4.位值图上的游戏
- 格式:pptx
- 大小:866.77 KB
- 文档页数:16
中班数学游戏活动方案数学游戏活动是一种有趣且富有教育意义的教学方式,能够激发中班幼儿对数学的兴趣,培养他们的逻辑思维和数学能力。
下面将为大家介绍一种中班数学游戏活动方案,希望对老师们有所启发。
1. 游戏名称:“数字宝藏探险”2. 游戏目的:通过寻宝游戏,使幼儿在玩中学会认识数字和简单数学运算。
3. 游戏准备:- 数字宝藏地图:地图上标有多个数字宝藏的位置,每个宝藏都对应一个数字。
- 数字宝藏卡片:每个宝藏对应一张卡片,卡片上有对应数字的图案。
- 数学题卡:卡片上印有简单的数学题目,例如加法、减法、比较大小等。
- 奖励小红花:作为完成任务或答对题目的奖励。
4. 游戏流程:- 按照地图上的指引,幼儿在教师的带领下依次前往各个宝藏地点。
- 到达宝藏地点后,幼儿抽取对应的宝藏卡片,看图案猜数字。
- 根据宝藏卡片提示的数字,幼儿回答相应的数学题目。
- 回答正确可获得奖励小红花,并继续寻找下一个宝藏。
5. 游戏小结:- 在游戏结束后,教师可以带领幼儿一起数一数获得的小红花数量,加深对数字的认识。
- 教师可根据幼儿表现给予肯定和鼓励,激发他们对数学学习的兴趣。
6. 游戏延伸:- 可以设计更多形式的数学题目,如找出数字中的规律、填充数字等,提升幼儿的数学思维能力。
- 可以邀请家长参与游戏,让家长和孩子一起探险,增强家庭亲子互动。
通过这样的数学游戏活动,中班幼儿可以在轻松的氛围中学习和探索数字世界,享受数学的乐趣同时提升数学能力。
希望这个方案可以为中班数学教学提供一些新思路和方法,激发幼儿学习数学的热情。
愿孩子们在玩中学,在学中乐,快乐学习数学!。
八卦智力题库及答案详解八卦智力题是一种结合了传统文化和逻辑推理的趣味智力题目,它们通常以中国古代的八卦图作为设计灵感,通过巧妙的布局和逻辑关系,考验参与者的智力和思维能力。
以下是一些精选的八卦智力题及其答案详解:1. 八卦图中心之谜题目:在一个八卦图的中心放置了一个数字“5”,要求你将数字“1”至“8”分别放置在八个卦位上,使得每个卦位上的数字与中心数字的差值相等。
答案详解:首先,将数字“5”放在中心。
然后,将“1”和“8”放在相对的卦位上,因为它们与中心的差值都是4。
接着,将“2”和“7”放在另外两个相对的卦位上,它们的差值也是3。
以此类推,直到所有数字都被放置完毕。
2. 八卦数字匹配题目:在一个八卦图的每个卦位上放置一个数字,使得每个卦位上的数字与相邻卦位的数字之和为10。
答案详解:从任意一个卦位开始,放置数字“1”,然后顺时针或逆时针移动,将相邻的卦位放置“9”,接着是“2”和“8”,以此类推,直到所有卦位都被放置完毕。
3. 八卦图形填空题目:在一个八卦图的每个卦位上放置一个图形,这些图形可以是圆形、三角形或正方形,要求相邻的两个卦位上的图形不能相同。
答案详解:从任意一个卦位开始放置一个图形,然后顺时针或逆时针移动,确保每个相邻的卦位上的图形都不相同。
例如,如果第一个卦位放置圆形,则下一个卦位放置三角形或正方形,以此类推。
4. 八卦逻辑推理题目:在一个八卦图的每个卦位上放置一个颜色,这些颜色可以是红、黄、蓝、绿,要求每个卦位上的颜色都不相同,且相邻的卦位上的颜色不能是互补色(红与绿、黄与蓝)。
答案详解:首先,选择一个卦位放置一种颜色,然后顺时针或逆时针移动,确保每个卦位上的颜色都不相同。
同时,注意避免将互补色放置在相邻的卦位上。
例如,如果第一个卦位放置红色,则下一个卦位不能放置绿色,可以选择黄色或蓝色。
5. 八卦数字序列题目:在一个八卦图的每个卦位上放置一个数字,这些数字形成一个递增的序列,要求每个卦位上的数字与相邻卦位的数字之差为1。
小班数学游戏教案1. 教学目标•帮助小班幼儿提高数学概念的理解能力。
•培养小班幼儿的逻辑思维和问题解决能力。
•增加小班幼儿对数学学习的兴趣和积极性。
2. 教学内容本教案将介绍三个适用于小班的数学游戏,分别是: - 游戏一:数字拼图 - 游戏二:找出数字 - 游戏三:数学大富翁3. 教学准备•数字拼图:准备一些卡片,每张卡片上印有一个数字,可以是阿拉伯数字或中文数字。
•找出数字:准备一些图片或卡片,每个图片或卡片上印有一个数字。
•数学大富翁:准备一个棋盘,棋盘上印有不同的数学题目。
4. 教学步骤游戏一:数字拼图•思路:将卡片上的数字混合在一起,让幼儿通过拼图的方式,将数字按从小到大的顺序排列完成。
•具体步骤:1.教师将卡片上的数字混合在一起。
2.随机选取一张卡片,将其放在中央。
