光纤通信基本知识
- 格式:doc
- 大小:2.16 MB
- 文档页数:20
第一章.概论1. 1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。
在光电话问世后光通信进展缓慢,主要原因:没有理想的光源和传输介质。
2. 1966年,高锟和霍克哈姆发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。
1970年,光纤研制取得了重大突破,低损耗光纤研制成功和激光器研制成功。
3.光纤最低损耗的理论极限值是0.148dB/km,实际使用是0.154 dB/km.4.光纤的工作波长,也是三个损耗很小的波长窗口是0.85um ,1.31 um,1.55 um.同样光纤对不同的光损耗不同,应该选择低损耗的。
5.光纤通信的优点:1) 容许频带很宽,传输容量很大2) 损耗很小, 中继距离很长且误码率很小 3) 重量轻、 体积小 4) 抗电磁干扰性能好5) 泄漏小, 保密性能好6) 节约金属材料, 有利于资源合理使用 6. .光纤通信系统的基本组成光发射机的功能是把电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。
光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。
光源激光器的发射波长和光检测器光电二极管的波长响应,都要和光纤这三个波长窗口相一致。
光接收机的功能是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。
第二章光纤和光缆1.纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。
2.实用光纤主要有三种基本类型:突变型多模光纤,渐变型多模光纤,单模光纤。
突变型多模光纤纤芯内任意两点折射率相同,渐变型多模光纤以纤芯中心为圆,小于a 的值为半径作圆,圆上所有点折射率相同。
单模光纤输出脉冲最接近于输入脉冲。
系统容量(传输速率):单模光纤>多模光纤。
第1章概述1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。
光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。
对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。
2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。
该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。
1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。
2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。
3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。
特性参数:灵敏度4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。
组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。
(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。
(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。
(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。
(5)体积小、重量轻。
(6)原材料来源丰富、价格低廉。
缺点:1)不能远距离传输;2)传输过程易发生色散。
光纤通信的基本概念光导纤维,是一种介质光波导,能把光封闭其中并且使光沿轴向进行传播的导波结构。
由石英玻璃、合成树脂等材料制成的极细的纤维。
单模光纤:纤芯8-10um、包层125um多模光纤:纤芯51um、包层125um利用光导纤维传输光信号的通信方式称为光纤通信。
光波属于电磁波的范畴。
可见光的波长范围是390-760nm,大于760nm部分是红外光,小于390nm部分是紫外光。
光波的工作窗口(三个通信窗):光纤通信中应用的波长范围是在近红外区短波长区(可见光,肉眼看是一种橘黄色的光)850nm橘黄色的光长波长区(不可见光区)1310nm(理论上的色散最小点)、1550nm (理论上的衰减最小点)光纤的结构与分类1. 光纤的结构理想的光纤结构:纤芯、包层、涂覆层、护套构成。
纤芯和包层用石英材料制作,机械性能比较脆弱,容易断,故一般会加两层涂覆层,一层树脂型、一层尼龙型,使得光纤柔性性能达到工程实际运用的要求。
2.光纤的分类(1)光纤按照光纤横截面的折射率分布划分:分为阶跃型光纤(均匀光纤)和渐变型光纤(非均匀光纤)。
假设,纤芯折射率为n1,包层折射率为n2为了使纤芯能够远距离传光,构成光纤的必要条件是n1>n2均匀光纤的折射率分布是个常数非均匀光纤的折射率分布规律:其中,△——相对折射率差α——折射指数,α=∞——阶跃型折射率分布光纤,α=2——平方律折射率分布光纤(一种渐变型光纤)这种光纤比起其他渐变型光纤,模式色散最小最优(2)按纤芯中所传输的模式数量来划分:分为多模光纤和单模光纤这里的模式是指:在光纤中所传输的光线的一种电磁场的分布,不同的场分布就是一种不同的模式。
