肖特基接触与欧姆接触
- 格式:doc
- 大小:82.00 KB
- 文档页数:9
第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)及半导体与介质材料之间的接触。
§7-1 外电场中的半导体无外加电场时,均匀掺杂的半导体中的空间电荷处处等于零。
当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(rρ的空间电荷和强度为)(r∈的电场。
载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。
图7-1a 表示对n 型半导体施加外电场时的电路图。
在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。
这些空间电荷随着离开样品表面的距离的增加而减少。
空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。
空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。
电子势能的变化量为)()(r eV r U -=,其中)(r V是空间电场(也称表面层电场)的静电势。
此时样品的能带变化为)()(r U E r E c c+=)(r E v=)(r U E v + (7-1) 本征费米能级变化为 )()(r U E r E i i+=杂质能级变化为 )()(r U E r E d d+= (7-2) 由于半导体处于热平衡状态,费米能级处处相等。
因此费米能级与能带之间的距离在表面层附近发生变化。
无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)(和-f E [)(r U E v +] (7-4)比较(7-3)和(7-4)式则知如果E c 和E f 之间的距离减少)(r U,E f 与E v 之间的距离则增加)(r U。
当外电场方向改变时,n 型半导体表面层的电子密度将减少,空穴密度将增加,在样品表面附近的导电类型有可能发生变化,从而使半导体由n 型变为p 型,产生反型层,在离表面一定距离处形成本征区,此处的费米能级位于禁带的中央,见图7-2。
烟台师范学院学报(自然科学版)Yantai T eachers U niversity Journal (N atural Science )2000,16(2):153-156教学研究 收稿日期:2000203218 作者简介:孟庆忠(1942—),男,教授,大学本科,从事电子技术基础理论研究.肖特基势垒和欧姆接触孟 庆 忠(青岛大学师范学院物理系,山东青岛266071)摘要:用能带结构的观点分析了金属和半导体相接触时的机理,并简要介绍了肖特基二极管的构造及应用.关键词:肖特基势垒;欧姆接触;费米能级中图分类号:TN 710.1 文献标识码:A 文章编号:100424930(2000)022******* P 型半导体和N 型半导体通过掺杂方式结合而成的PN 结,是一种比较复杂的半导体结构.这种结构的重要特征之一是在结的相邻两侧,两种载流子的分布具有不对称的特性,从而形成载流子的浓度梯度,结果使PN 结具有非线性的伏安特性.在制造半导体器件的过程中,除了有PN 结之外,还会遇到金属和半导体相接触的情况,这种接触(指其间距离只有几个埃)有时会在半导体表面形成载流子的积累层,从而表现出低阻特性,其伏安特性是线性的;有时会在半导体表面形成载流子的耗尽层(阻挡层),出现表面势垒,其伏安特性与PN 结相似,呈非线性状态.上述两种情况在实际应用中都有用到之处〔1〕,前者可用来作欧姆接触,后者可用来制作肖特基势垒二极管.1 肖特基势垒 从能级的观点来看,要使金属或半导体中的电子脱离原子核的束缚成为体外自由电子,就必须做功.因为金属或半导体内的绝大多数电子都比体外电子处于较低的能级.物体对电子束缚的强弱决定于物体的性质和表面情况,我们称之为逸出功.显然,逸出功越大,电子越不容易离开物体.由半导体物理学知识可知,物体的逸出功等于体外静止电子的能量与该物体费米能级之差. 现以N 型半导体为例.如果N 型半导体的逸出功小于金属的逸出功,这种费米能级的差别意味着在金属内部和半导体导带相对应的那部分能级上,电子的密度要小于半导体导带的电子密度,因此当它们接触时,电子便从半导体向金属扩散,结果使金属带负电,半导体带正电.对于金属而言,负电荷只能分布在表面;而对于N 型半导体来说,施主杂质失去电子成为正离子,由于掺杂浓度有限,这些正离子必须分布在一定厚度的空间电荷区内,其间的载流子(电子)浓度几乎为零,因而形成了高阻的耗尽层,电荷分布如图1所图1 金属半导体结的电荷分布示〔2〕.空间电荷区产生内建电场E i ,其方向为由N 型半导体指向金属.运用一维泊松方程可得Εd E i d x=e N D ,(1)式中Ε为半导体的介电常数,e 为电子的电量,N D 为N 型半导体的掺杂浓度.