高考数学中的线性规划问题的总结分析
- 格式:doc
- 大小:387.50 KB
- 文档页数:7
高考数学丨线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
基础知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。
(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。
对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。
对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。
注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。
2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。
解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。
(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。
(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。
(4)注意实际问题中的特殊要求。
说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。
知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。
高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。
本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。
二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。
其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。
三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。
2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。
3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。
4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。
5. 分析最优解:对最优解进行解释和分析,得出结论。
四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。
例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。
通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。
2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。
例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。
通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。
3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。
通过构建单纯形表,利用迭代计算的方法求解最优解。
例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。
高中数学中的线性规划问题解析在高中数学学习中,线性规划是一个重要的概念和工具。
它是一种数学建模方法,用于解决在给定约束条件下的最优化问题。
线性规划通常涉及到一组线性方程和不等式,以及一个目标函数,我们的目标是找到满足约束条件的最优解。
一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行域。
目标函数是需要最大化或最小化的函数,通常表示为一个线性方程。
在线性规划中,我们的目标是找到使目标函数取得最大或最小值的变量值。
约束条件是限制变量取值的条件,通常表示为一组线性不等式。
这些约束条件可以是资源的限制、技术条件或其他限制。
可行域是满足所有约束条件的变量取值集合。
可行域通常是一个多边形或多维空间中的区域,它表示了问题的可行解的范围。
二、线性规划的求解方法线性规划可以使用图像法、代数法或单纯形法等方法进行求解。
图像法是一种直观的方法,通过绘制约束条件和目标函数的图像来找到最优解。
在二维平面上,可行域是一个多边形,最优解是目标函数与可行域的交点。
在三维空间中,可行域是一个多面体,最优解是目标函数与可行域的交点。
代数法是一种代数计算的方法,通过解线性方程组来找到最优解。
我们可以将约束条件转化为等式,然后求解线性方程组。
通过代数方法,我们可以得到最优解的具体数值。
单纯形法是一种高效的算法,通过迭代计算来找到最优解。
单纯形法将线性规划问题转化为一个线性规划表格,并通过一系列的操作来逐步逼近最优解。
单纯形法是一种通用的求解线性规划问题的方法,可以处理任意维度的问题。
