材料力学课件:梁的强度计算
- 格式:ppt
- 大小:2.96 MB
- 文档页数:69
《梁应力强度计算》课件一、梁的基本概念1.1 梁的定义梁是一种受弯和/或受剪的受力构件,常用于桥梁、建筑、机器结构等工程中。
1.2 梁的分类(1)按材料分类:钢梁、木梁、混凝土梁等。
(2)按截面形状分类:矩形梁、工字梁、T型梁、I型梁等。
(3)按受力状态分类:简支梁、悬臂梁、连续梁等。
二、梁应力强度计算的基本原理2.1 弹性理论弹性理论是研究弹性体在外力作用下的应力、应变及位移分布的数学理论。
对于梁的应力强度计算,主要应用弹性力学中的平面应变问题和平面应力问题。
2.2 截面应力梁截面上的应力分布不均匀,通常最大应力出现在截面中性轴上,称为截面应力。
2.3 弯曲正应力弯曲正应力是梁截面上与中性轴垂直的应力,其计算公式为:σ= M·y / I,其中M为弯矩,y为截面上的点到中性轴的距离,I为截面的惯性矩。
2.4 剪切应力剪切应力是梁截面上与中性轴平行的应力,其计算公式为:τ= V·x / A,其中V为剪力,x为截面上的点到中性轴的距离,A为截面的面积。
三、梁应力强度计算的方法3.1 静力法静力法是通过对梁受力的分析,确定各部分的受力情况,根据力的平衡条件求解应力。
适用于简单梁结构。
3.2 弹性解析法弹性解析法是利用弹性力学的公式,通过计算梁的弯曲正应力和剪切应力,判断梁的应力强度。
适用于求解复杂梁结构的应力强度。
3.3 有限元法有限元法是利用计算机模拟梁的结构,将梁划分为若干个小的单元,通过对每个单元的应力分析,求解整个梁的应力强度。
适用于求解大型复杂梁结构的应力强度。
四、梁应力强度计算实例4.1 简支梁受集中载荷假设一根简支梁,跨度为L,截面惯性矩为I,截面面积为A,受集中载荷P作用。
求解梁的最大弯曲正应力和剪切应力。
(1)计算弯矩M:M = P·L / 2。
(2)计算截面应力σ:σ= M·y / I。
(3)计算剪切应力τ:τ= V·x / A,其中V为剪力,x为截面上的点到中性轴的距离。
《梁的应力强度计算》课件一、梁的概述1.梁的定义梁是一种受弯和剪力作用的横向受力构件,广泛应用于建筑、桥梁、机械等领域。
2.梁的材料梁的材料主要有钢梁和钢筋混凝土梁两种。
3.梁的分类根据截面形状,梁可以分为工字梁、T型梁、I型梁等;根据受力状态,梁可以分为简支梁、悬臂梁、连续梁等。
二、梁的应力计算1.基本概念(1)应力:单位面积上的内力,用σ表示,单位为Pa(帕斯卡)。
(2)应变:物体在受力作用下产生的形变与原长的比值,用ε表示。
(3)泊松比:材料在受力作用下横向应变与纵向应变的比值,用ν表示。
2.梁的应力分布(1)简支梁:在梁的截面上,剪应力分布均匀,正应力分布按三角形分布。
(2)悬臂梁:在梁的悬臂端截面,剪应力为零,正应力按二次曲线分布。
(3)连续梁:在梁的连续跨中截面,剪应力分布均匀,正应力分布按三角形分布。
3.梁的应力计算公式(1)简支梁:剪应力τ=V/I正应力σ=My/I其中,V为梁的剪力,M为梁的弯矩,I为梁的截面惯性矩,y为截面上距离中性轴的距离。
(2)悬臂梁:剪应力τ=0正应力σ=Ml/(2I)其中,l为悬臂梁的长度。
(3)连续梁:剪应力τ=V/I正应力σ=My/I其中,V为梁的剪力,M为梁的弯矩,I为梁的截面惯性矩,y为截面上距离中性轴的距离。
4.梁的强度校核(1)剪切强度校核:τ≤τ_max(2)弯曲强度校核:σ≤σ_max其中,τ_max为材料的剪切强度,σ_max为材料的弯曲强度。
三、梁的变形计算1.基本概念(1)挠度:梁在受力作用下产生的垂直于加载力的线位移。
(2)曲率:梁在受力作用下的弯曲程度,用κ表示。
2.梁的变形计算公式(1)简支梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为梁的长度,E为材料的弹性模量,I为梁的截面惯性矩。
(2)悬臂梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为悬臂梁的长度,E为材料的弹性模量,I 为梁的截面惯性矩。