由(1)式便可求得金属-半导体结的电场分布为E i (x )=e N D Ε(x -W 0),(2)式中W 0为耗尽层的宽度.由电场E 和电势Υ的关系Υ(x )=-∫x 0E i (x )d x 可求得电势的分布为Υ(x )=-e N D 2Ε(x -W 0)2.(3)当x =0时,(3)式变为Υs =e N D 2ΕW 20.式中Υs 称为金属-半导体结的接触电势差或内建电势差〔2〕.在考虑金属-半导体结的能带时,应将这一电势差所引起的附加电子静电势能图2 耗尽层内的能量带图-e Υs 也考虑进去.这样,N 区导带电子的能量要比金属导带电子的能量低e Υs ,也即N 型半导体的能带相对于金属的能带降低一个量值e Υs.因此当金属-半导体结形成后,其能带将呈向上弯曲的状态(图2).这个向上弯曲的能带对电子形成一个阻止其由半导体向金属扩散的势垒,此势垒就是肖特基表面势垒.图2中的E cs 表示半导体的导带底;E F M 和E F s 分别为金属和半导体的费米能级;E rs 表示半导体的价带顶. 金属-半导体结的伏安特性同PN 结的伏安特性相似,都具有单向导电的整流特性.同样的分析方法可知,金属和P 型半导体接触时,当P 型半导体的逸出功大于金属的逸出功时,也可形成肖特基势垒.不过在这种情况下,金属带正电,半导体带负电,P 区导带电子的能量要比金属导带电子的能量高e Υs ,也即P 型半导体的能带相对于金属的能带要高一个能量值e Υs.金属-半导体结形成后,其能带将呈向下弯曲的状态. 显然,P 型半导体和N 型半导体与金属接触时,都有可能形成肖特基势垒.但在实际制作肖特基二极管时,由于电子比空穴的迁移率高,容易获得优良的特性,故多采用N 型半导体.2 欧姆接触 欧姆接触是半导体器件的金属引线与半导体材料之间的另一种接触方式.为了不影响半导体器件的性能,必须使金属电极与半导体的接触是低阻值的,接触电势与电流无关(即无整流作用),其伏安特性是线性的.当金属和半导体接触时,前面已谈到形成肖特基451烟台师范学院学报(自然科学版)第16卷 势垒的两种情况,还有两种情况会形成欧姆接触. 仍以N 型半导体为例.若N 型半导体的逸出功大于金属的逸出功,这种费米能级的差别意味着在金属内部和半导体导带相对应的那部分能级上,电子的密度大于半导体导带的电子密度,于是当两者接触时,电子便从金属向半导体扩散,结果使金属表面带正电,N 型半导体表面附近形成电子的积累层,从而表现出高导电的特性,也即低阻值、无整流图3 积累层的能带图的特性,其积累层的能带如图3所示.同样的分析方法可知,当金属和P 型半导体接触时,若P 型半导体的逸出功小于金属的逸出功,便在P 型半导体表面附近形成空穴的积累层,从而也表现出高导电、无整流的特性.上述两种接触由于不存在表面势垒,当然不能作为非线性电阻,但可作为半导体和金属电极之间的欧姆接触. 值得注意的是,在上面的分析中,我们都基于一种简化的理想状态,即将金属和半导体相接触所出现的四种情况只决定于逸出功,实际上,表面势垒的形成还和半导体表面能态的性质及密度有关.3 肖特基二极管及应用 肖特基二极管是近年来问世的一种低功耗、大电流、超高速的半导体整流器件,其内图4 肖特基二极管结构图部结构如图4所示.它以N 型半导体为基片,在上面形成用砷作掺杂剂的N -型外延层,阳极采用贵金属钼作材料,二氧化硅用来消除边缘区域的电场,提高管子的耐压值.N 型基片具有很小的导通电阻,其掺杂浓度较N -型层要高100倍.在N 型基片下面形成N +型阴极层,其作用是形成欧姆接触.通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒.加上正偏电压时,即金属接正极、N 型基片接负极,势垒变窄;加反偏电压时,势垒变宽.可见,在肖特基二极管的结构中,金属与半导体之间既有欧姆接触,又有肖特基势垒. 肖特基二极管的结构及原理与PN 结二极管有很大区别.前者仅用一种载流子,在势垒外侧无过剩载流子的积累,因此不存在电荷的储存问题,反向恢复电荷近于零,使开关特性得到明显改善,反向恢复时间可缩短到10n s 以内,但其反向耐压较低,一般不超过100V .因此被广泛用作高频、低压、大电流整流,近年来又被用于微波混频和检波,尤其在微波鉴频器中,两个支路的检波器特性应尽可能一致且稳定可靠,比较理想的是肖特基二极管检波器,因此这种半导体器件是微波领域中一种重要的微波器件.参考文献:[1] 〔美〕森吐瑞,韦德劳著,清华大学应用电子学及电工学教研组译.电子线路及应用〔M 〕.北京:人民邮电出版社,1981.186—187.[2] 王蕴仪等.微波器件与电路〔M 〕.