三、线性规划的应用线性规划在实际生活中有广泛的应用。
例如,在生产计划中,我们可以使用线性规划来确定最优的生产数量和资源分配方案,以最大化利润或最小化成本。
在物流管理中,我们可以使用线性规划来确定最优的运输路径和货物分配方案,以最小化运输成本或最大化运输效率。
线性规划还可以应用于金融领域、市场营销、资源管理等各个领域。
通过合理地建立数学模型,我们可以利用线性规划的方法来解决实际问题,提高决策的科学性和有效性。
重庆市武隆县武隆中学数学组 梁承勇 邮编408500 liaceny@增量代换法处理高考线性规划问题(重庆市武隆中学 梁承勇 408500)线性规划问题在高中数学中是一个新增加的内容,在近几年的高考中都是一个热点问题,各省市自主命题中都要考察这一内容,因此显得特别地重要。
纵观该问题的解法均是:先画出不等式组的图象得到可行域,再作直线mx+ny=0的一组平行直线:mx+ny=t ,通过平移并保持与可行域有公共点,求出在y 轴上的截距t 的最大值和最小值,进而求出z 的最大值和最小值。
这种解法要在同一坐标系内画出很多复杂的直线即可行域的边界直线和平行移动的直线。
能否不画图象,通过代数问题代数求解的原则进行呢?本文就举例谈谈增量代换法在高考线性规划问题的使用,引入变量t ,p 来处理这类问题。
现举例说明:例1:设y x z +=2,式中x ,y 满足下列条件⎪⎩⎪⎨⎧-≤-≤+≥3425531y x y x x 求z 的最大值和最小值。
解:由于1≥x 可设)0(1≥+=t t x 引入变量t 带入不等式组有 ⎪⎩⎪⎨⎧++≥≤++31425533t y y t 由314++≥t y 又可设)0(314≥+++=p p t y 所以)0(44≥++=p p t y 带入25533≤++y t 化简有68517≤+p t 同时0≥t ,0≥p由442222p t t y x z +++++=+= 4493p t ++= )52855517(413t p t +++= 57)517(2013t p t +++= 结合68517≤+p t 同时0≥t ,0≥p 易知0==p t 时z 取最小值3 又572068357)517(2013t t p t z ++≤+++=知当4=t ,0=p 时 z 取最大值12。
例2:(06天津,3)设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≥xy y x x y 263 则目标函数y x z +=2的最小值为( ) A .2 B 。
高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。
而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。
本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。
一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。
线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。
在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。
通常情况下,我们可以将线性规划问题表示为标准型或非标准型。
标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。
二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。
其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。
2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。
3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。
4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。
5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。
需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
2022年新高考数学总复习:简单的线性规划Ax+By+C__=0__上,另两类分居直线Ax+By+C=0的两侧,其中一侧半平面的点的坐标满足Ax+By+C__>0__,另一侧半平面的点的坐标满足Ax+By+C__<0__.(2)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的平面区域且不含边界,作图时边界直线画成__虚线__,当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包知识点一二元一次不等式表示的平面区域(1)在平面直角坐标系中,直线Ax+By+C=0将平面内的所有点分成三类:一类在直线括边界直线,此时边界直线画成__实线__.知识点二二元一次不等式(组)表示的平面区域的确定确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含__等号__,则应把直线画成虚线;若不等式含有__等号__,把直线画成实线.