单模(光纤中只传输一种模式)、多模(光纤中同时传输多种模式)目前由于对传输的速率要求越来越高、传输的数量要求越来越多,城域网向高速大容量方向发展,所以采用的多是单模阶跃型光纤。
(本身传输特性优于多模光纤)(3)光纤的特性:①光纤的损耗特性:光波在光纤中传输,随着传输距离的增加而光功率逐渐下降。
一、光纤通信的基本知识(一)光纤通信的概念1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
这些现象引起了丁达尔的注意,经过他的研究,发现这是由于全反射的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。
由于这种纤维能够用来传输光线,所以称它为光导纤维。
(视频)光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
(视频)(二)光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。
采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。
中国光纤通信已进入实用阶段。
(三)光纤通信的优缺点1、光纤通信的优点现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:①频带宽,通信容量大。
光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。
频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。
光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。
光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。
本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。
一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。
光波的主要特性包括波长、频率、相速度、群速度等。
2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。
它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。
二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。
2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。
3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。
三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。
2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。
3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。
4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。
5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。
四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。
2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。
光纤通信重要知识点总结第一章1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。
通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。
2.光纤:由绝缘的石英(2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。
3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。
光纤通信系统既可传输数字信号也可传输模拟信号。
输入到光发射机的带有信息的电信号,通过调制转换为光信号。
光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。
系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。
光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。
光接收机的作用是将光纤送来的光信号还原成原始的电信号。
它一般由光电检测器和解调器组成。
光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。
中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。
为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。
还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。