3.让幼儿依次选取下一张卡片,将其放在适当的位置,使得数字按从小到大的顺序排列。
4.鼓励幼儿相互观察和交流,帮助他们完成拼图任务。
游戏二:找出数字•思路:在一些图片或卡片中随机隐藏一个数字,让幼儿通过观察和思考,找出被隐藏的数字。
•具体步骤:1.准备一些图片或卡片,并在其中随机隐藏一个数字。
2.将图片或卡片展示给幼儿,让他们通过观察和思考,找出被隐藏的数字。
3.鼓励幼儿口头描述他们是如何找出数字的,促进他们的逻辑思维和问题解决能力。
游戏三:数学大富翁•思路:通过玩数学题目的大富翁游戏,让幼儿在游戏中学习和复习数学知识。
•具体步骤:1.准备一个数学题目的棋盘,每个格子上印有一个数学题目。
2.让幼儿分成若干个小组,每个小组轮流掷骰子,前进相应的步数。
3.落在一个格子上后,小组需要回答格子上的数学题目,如果回答正确,小组可以留在原地或前进一步,如果回答错误,小组需要退回原来的位置。
4.鼓励幼儿相互合作,共同解答数学题目,加深他们对数学概念的理解。
5. 教学评估•通过观察幼儿在游戏中的表现,评估他们对数学概念的理解能力和问题解决能力的提高。
Scrabble是西方流行的英语文字图版游戏,在一块15×15方格的图版上,2至4名参加者拼出词汇而得分。
词汇以填字游戏的方式横竖列出,并必须收录在普通词典里。
不同字母有不同分数,是根据在标准书写英语中出现频率订定,如经常出现的E和O只值1分,但不常用的Q和Z则值10分。
图版上有不同颜色的格子,参加者可从中获得额外分数。
一个游戏版,一百个游戏字卡,四个字卡尺和字卡袋一个。
在美国和加拿大,―Scrabble‖一字是的孩之宝的商标,而在其他地方则是J. W. Spear & Sons的商标。
玩家数目2-4 年龄8岁或以上准备时间2-3 分钟游戏时间NSA比赛一盘约50分钟复杂程度容易策略成份中等运气成份中等所需技巧计分、策略、词汇游戏详情游戏在一块15×15方格的图版上进行,每一格只可放一个字母牌,2至4名参加者拼出词汇而得分。
但在正式竞赛中,通常由两人或两队对垒。
游戏重要的特征在于不同颜色的加分方格:深红色(词汇分数乘3)、粉红色(词汇分数乘2)、深蓝色(字母分数乘3)、浅蓝色(字母分数乘2)。
中间画有星号的方格(H8)不是粉红色方格。
记分方法游戏以―xy 词汇分数‖或―词汇xy 分数‖方式记分,其中x代表词汇所在行或列(行为数字―1至15‖,列为字母―A至O‖),y为词汇第一个字母所在的列或行。
就算字母牌组成的词汇多于一个,也只需列出其中之一。
空白牌以小写列出,而本身已在图版上的字母则以括号标出。
例子:A(D)DITiON(AL) D3 74代表―additional‖在D列上,由第三行开始,其中第一个D和AL为本身已有字母牌,i为空白牌,分数为74分。
游戏程序字母牌放在布袋中或牌面向下放在桌上,参与者各自抽出一张,开头字母的先玩(空白牌为最优先)。
每次出牌后,参与者从袋中取回已出的牌数,使架上保持7张字母牌,直至字母抽完为止。
每一轮,参与者可以(甲)放弃出牌,得零分;(乙)当牌堆中牌数不少于七张,玩家可选择从牌堆中换牌,得零分;(丙)出牌并出词汇,可得分数;(丁)对上一位参与者所出的牌提出质疑(challenge)。
趣味数学游戏——幻方当你还是个小学生的时候,也许就玩过这样一种数学益智游戏,就是把1、2、3、4、5、6、7、8、9这九个数字,分别填在3×3的方格里,使之横、竖、对角线的数字相加都等于15(如下图),这样的“填数”的问题,在数学语言里就叫“幻方”。
而填在3×3方格里的,就叫3阶幻方。
3阶幻方是最简单的幻方。
历代数学家们,都喜欢研究幻方,现在的幻方种类很多,有平面幻方,还有立体幻方、高次幻方等,平面幻方又分三角幻方,六角幻方(蜂窝幻方)等。
这里要重点介绍的,还是平面正方形幻方,3阶正方形幻方的等值是15,,这个等值是不可改变的,即是说你永远都无法设计出等值是14或者16的3阶幻方,对于4阶、5阶幻方乃至n阶幻方都一样,其等值都是唯一的、确定的。
其中4阶幻方的等值是34,5阶幻方的等值是65,对于任意n阶幻方,其等值为(n3+n)÷2。
其实,任意阶幻方构造法,任意维幻方构造法,任意次幻方构造法,数学家们都早已找到,不存在最大阶幻方的世界纪录之类的说法。
对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)1、N 为奇数时,最简单(1)将1放在第一行中间一列;(2)从2开始直到n×n止各数依次按下列规则存放:按45°方向行走,如向右上,每一个数存放的行比前一个数的行数减1,列数加1(3)如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样加1;(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,则把下一个数放在上一个数的下面。