(2)特殊点定域,由于在直线Ax+By+C=0同侧的点,实数Ax+By+C的值的符号都__相同__,故为确定Ax+By+C的值的符号,可采用__特殊点法__,如取(0,0)、(0,1)、(1,0)等点.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__公共部分__.知识点三线性规划中的基本概念名称意义约束条件由变量x,y组成的__不等式(组)__线性约束条件由x,y的__一次__不等式(或方程)组成的不等式(组)目标函数关于x,y的函数__解析式__,如z=2x+3y等线性目标函数关于x,y的__一次__解析式可行解满足约束条件的解__(x,y)__可行域所有可行解组成的__集合__最优解使目标函数取得__最大值__或__最小值__的可行解线性规划问题在线性约束条件下求线性目标函数的__最大值__或__最小值__问题归纳拓展1.判断二元一次不等式表示的平面区域的常用结论把Ax+By+C>0或Ax+By+C<0化为y>kx+b或y<kx+b的形式.(1)若y>kx+b,则区域为直线Ax+By+C=0上方.(2)若y<kx+b,则区域为直线Ax+By+C=0下方.2.最优解与可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定存在,存在时不一定唯一.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(5)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(6)目标函数z =ax +by (a ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)题组二走进教材2.(必修5P 86T3改编)-3y +6<0,-y +2≥0表示的平面区域是(C)[解析]x -3y +6<0表示直线x -3y +6=0左上方部分,x -y +2≥0表示直线x -y +2=0及其右下方部分.故不等式组表示的平面区域为选项C 所示部分.3.(必修5P 91练习T1(1)改编)已知x ,y ≤x ,+y ≤1,≥-1,则z =2x +y +1的最大值、最小值分别是(C)A .3,-3B .2,-4C .4,-2D .4,-4[解析]作出可行域如图中阴影部分所示.A (2,-1),B (-1,-1),显然当直线l :z =2x +y +1经过A 时z 取得最大值,且z max =4,当直线l 过点B 时,z 取得最小值,且z min =-2,故选C .题组三走向高考4.(2020·浙江,3,4分)若实数x ,y x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是(B)A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)[解析]由约束条件画出可行域如图.易知z =x +2y 在点A (2,1)处取得最小值4,无最大值,所以z =x +2y 的取值范围是[4,+∞).故选B .5.(2019·北京)若x ,y x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为__-3__,最大值为__1__.[解析]由线性约束条件画出可行域,为图中的△ABC 及其内部.易知A (-1,-1),B (2,-1),C (2,3).设z =y -x ,平移直线y -x =0,当直线过点C 时,z max =3-2=1,当直线过点B 时,z min =-1-2=-3.考点突破·互动探究考点一二元一次不等式(组)表示的平面区域——自主练透例1(1)(2021·郑州模拟)在平面直角坐标系xOy ||≤|y |,||<1的点(x ,y )的集合用阴影表示为下列图中的(C)(2)(2021·四川江油中学月考)已知实数x ,y x +y -3≤0x -2y -3≤0,0≤x ≤4则其表示的平面区域的面积为(D)A .94B .272C .9D .274(3)x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是(D)A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[解析](1)|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .(2)线性约束条件所表示的平面区域如图中阴影部分所示,其中A (0,3)B0,-32,C (3,0),∴S =12|AB |·|OC |=12×92×3=274,故选D .(3)x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分(含边界)所示.且作l 1:x +y =0,l 2:x +y =1,l 3:x +y =43.由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).即a 的取值范围是0<a ≤1或a ≥43.名师点拨(1)画平面区域的步骤:①画线:画出不等式所对应的方程表示的直线.②定侧:将某个区域内的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧,常用的特殊点为(0,0),(±1,0),(0,±1).③求“交”:如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分,这个公共部分就是不等式组所表示的平面区域,这种方法俗称“直线定界,特殊点定域”.