在这个过程中,受调制的电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。
目前大都采用强度调制与直接检波方式。
又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。
数字光纤通信系统基本上由光发送机、光纤与光接收机组成。
发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件,则就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。
光纤通信基本知识光纤通信发展简史光是电磁波载波频率=〉带宽=〉传输信息1960年新光源-激光器——〉光通信开端70年贝尔lab-连续震荡半导体激光器——〉发展美国康宁-20dB/km衰减-光纤——〉突破79年-衰耗〈0.5dB/km89年-今-掺铒光纤放大器(EDFA)镓铝砷,铟镓砷磷半导体激光器——〉主流展望-全光时代-光放大,光集成,光分插复用,光交叉连接和光交换。
光纤通信特点1.巨大的传输容量1014~1015Hz数量级〉微波104~105倍梯度多模----------数吉Hz/公里单模----------数百太Hz/公里2.极底的传输衰耗传输中继距离长得多单模----1310µm-------0.35dB/km1550µm-------0.2dB/km回轴电缆----60MHz ------19 dB/km市话-----4MHz ------20 dB/km3.抗电磁干扰介电材料=〉电力输配,电气化铁路,雷击多发区,核试验等特殊环境。
4.信道串扰小,保密性好少汇漏-〉无串扰-〉保密性高5.光缆尺寸小,重量轻,可挠性好外径-125µm套塑〈1mm24芯≈(18mm)质量=1/3~1/10电缆弯曲直径数毫米=〉易敷设=〉公用,军用-导弹,舰船,飞机,潜艇通信控制系统…资源丰富,成本低廉不锈蚀,耐高温,光纤接头不会产生电火花放电=〉适用于易燃易爆,有锈蚀环境。
适宜化工厂,矿井及水下通信控制系统。
光器件寿命-百万小时光纤通信应用类型通信系统的基本组成信源-〉发送机-〉传输通道-〉接收机-〉信宿光纤传输方式图光纤传输方式1.传输信号类型光线模拟通信系统=〉广播,TV(color),工业监视,交通监控光纤数字通信系统PCM数字信号=〉广泛2.光调制的方式强度调制直接检测系统用电信号强度调制光源,接收端用光检器直接检测—IM-DD系统光纤模拟/数字通信系统均为此类型通信容量受限外差光纤通信系统=无线通信的外差接受技术在发送端用电信号调制广源发出的单频光载波单模光纤传输在接收端与接收机内部产生的本振光源混频光检测器检出光载波和本振光之差频的中频电信号解调出信号3.光纤的传输特性多模光纤通信系统传输媒质-石英多模梯度光纤带宽受限〈140Mbit/s=〉数据网络,专用网络单模光纤通信系统传输媒质-石英单模光纤传输容量大,无中继传输距离长=〉长途干线网及本地网光纤通信系统4.光波长短波长光纤通信系统800~900nm中继距离短=〉计算机局域网,用户接入网长波长光纤通信系统1000~1600nm1310nm------石英多模/单模光纤1550nm------石英单模光纤----中继距离较长(衰耗最低)超长波长光纤通信系统非石英系光纤,卤化物〉2000nm------衰耗10-2~10-5dB/km光传输线路指标1.光缆(光纤)的衰减系数(dB/km)系数要求:单模光纤--1310µm-------0.3~0.45dB/km1550µm-------0.2~0.28dB/km多模光纤—A1.a--1310(850)mm----0.8~1.5dB/kmA1.b--1310(850)mm----0.8~2.0dB/km2.光缆(光纤)的色散系统=〉线路设计(10Gbit/s以上高速率系统需检测)多模光纤无色散指标要求=带宽×传输距离(MHz∙km)单模光线色散系数指标:1285~1330nm----≤3.5ps/nm∙km1270~1340nm----≤ 6ps/nm∙km1530~1565nm----≤20ps/nm∙km非零色散单模光纤(G.655):G.655A: 0.1~6ps/nm∙kmG.655B: 1~10ps/nm∙km色散系数-〉传输的光脉冲的展宽和畸变-〉系统的误码率=〉误码率-〉色散特性3.再生段的线路总衰减=再生段内全程光衰减+全部光缆固定连接损耗+活接头的插入损耗工程考核线路质量的最重要指标线路的总衰减规定按再生段全程监测和评价。
光纤活动连接器1.活动连接器的基本结构与类型光纤连接对中方式:套筒式,圆锥式,V型槽式。
类型:FC型—金属螺纹丝扣锁紧型插针与套筒材料:氧化锆陶瓷插拔次数〉1000,无磨损,不变形,精确对准。
结构:插头—转接器—插头FC/PC连接器插针端面为球面,降低了对灰尘,污染物的敏感性特点:外径2.5mm的圆柱型对中套管,M8螺纹式锁紧机构FC/UPC,FC/APC连接特点:非常低的反射。
(多模光纤也可以制成)标准:IEC(国际电工委员会)SC型—塑料矩形插拔型材料:高强度工程塑料压制特点:工艺简单,生产成本低,插拔操作简便,占用空间位置小。
缺点:易变形,连接可靠性较差=〉非重要光线路连接或,光路测量连接结构:插头—转接器—插头设计特点:PBT材料塑压成型,氧化锆陶瓷作插针体推挽方式连接和分开=〉高密度安装场合多模光纤可制作SPC型和APC型,具有低的回损光=〉光接入网,数字通信系统,高密安装配线架。
ST型—金属圆柱卡口型单芯光缆连接器特征:一个卡口锁紧机构和一个直径2.5mm圆柱形套筒对中机构结构:插头—转接器—插头/插座设计特点:卡口旋转锁紧连接耦合方式,适用现场装配。
特点:良好的重复性,体积小,重量轻。
