭==+-+=⎢⎥⎣⎦+ 即: ()()31222222230r arra+-+=2r ⇒=±受力最大当q 与q '同号沿A B 连线中垂线加速度远离q 直到无穷远。
当q 与q '异号,释放后将以A B 连线的中点为平衡位置,沿A B 连线的中垂线作掁动。
9.7 求半径为R 、带电量为Q 的均匀带电球体内外的场强分布。
解: 高斯定理:0SqE dS ε⋅=∑⎰R r < 33213300413 443rrE r Q Q R Rπππεε⎛⎫⎪⇒==⎪⎪⎝⎭314Rr Q E πε=⇒ 方向沿半径向外R r > 22014E r Q πε⇒⋅=2214rQ E πε=⇒ 方向沿半径向外9.8求半径为R 、面电荷密度为σ的无限长均匀带电圆柱面内外的场强分布。
解: 选取高为h ,同轴封闭圆柱面S,E呈轴对对称分布。
高斯定理:0SqE dS ε⋅=∑⎰214q r R E r πε<=∑=01 0E ⇒= 2122qrh Rh r R Eππσεε==∑>02R rEσε⇒=方向沿半径向外9.9半径分别为1R 和2R (21R R >)的一对无限长共轴圆柱面上均匀带电,沿轴线单位长度的电荷分别为1λ、2λ。
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。