(2)计算平面区域的面积时,通常是先画出不等式组所对应的平面区域,然后观察区域的形状,求出有关的交点坐标、线段长度,最后根据相关图形的面积公式进行计算,如果是不规则图形,则可通过割补法计算面积.(3)判断不等式表示的平面区域和一般采用“代点验证法”.考点二简单的线性规划问题——多维探究角度1求线性目标函数的最值例2(2018·课标全国Ⅰ,13)若x ,y -2y -2≤0,-y +1≥0,≤0.则z =3x +2y 的最大值为__6__.[解析]本题主要考查线性规划.由x ,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x +2y -z =0经过点A (2,0)时,z 取得最大值,z max =2×3=6.[引申1]本例条件下z =3x +2y 的最小值为__-18__.[解析]由例2-y +1=0-2y -2=0,∴B (-4,-3),当直线y =-32x +12z ,过点B 时,z最小,即z min =-18.[引申2]本例条件下,z =3x -2y 的范围为__[-6,6]__.[解析]z =3x -2y 变形为y =32x -12z ,由本例可行域知直线y =32x -12z ,过A 点时截距取得最小值,而z 恰好取得最大值,即z =6.过B 点时截距取得最大值而z 恰好取得最小值,即z =-6,∴z =3x -2y 的范围为[-6,6].[引申3]本例条件下,z =|3x -2y +1|的最大值为__7__,此时的最优解为__(2,0)__.[解析]由引申2得-6≤3x -2y ≤6,∴-5≤3x -2y +1≤7,∴0≤z ≤7,z 最大值为7,此时最优解为(2,0).名师点拨利用线性规划求目标函数最值的方法:方法1:①作图——画出线性约束条件所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l .(注意表示目标函数的直线l 的斜率与可行域边界所在直线的斜率的大小关系).②平移——将l 平行移动,以确定最优解所对应的点的位置.③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.方法2:解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.角度2由目标函数的最值求参数例3(1)(2021·东北三省三校模拟)已知实数x,y x-y-1≤0,-x+2y-2≤0,2x+y-2≥0,若目标函数z=ax+y(a>0)最大值为5,取到最大值时的最优解是唯一的,则a的取值是(C)A.14B.13C.12D.1(2)变量x,y x+y≥0,x-2y+2≥0,mx-y≤0,若z=2x-y的最大值为2,则实数m等于(C)A.-2B.-1 C.1D.2[解析](1)x-y-1≤0,x-2y+2≥0,2x+y-2≥0,作可行域如图所示.目标函数z=ax+y可化为y=-ax+z,因为y=-ax+z表示斜率为-a的直线,且-a<0,由图形可知当y=-ax+z经过点C时,z取到最大值,这时点C坐标满足x-2y+2=0,x-y-1=0,解得x=4,y=3,C点坐标为(4,3),代入z=ax+y得到a=12.故选C.(2)解法一:当m≤0时,可行域(示意图m<-1)如图中阴影部分所示,z=2x-y⇔y=2x-z,显然直线的纵截距不存在最小值,从而z不存在最大值,不合题意,当m>0时,可行域(示意图)如图中阴影部分所示.若m ≥2,则当直线z =2x -y 过原点时,z 最大,此时z =0,不合题意(故选C .)若0<m <2,则当直线z =2x -y 过点A 时z 取最大值2,mx -y =0,x -2y +2=0,x =22m -1,y =2m2m -1,即22m -1,2m2m -1.∴42m -1-2m 2m -1=2,解得m =1.故选C .解法二:画出约束条件x +y ≥0,x -2y +2≥0的可行域,如图,作直线2x -y =2,与直线x -2y +2=0交于可行域内一点A (2,2),由题知直线mx -y =0必过点A (2,2),即2m -2=0,得m =1.故选C .[引申]在本例(1)的条件下,若z =ax +y 的最大值为4a +3,则a 的取值范围是-12,+∞__.名师点拨求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.也可以直接求出线性目标函数经过各顶点时对应参数的值,然后进行检验,找出符合题意的参数值.角度3线性规划中无穷多个最优解问题例4x ,y x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值一定为(C)A .1B .12C .-1或2D .2或12[分析]利用目标函数取得最大值的最优解有无数个,即目标函数对应的直线与可行域的边界重合.[解析]作出可行域(如图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选C .[引申]若z =y -ax 取得最小值的最优解不唯一,则实数a 的值为__12__.〔变式训练1〕(1)(角度1)(2020·课标Ⅰ,5分)若x ,y 2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为__1__.