(3)连续梁:挠度f=VL^3/(3EI)其中,V为梁的剪力,L为梁的长度,E为材料的弹性模量,I为梁的截面惯性矩。
建筑力学基本计算3梁的强度计算1、基本概念和计算要求在计算梁的强度问题时,要注意下列基本概念:1) 惯性矩的有关概念和计算,组合截面的惯性矩计算,抗弯截面系数的计算。
2) 理解中性轴和中性层的有关概念,对理解正应力的分布规律和计算十分重要。
要注意中性轴的确定方法(中性轴必然通过截面形心)。
3) 熟悉纯弯曲时梁横截面上的正应力分布规律,知道最危险点在截面的上、下边缘。
2、基本计算方法梁的强度计算主要是如下几点:1) 利用正应力公式计算截面上任意一点的正应力。
y I M Z⋅=σ2) 由强度条件校核梁的正应力强度。
][maxmaxσσ≤=ZW M3) 由强度条件设计梁的截面。
][maxσMW Z ≥4) 由强度条件计算梁上的最大容许荷载。
Z W M ⋅≤][maxσ3、计算步骤和常用方法考试要求对梁的强度问题主要是针对塑性材料(拉、压性能一样)的单跨静定梁,横截面为简单图形(圆形、矩形或空心圆截面):1) 在计算正应力时,首先要明确该截面在梁上的位置,以便根据弯矩图确定该截面的弯矩值及正负号;其次要计算该截面对中性轴的惯性矩I Z ,以及所求点到中性轴z 的距离y ,若中性轴位置未定,则应先计算截面形心位置以确定中性轴位置;为了简便起见,通常采取按绝对值计算出正应力的大小,再按弯矩的正负号直观判断;计算最大正应力时,则要求画出弯矩图,以确定最大弯矩值。
2) 在应用强度条件时,首先要考虑最大正应力的计算;其次要能判断梁的危险截面和危险点;再则就是在设计截面时,对矩形截面情况下,必须理清h 与b 的比例关系。
3) 在计算梁上的最大容许荷载时,要理清M max 和荷载之间的关系式,从而可由M max 确定最大容许荷载的值。
4、举例外伸梁受力及其截面尺寸如图(a )所示。
已知材料的许用拉应力[σ+]=40MPa ,许用压应力[σ-]=70MPa 。
试校核梁的正应力强度。
[解](1)求最大弯矩作出梁的弯矩图如图(b )所示。
梁的应力及强度计算一、梁的基本概念梁是指在两个支点上支承荷载并能够产生弯曲的长条形结构。
根据材料的不同,梁可以分为钢梁、混凝土梁等。
计算梁的应力和强度需要了解以下几个基本概念:1.荷载:梁承受的力或力矩称为荷载。
荷载可以是集中力、均布力、集中力矩等多种形式。
2.弯矩:梁在受力作用下产生的弯曲效应称为弯矩。
弯矩大小与荷载和梁的几何特性有关。
3.应力:梁内部产生的力与横截面积之比称为应力。
应力可以分为弯曲应力、切应力、正应力等多种形式。
4.强度:梁材料的最大承受能力称为强度。
强度可以用来评估梁的安全性。
二、计算梁的应力梁的弯曲应力是梁内部最重要的应力之一、梁的弯曲应力随着距离中心越远而越大,有最大值和最小值。
计算梁的弯曲应力需要以下步骤:1.确定荷载和荷载点:首先要确定梁所受的各种荷载,包括集中力、均布力等,以及荷载点的位置。
2.画剪力和弯矩图:根据已知的荷载和支座条件,可以绘制梁的剪力和弯矩图。
剪力图表示横截面上剪力的大小和方向,弯矩图表示横截面上弯矩的大小和方向。
3.计算弯曲应力:根据梁的几何尺寸和荷载信息,可以计算出梁上任意截面处的弯曲应力。
根据梁的几何形状和弯矩分布,可以使用弹性力学理论进行计算。
4.判断应力的安全性:计算得到的弯曲应力应与材料的抗弯强度进行比较,以判断梁的安全性。
如果弯曲应力小于抗弯强度,则梁在弯曲方面是可靠的。
三、计算梁的强度梁的强度是指梁材料的最大承载能力。
计算梁的强度需要以下步骤:1.确定梁材料的特性:了解梁材料的力学性质,包括抗弯强度、抗压强度、抗拉强度等。
这些特性可以从材料的标准和试验中获取。
2.根据荷载计算弯矩:根据梁所受的荷载和支座条件,计算出梁上各点的弯曲弯矩。
弯矩大小和分布决定了梁的强度。
3.计算截面的几何特性:根据梁的几何形状,计算出梁截面的相关几何特性,包括截面面积、惯性矩、截面模量等。
这些参数在计算强度时起关键作用。
4.判断强度的安全性:根据弯矩和截面几何特性,计算出梁的强度。