2、N为4的倍数时采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。
趣味数学游戏篇一:趣味数学游戏图4是由上方俯视的示意图,A、B、C对应于立方体展开图(图2)的标示。
将8个半立方体的底面DEF按图所示置于平面上,并用胶带纸粘贴。
现在你也拥有一个奇妙的模型了,任何把玩它的人都会觉得趣味盎然。
用不同颜色的纸板再做一个相同的模型,你会发现它们可以组合在一起,而且可以使其中一个消失在另一个之中。
13.游戏学数学:西蒙斯趣味游戏这是由西蒙斯(Gustavus Simmons)所设计的两个人玩的简单游戏(因此而命名)。
游戏首先由圆内六边形的顶点A,B,C,D,E,F开始,玩的人轮流使用不同颜色的笔以直线连接任意两个顶点。
总共只有15条可能的直线,所以这个游戏必定可在有限的时间内结束。
游戏的规则是要避免所连的直线(相同颜色者)形成三角形,否则就输了。
在两种不同颜色的笔把15条线都画完之前,必定会形成一个同颜色的三角形,所以一定能分出胜负。
图示为一场比赛的结果,图中的数字表示画线的顺序,实线为某甲所画的直线,虚线则为某乙画的直线。
如图,现在轮到乙画线,而且只剩下两条直线可画,若连接DF会形成三角形DAF,而连接FE则形成另一三角形EAF,所以这一局乙是输定了。
14.游戏学数学:邮票销售机将一枚10元硬币及一枚20元硬币投入邮票销售机,它就会吐出一联面值共30元的邮票。
为了更加便民,邮局决定举办一项竞赛,参赛者必须设计出一联不同面值的邮票,使之能组合出1到30元内任意数额的邮资。
一年后比赛截止,有两位参赛者获奖:一位是艾娜小姐,另一位是梅尔先生。
艾娜小姐所设计的一联邮票只需5张,就可达到上述要求,她的设计已为邮局所采用。
这5张邮票的面值各为多少?然而梅尔先生的方法只需用单一面值的一张邮票或面值连续的几张邮票,就可以组合出1到30元的各种邮资。
当然其中一种方法就是用30张一元邮票,但是还有更好的方法。
欲达到此项目所需要的邮票数目最少为几张?面值各为多少?15.游戏学数学:为数众多的魔方阵给定5、8及12这3个数字,每一行、列或对角线的总和等于中间数字的3倍。
精锐教育学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型C-数字谜(一)C数字谜(二)C-数阵图授课日期时段教学内容一、上次课堂知识点的回顾梳理。
1、假设法可以解决哪种类型的应用题?2、运用“假设”解决问题,有哪几种假设方法?数字是一种很有趣的数学问题。
它的特点是给出运算式子,但式子中某些数字是用字母或汉字来代表的,要求我们进行恰当的判断和推理,从而确定这些字母或汉字所代表的数字。
这一讲我们主要研究加、减法的数字谜。
一、专题精讲例1、算式中每个汉字代表一个数字,不同的汉字表示不同的数字。
当它们各代表什么数字时算式成立?好啊好+ 真是好真是好啊分析:由于是三位数加上三位数,其和为四位数,所以“真”=1。
由于十位最多向百位进1,因而百位上的“是”=0,“好”=8或9。
1①若“好”=8,个位上因为8+8=16,所以“啊”=6,十位上,由于6+0+1=7≠8,所以“好”≠8。
②若“好”=9,个位上因为9+9=18,所以“啊”=8,十位上,8+0+1=9,百位上,9+1=10,因而问题得解。
解:9 8 9+ 1 0 91 0 9 8真=1,是=0,好=9,啊=8例2、下面的字母各代表什么数字,算式才能成立?A B C D+ E B E DE D C A D分析:由于四位数加上四位数其和为五位数,所以可确定和的首位数字E=1。
又因为个位上D+D=D,所以D=0。
此时算式为:A B C 0+ 1 B 1 01 0 C A 0下面分两种情况进行讨论:①若百位没有向千位进位,则由千位可确定A=9,由十位可确定C=8,由百位可确定B=4。
因此得到问题的一个解:9 4 8 0+ 1 4 1 01 0 8 9 0②若百位向千位进位,则由千位可确定A=9,由十位可确定C=7,百位上不论B为什么样的整数,B+B和的个位都不能为7,因此此时不成立。
解:9 4 8 0+ 1 4 1 01 0 8 9 0A=9,B=4,C=8,D=0,E=1。
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。