(2)(角度2)(2021·福建莆田模拟)若实数x ,y y ≥02x -y -1≥0x +y -m ≤0,且目标函数z =x -y 的最大值为2,则实数m =__2__.(3)(角度3)已知实数x ,y x -y +1≥0x +2y -8≤0x ≤3,若使得ax -y 取得最小值的可行解有无数个,则实数a 的值为__1或-12__.[解析](1)作出可行域如图,由z =x +7y 得y =-x 7+z 7,易知当直线y =-x 7+z7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.(2)由线性约束条件画出可行域(如图所示),∵目标函数z =x -y 的最大值为2,由图形知z =x -y 经过平面区域的A 时目标函数取得最大值2,-y =2=0,解得A (2,0),∴2-m =0,则m =2,故答案为2.(3)作出可行域如图中阴影部分所示,记z =ax -y ⇒y =ax -z .当直线y =ax -z 纵截距最大时,z 最小,此时a =1或-12.考点三线性规划的实际应用——师生共研例5(2020·试题调研)某研究所计划利用“神舟十一号”飞船进行新产品搭载试验,计划搭载若干件新产品A ,B ,要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:因素产品A 产品B 备注研制成本、搭载试验费用之和(万元)2030计划最大投资金额300万元产品重量(千克)105最大搭载质量110千克预计收益(万元)8060——则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为(A )A .9,4B .8,5C .9,5D .8,4[解析]设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为x +30y ≤300,x +5y ≤110,≥0,≥0,,y ∈N ,x +3y ≤30,x +y ≤22,≥0,≥0,,y ∈N ,不等式组所表示的可行域为图中阴影部分(包含边界)内的整数点,作出目标函数对应直线l ,显然直线l 过点M 时,z 取得最大值.x +3y =30,x +y =22,=9,=4,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件.故选A .名师点拨利用线性规划解决实际问题的一般步骤(1)审题:仔细阅读,明确题意,借助表格或图形理清变量之间的关系.(2)设元:设问题中要求其最值的量为z ,起关键作用的(或关联较多的)量为未知量x ,y ,并列出约束条件,写出目标函数.(3)作图:准确作出可行域,确定最优解.(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.〔变式训练2〕(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__216000__元.[解析]设生产产品A x件,产品B y≥0,y≥0,x+0.5y≤150,+0.3y≤90,x+3y≤600,设生产产品A,产品B的利润之和为z元,则z=2100x+900y.画出可行域(如图),易知=60,=100,则z max=216000.名师讲坛·素养提升非线性目标函数的最值问题例6(1)(2016·江苏高考)已知实数x,y-2y+4≥0,x+y-2≥0,x-y-3≤0,则x2+y2的取值范围是__45,13__.(2)(2021·河南中原名校质量考评)若方程x2+ax+2b=0的一个根在区间(0,1)内,另一根在区间(1,2)内,则b-3a-2的取值范围是(D)A.25,1B.1,52CD[分析](1)本题中x2+y2的几何意义是点(x,y)到原点的距离的平方,不能遗漏平方.(2)b-3a-2表示点(a,b)与(2,3)连线的斜率k,根据题意列出a、b应满足的约束条件,在此约束条件下求k的取值范围即可.[解析](1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是45,13.(2)记f (x )=x 2+ax +2b ,0)>0,1)<0,2)>0.>0,+2b +1<0,+b +2>0.作出可行域如图中阴影部分所示.+2b +1=0+b +2=0=-3=1,∴C (-3,1),显然A (-1,0),B (-2,0)b -3a -2表示点(a ,b )与点(2,3)连线的斜率,由图可知当(a ,b )取(-1,0)时,b -3a -2=1;当(a ,b )取(-3,1)时,b -3a -2=25,∴b -3a -2的取值范围是D .[引申]在本例(1)条件下:①x 2+(y +1)2的最小值为__2__;②y +1x +1的取值范围是__12,3__;③x +2y +1x +3的取值范围是__12,95__.[解析]①由图可知当(x ,y )取点(1,0)时,x 2+(y +1)2取最小值2;②y +1x +1表示点(x ,y )与点(-1,-1)连线的斜率.由图可知当(x ,y )取点(1,0)时,y +1x +1取最小值12,当(x ,y )取点(0,2)时,y +1x +1取最大值3,∴y +1x +1的取值范围是12,3.③x +2y +1x +3=1+2·y -1x +3,y -1x +3表示(x ,y )与点(-3,1)连线的斜率,-2y +4=0,x -y -3=0,得=2,=3,∴B (2,3).由图可知(x ,y )取(1,0)时y -1x +3,取最小值-14,(x ,y )取点(2,3)时,y -1x +3取最大值25.