南京:江苏科学技术出版社,1981.3—6.551第2期孟庆忠:肖特基势垒和欧姆接触651烟台师范学院学报(自然科学版)第16卷 Schottcky barr ier and Ohm ic con tactM EN G Q ing2zhong(Physics D epartm ent of N o r m al Co llege,Q ingdao U niversity,Q ingdao266071,Ch ina)Abstract:T he m echan is m w h ile the m etal and sem iconducto r com e in to con tact each o th2 er is analysed by u sing the standpo in t of energy2band structu re.T he structu re and app li2 cati on of Scho ttcky di ode are also in troduced in b rief.Key words:Scho ttcky barrier;O hm ic con tact;Fer m i level(责任编辑 闫冬春)(上接第100页)Globa l pha se portra its of a four-order systemKAN G Dong2sheng(D epartm ent of M athem atics,Zhum adian T eachers Co llege,Zhum adian463000,Ch ina)Abstract:T he fin ite and infin ite singu lar po in ts of a fou r2o rder system are studied.Its global phase po rtraits are derived.Key words:fou r2o rder system;singu lar po in t;phase p lane;phase po rtrait(责任编辑 闫冬春)。
半导体的欧姆接触(2012-03-30 15:06:47)转载▼标签:杂谈分类:补充大脑1、欧姆接触欧姆接触是指这样的接触:一是它不产生明显的附加阻抗;二是不会使半导体内部的平衡载流子浓度发生显著的改变。
从理论上说,影响金属与半导体形成欧姆接触的主要因素有两个:金属、半导体的功函数和半导体的表面态密度。
对于给定的半导体,从功函数对金属-半导体之间接触的影响来看,要形成欧姆接触,对于n型半导体,应该选择功函数小的金属,即满足Wm《Ws,使金属与半导体之间形成n型反阻挡层。
而对于p型半导体,应该选择功函数大的金属与半导体形成接触,即满足Wm》Ws,使金属与半导体之间形成p型反阻挡层。
但是由于表面态的影响,功函数对欧姆接触形成的影响减弱,对于n型半导体而言,即使Wm《Ws,金属与半导体之间还是不能形成性能良好的欧姆接触。
目前,在生产实际中,主要是利用隧道效应原理在半导体上制造欧姆接触。
从功函数角度来考虑,金属与半导体要形成欧姆接触时,对于n型半导体,金属功函数要小于半导体的功函数,满足此条件的金属材料有Ti、In。
对于p型半导体,金属功函数要大于半导体的功函数,满足此条件的金属材料有Cu、Ag、Pt、Ni。
2、一些常用物质的的功函数物质Al Ti Pt In Ni Cu Ag Au功函数4.3 3.95 5.35 3.7 4.5 4.4 4.4 5.203、举例n型的GaN——先用磁控溅射在表面溅射上Ti/Al/Ti三层金属,然后在卤灯/硅片组成的快速退火装置上进行快速退火:先600摄氏度—后900摄氏度——形成欧姆接触;p型的CdZnTe——磁控溅射仪上用Cu-3%Ag合金靶材在材料表面溅射一层CuAg合金。
欧姆接触[编辑]欧姆接触是半导体设备上具有线性并且对称的果电流-这些金属片通过光刻制程布局。
低电阻,稳定接触的欧姆接触是影响集成电路性能和稳定性的关键因素。
它们的制备和描绘是电路制造的主要工作。
94學年度第二學期無機與有機光電半導體材料與元件-期末報告The formation of Schottky and Ohmic contact in semiconductor組員:蕭傑予、李鴻昌一.Schottky contact:1.Definition:Metal-semiconductor contact having a large barrier height and a low doping concentration.2.整流介紹:以n-type半導體為例equilibrium forward bias reverse bias順偏有大量電子流從n-type半導體流入metal 逆偏則兩邊的電子流都超小數學推導如下二. Ohmic contact:1.Definition :Metal-Semiconductor contact that has a negligible contact resistance relative to the bulk or series resistance of the semiconductor.2.Specific contact resistance :(1)With low doping concentrations, thermionicemission dominates the current.