=〉通信网和本地网D型—插针体Ф2mm。
其他同FC型LC,MU微型连接器2.活动连接器插针端面插针和套筒是活动连接器的关键元件,采用氧化锆陶瓷材料FC端面PC端面SPCAPC3.光纤跳线类型与连接性能指标光纤光缆跳线—光缆两端面都装上连接器插头,光路的跳线式连接;桥接线—两端连接器插头不同类型或不同端面的跳线尾纤—一端装插头,另一端直接连接光器件或设备。
光纤类型—单模,多模,数据插头—FC,SC,ST端面—PC,SPC,APC特点:插入损耗低,回波损耗高;重复性好,互换性好=〉长途干线网,城域网,接入网;光纤CATV网,光纤数据网光耦合器用于光功率的合路和分路,多路间的耦合。
分路合路数目:Y型耦合器—2根光纤X型或星型耦合器—两光纤或多光纤在火焰烧灼下扭转熔融成锥体区主要指标:接口数目,插入衰耗,分光比,隔离度。
光衰减器使用条件:接收机输入光功率超过某一范围或在测量光纤接收机灵敏度时原理:调整光衰减片旋转角度,改变反射光与透射光比例来改变光衰减大小类型:衰耗固定,步进式,能连续改变衰减值衰耗器的指标:插入衰耗,工作波长,衰耗精度,衰耗变化范围,步进量衰耗片状在结构如活动连接器的插件中材料:蒸镀金属膜的玻璃片镀膜材料性能及膜厚度-〉衰耗大小光器件应用前景展望--〉高速率,大容量,全光处理--〉小型化,集成化,多功能,低成本化1.活动连接器的材料与结构变化体积变小,材料变换,连接性能提高,连接纤数更多2.集成光器件:光分路器,光隔离器,波分复用器,光放大器=〉OEIC(光电集成回路)与PIC(光集成器件)4.OEIC微电和光电结合有源器件(光源,探测器)+电子元件=〉功能全面,功耗低,安装使用方面。
光缆类型,结构与材料1.光缆的分类方式缆芯结构:中心管式—光纤,光纤束或光纤带无绞合直接放到光缆中心位置层绞式—几根,几十根或更多光纤或光纤带子单元围绕中心加强件螺旋绞合(S绞或SZ绞)成一层或几层的光缆骨架式—光纤或光纤带螺旋绞合后置于塑料骨架槽中成缆线路敷设:架空管道直埋隧道水底缆中光纤状态:松套—有一定自由移动空间,有利于减小外界机械应力对图覆光纤影响紧套—直径小,重量轻,易剥离,敷设和连接,高拉伸应力会直接影响光纤的衰减等性能。
半松半紧使用环境和场合:室外—足够的机械强度,防渗水能力,良好的温度特性室内—结构紧凑,轻便柔软,阻燃性能网络层次:长途—省际一级干线,省内二级干线市内—长途端局与市话局以及市话局之间的中继线路接入网—市话端局到用户间的线路特殊用途:电力光缆,阻燃光缆,防蚁光缆…2.光缆的结构类型室外光缆层绞式—由多根二次被覆光纤松套管(或部分填充绳)绕中心金属加强件绞合成圆整的缆芯,缆芯外先纵包复合铝带并挤上聚乙烯内护套,再纵包阻水带和双面覆膜皱纹钢(铝)带加上一层聚乙烯外护层组成。
-〉分离光纤层绞式和光纤带层绞式结构特点:容纳的光纤数多,光缆中光纤余长易控制,光缆的机械,环境性能好,适宜直埋,管道敷设,也可以架空敷设。
结构缺点:结构工艺设备较复杂,生产工艺环节较繁琐,材料消耗多。
中心管式—由一根二次光纤松套管或螺旋形光纤松套管无绞合直接放在缆中心,纵包阻水带和双面覆塑钢(铝)带,两根平行加强圆磷化碳钢丝或玻璃钢圆棒位于聚乙烯护层中组成。
-〉分离光纤中心管式光缆或光纤带中心管式光缆优点:结构简单,制造工艺简捷,光缆截面小,重量轻=〉架空敷设,管道,直埋缺点:缆中管线芯数受限(分离-12;光纤束-36;光纤带-216);松套管挤塑工艺中松套管冷却不够,成品光缆中松套管会出现后缩,光缆中光纤余长不易控制骨架式—干式光纤带光缆=将光纤带以矩阵形式置于U型螺旋骨架槽或SZ螺旋骨架槽中,阻水带以绕包方式缠绕在骨架上,使骨架与阻水带形成一个封闭的腔体。
阻水带遇水,吸水膨胀产生阻水凝胶屏障。
阻水带外再纵包双面覆塑钢带,刚带外挤上聚乙烯外护层。
优点:结构紧凑,缆径小,光纤芯密度大(上千~数千),施工接续中无须清除阻水油膏,接续效率高。
=〉接入网,局间中继,有线电视网络中作为传输馈线缺点:制造设备复杂,工艺环节多,生产技术难度大室内光缆—非金属结构。
无需接地或防雷保护,全介质结构保证抗电磁干扰。
容易开剥多用途室内光缆—由绞合的紧缓冲层光纤和非金属加强件(如纺轮沙)构成,光纤数〉6时,光纤绕一根非金属中心加强件绞合形成一根更结实的光缆。
传输各种语音,数据,视频图像和信令。
分支光缆—终结维护,光纤的独立布线或分支。
大楼之间的管道内,大楼内向上的升井里。
计算机机房地板下和光纤到桌面2.7mm子弹元—业务繁忙2.4mm子单元—业务正常2.0mm子单元—业务少互连光缆—为布线系统进行语音,数据,视频图像传输设备互连所设计的光缆。
单纤,双纤结构。
楼内布线中可用作跳线。
直径细,弯曲半径小,更易敷设在空间受限的场所,可以简单直接或在工程进行预先连接作为光缆组件用在工作场所或作为交叉连接的临时软线。
特种光缆电力光缆阻燃光缆—人口密集地,特殊场合,如商贸大厦,高层住宅,地铁,矿井,船舶,飞机中。
无卤阻燃光缆—层绞式,中心管式,骨架式或室内软光缆。
3.光缆的构造材料高分子材料:松套管材料,聚乙烯护套料,无卤阻燃护套料,聚乙烯绝缘料,阻水油膏,阻水带,聚酯带金属-塑料复合带,钢塑复合带,铝塑复合带中心加强件:磷化钢丝,不锈钢圆棒...套管材料—聚对苯二甲酸丁二醇(PBT),聚丙烯(PP)和聚碳酸酯(PC)PBT机械特性,热稳定性,尺寸稳定性,耐化学腐蚀优良以及与光纤用填充阻水油膏和光缆用涂覆阻水油膏得很好的相容性阻水材料阻水油膏用法:往松套管内纵向注入纤用阻水油膏,沿缆芯纵向的其他空隙填充缆用阻水油膏-〉防止各护层破裂后水向松套管和缆芯纵向渗流性能:良好的化学稳定性,温度稳定性,憎水性,析氢小,含气泡少,与光纤,PBT或PP相容性好。