∴x +2y +1x +3的取值范围是12,95.名师点拨非线性目标函数最值的求解(1)对形如z =(x -a )2+(y -b )2型的目标函数均可化为可行域内的点(x ,y )与点(a ,b )间距离的平方的最值问题.(2)对形如z =ay +bcx +d(ac ≠0)型的目标函数,可先变形为z =ac ·x为求可行域内的点(x,y)-dc,-连线的斜率的ac倍的取值范围、最值等.(3)对形如z=|Ax+By+C|型的目标函数,可先求z1=Ax+By的取值范围,进而确定z=|Ax+By+C|的取值范围,也可变形为z=A2+B2·|Ax+By+C|A2+B2的形式,将问题化为求可行域内的点(x,y)到直线Ax+By+C=0的距离的A2+B2倍的最值,或先求z1=Ax+Bx+C的取值范围,进而确定z=|Ax+By+C|的取值范围.〔变式训练3〕(1)(2021·百校联盟尖子生联考)已知x,y +y≤2≤2x+2,≥0则(x-2)2+(y-1)2的取值范围为__12,10__.(2)(2021·河南省八市重点高中联考)若x,y满足2y≤x≤y-1,则y-2x的取值范围是(B)A∪32,+∞B,32C-∞,12∪32,+∞D.12,32[解析](1)可行域如图阴影部分,M=(x-2)2+(y-1)2的几何意义是点(2,1)与可行域中点的距离,最小值为点(2,1)到x+y-2=0的距离|2+1-2|2=22,最大值为点(2,1)与点(-1,0)的距离10,所求M2的取值范围是12,10.(2)由x,y满足2y≤x≤y-1,作可行域如图,2y =x x =y -1,解得A (-2,-1).∵y -2x 的几何意义为可行域内的动点与Q (0,2),连线的斜率,∴动点位于A 时,y -2x max =32,直线2y =x 的斜率为12,则y -2x的取值范围12,32.故选B .。
线性规划问题的专题研究
新教材试验修订本中简单的线性规划是新增的内容,在线性约束条件下研究目标函数的最值问题是一类常见的问题,在近几年高考试题中均有出现,而且灵活多变。
本文结合08年高考出现的几个线性规划问题,对常见的线型规划问题作以专题总结研究。
一、08年高考中的线性规划问题的总结分析
1.基本问题
(1)(08年安徽理)如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩
,那么2x y
-的最大值为( )
A .2
B .1
C .2-
D .3- 解:本题为较基本的线性规划问题,解决方式应该是: 画定可行域;做目标函数对应平行线束;找到最
大值,如图所示显然是平行线过A 点时取
最大值,将A 点坐标代入有
max 1Z =,故选择B
(2)(08年福建文)
已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩
则2x y +的最大值是____ 解:本题也是一个基本题型,但从给定的约束条件来看,难度加大了,解法如图所示
当平行线过点()2,1B 时,2x y +
区的最大值为4
(3)(08年山东理)某公司招收男职员x 名,女职员y 名,x 和y 须
满足约束条件⎪⎩
⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是
(A)80 (B) 85 (C) 90 (D)95
解:本题是一个应用性的线性规划问题,经转化实质上是一个整点问题,实际的约束条件应为
51122,239,211,
,x y x y x x N y N
-≥-⎧⎪+≥⎪⎨≤⎪⎪∈∈⎩,画出区域如右图 过A 点时z 值最大,但由于A 点不是整点
故不能取到,所以应该是图中过整点(5,4)的直线使z 取最大值90 整点问题是线性规划部分的一个难点,但本题由于只是求最大值,唯有涉及到取整点是什么,所以难度降低了,但鉴于它是个应用题,还是比较灵活的。
(4)(08年辽宁理)双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是
(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩
解:本题是一个综合性问题,既考查了线性规划又考查了双曲线的渐近线问题,但从难度上来说不大,但从此题可以看出,线性规划题型的灵活性,此题结果如下:双曲线224x y -=的两条渐近线方程为
y x =±,与直线3x =围成一个三角形区域时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩
(5)(08年浙江理)在平面直角坐标系中,不等式组⎪⎩
⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表
示的平面区域的面积是 (A)21 (B)23 (C)81 (D)8
9
解:本题考查简单的线性规划的可行域、三角形的面积 由题知可行域为ABC ∆, 42204=⨯-=
∆ABC S ,故选择B
(6)(08年四川理)某厂生产甲产品每千克需用原料A 和原料B 分别为11a b 、千克,生产乙产品每千克需用原料A 和原料B 分别为22a b 、千克 甲、乙产品每千克可获利润分别为12d d 、元 月初一次性购进本
月用原料A 、B 各12c c 、千克 要计划本月生产甲、乙两种产品各多少千克才能使月利润总额达到最大 在这个问题中,设全月生产甲、乙两种产品分别为x千克、y千克,月利润总额为z元,那么,用于求使总利润12z d x d y =+最大的数学模型中,约束条件为
(A )121122,,0,0a x a y c b x b y c x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩(B )111222,,0,0a x b y c a x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ (C )121122,,0,0a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ (D )121122,,0,
a x a y c
b x b y
c x y +=⎧⎪+=⎪⎨≥⎪⎪≥⎩ 解:在这个问题中,设全月生产甲、乙两种产品分别为x 千克,y 千克,月利润总额为z 元,那么,用于求使总利润12z
d x d y =+最大的数
学模型中,约束条件为12112200a x a y c b x b y c x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,选 C. 本题应该说是一个基本的
线性规划应用题,而且只需要列出约束条件,所以难度不大
总结:以上6个题,从考查的知识点及题目形式上看,都考查了线性规划的基本问题,但每个题的侧重点又有所不同,而且(3),(4),
(5)又有一定的综合性,可见在学习线性规划时,要加强对学生基础知识的同时,还要适度培养学生的综合能力。
2.变形题
(1)(08年重庆理)
已知变量,x y 满足约束条件14,2 2.x y x y ≤+≤-≤-≤若目标函数z ax y =+(其中0a >)仅在点()3,1处取得最大值,则a 的取值范围为 解:本题是一个逆向思维问题,已知变量,x y 满足约束条件 14,2 2.x y x y ≤+≤-≤-≤ 在坐标系中画出可行域,
如图为四边形ABCD ,其中()3,1,1,1AD AB A k k ==-,
目标函数z ax y =+(其中0a >)中的z 表示斜率为a -
的直线系中的截距的大小,若仅在点()3,1处取得最大值,
则斜率应小于1AB k =-,即1a -<-,所以a 的取值范围
为(1,+∞) 由解决问题的过程可见,本题的难度加大了,学生需要要良好逆向思维能力,问题转化能力和几何直观能力。
(2)(08
年广东)在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是 A [6,15] B [7,15] C [6,8] D [7,8] 解:本题的约束条件中出现了变量s ,由此使问题的难度一下子加大了,具体解决方法如下
由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+4
2442s y s x x y s y x 交点为(2,0),(4,24),(0,),(0,4)A B s s C s C '--,
(1) 当43<≤s 时可行域是
四边形OABC 内部包括边界,此
时,87≤≤z ,如图1,可知
3s =时,z 值最大,最大值为 直线过点B 时的值,z 值最大为7;如图2 可知,4s =时,z 值最大,最大值为直线过点C ’(
此时B 与C ’重合)时的值,z 值最大为8
(2) 当54≤≤s 时,如右图,可行域
是△OA C '此时,8max =z ,故选D
综上所得,32z x y =+的最大值的变化范围是[7,8]。
本题从题干上来讲,好像是基本的线性规划,但实际上
由于变量s 的引入,使此题的查考的范围就不仅仅是基
本的线性规划问题了,还要用到分类讨论的思想,最后
实现问题的解决还要很好的做到形与数的统一。
总结:以上两题在问题设置上摆脱了线性规划问题的常规模式,比较新颖,且很灵活,尤其(2),要想正确解答,很困难,可见培养学生的综合运用知识能力很关键,尤其是对于高三的学生来说。
3.扩展题
图1
图2
(1)(08北京理)已知点 P (x ,y )的坐标满足条件4,1,x y y x y +≤⎧⎪≥⎨⎪≥⎩
点O
为坐标原点,
那么z =的最小值等于________,最大值等于________. 解:画出可行域,如图所示:
易得A (2,2),OA
=B (1,3),OB
C (1,1),OC
故|OP|
本题约束条件是线性的,但目标函数却是非线性的,问题的解决关键
是能够很好的利用目标函数的几何特点,将求z =的最值问题转化为区域内的点到原点的距离问题,从而实现问题的解决 类似的选取05年高考江西卷的一道题
设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩
⎪⎨⎧≤->-+≤-- . 解:求y x
的最大值问题可转化为区域内的点和原点的连线的斜率的最大值,画出可行域,如图所示,当原点和31,2C ⎛⎫ ⎪⎝⎭连线时,斜率最大,为32
, 由此说明y x 的最大值为32
总结:以上两题说明,在给定约束条件情况下,要利用好目标函数的几何意义,可以使我们能够站在系统的高度,把握问题的规律,有效地实现问题解决,而且有助于加深学生对数学知识的理解和深化。
二、从08年高考题中得到的反思
1.在线性规划问题的教学中夯实基础,不能存在任何侥幸心理,对约束条件的建立,目标函数把握上要做到灵活。
2.在线性规划问题的教学中要注意知识的综合运用能力的培养,注意线性规划问题与函数,解析几何中其他问题的联系。
3.在线性规划问题的教学中还要注意理论联系实际,尤其是在应用性问题的教学中更要注意把握应用问题的实质。