[]1-e kTq -exp(T *A J qV/kTBn 2n φ=⇒由公式知ΦBn 越大Rc越大 ,但是在low doping concentrations可以看出和N D 無關(2) With high concentrations, tunneling dominatesthe current.由公式知ΦBn 越大Rc越大,N D 越大則Rc越小, 表示N D 越大tunneling current越大,導致Rc 變小三. Manufacture:1. Schottky contact因元件的表面會有表面能態(surface state)密度累積電荷的緣故而產生空乏區,這種空乏區稱為表面空乏區。
1.1 金属-半导体接触的基本原理金属-半导体接触(金半接触)是制作半导体器件中十分重要的问题,接触情况直接影响到器件的性能。
从性质上可以将金属-半导体接触分为肖特基接触和欧姆接触。
肖特基接触的特点是接触区的电流-电压特性是非线性的,呈现出二极管的特性,因而具有整流效应,所以肖特基接触又叫整流接触。
欧姆接触的特点是不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度产生明显的改变。
理想的欧姆接触的接触电阻与半导体器件相比应当很小,当有电流通过时,欧姆接触上的电压降应当远小于半导体器件本身的电压降,因而这种接触不会影响器件的电流-电压特性[1]。
下面将从理论上对金属-半导体接触进行简要的分析。
1.2欧姆接触本章1.1节中提到,当金属-半导体接触的接触区的I-V曲线是线性的,并且接触电阻相对于半导体体电阻可以忽略不计时,则可被定义为欧姆接触(ohmic contact)[1]。
良好的欧姆接触并不会降低器件的性能,并且当有电流通过时产生的电压降比器件上的电压降还要小。
1.2.1欧姆接触的评价标准良好的欧姆接触的评价标准是[4]:1)接触电阻很低,以至于不会影响器件的欧姆特性,即不会影响器件I-V的线性关系。
对于器件电阻较高的情况下(例如LED器件等),可以允许有较大的接触电阻。
但是目前随着器件小型化的发展,要求的接触电阻要更小。
2)热稳定性要高,包括在器件加工过程和使用过程中的热稳定性。
在热循环的作用下,欧姆接触应该保持一个比较稳定的状态,即接触电阻的变化要小,尽可能地保持一个稳定的数值。
3)欧姆接触的表面质量要好,且金属电极的黏附强度要高。
金属在半导体中的水平扩散和垂直扩散的深度要尽可能浅,金属表面电阻也要足够低。
1.2.3欧姆接触电极的制作要点上节指出,制作欧姆接触时,可以提高掺杂浓度或降低势垒高度,或者两者并用。
这就为如何制得良好的欧姆接触提供了指导。
主要有以下方面:1)半导体衬底材料的选择掺杂浓度越高的衬底越容易形成欧姆接触。
烟台师范学院学报(自然科学版)Yantai T eachers U niversity Journal (N atural Science )2000,16(2):153-156教学研究 收稿日期:2000203218 作者简介:孟庆忠(1942—),男,教授,大学本科,从事电子技术基础理论研究.肖特基势垒和欧姆接触孟 庆 忠(青岛大学师范学院物理系,山东青岛266071)摘要:用能带结构的观点分析了金属和半导体相接触时的机理,并简要介绍了肖特基二极管的构造及应用.关键词:肖特基势垒;欧姆接触;费米能级中图分类号:TN 710.1 文献标识码:A 文章编号:100424930(2000)022******* P 型半导体和N 型半导体通过掺杂方式结合而成的PN 结,是一种比较复杂的半导体结构.这种结构的重要特征之一是在结的相邻两侧,两种载流子的分布具有不对称的特性,从而形成载流子的浓度梯度,结果使PN 结具有非线性的伏安特性.在制造半导体器件的过程中,除了有PN 结之外,还会遇到金属和半导体相接触的情况,这种接触(指其间距离只有几个埃)有时会在半导体表面形成载流子的积累层,从而表现出低阻特性,其伏安特性是线性的;有时会在半导体表面形成载流子的耗尽层(阻挡层),出现表面势垒,其伏安特性与PN 结相似,呈非线性状态.上述两种情况在实际应用中都有用到之处〔1〕,前者可用来作欧姆接触,后者可用来制作肖特基势垒二极管.1 肖特基势垒 从能级的观点来看,要使金属或半导体中的电子脱离原子核的束缚成为体外自由电子,就必须做功.因为金属或半导体内的绝大多数电子都比体外电子处于较低的能级.物体对电子束缚的强弱决定于物体的性质和表面情况,我们称之为逸出功.显然,逸出功越大,电子越不容易离开物体.由半导体物理学知识可知,物体的逸出功等于体外静止电子的能量与该物体费米能级之差. 现以N 型半导体为例.如果N 型半导体的逸出功小于金属的逸出功,这种费米能级的差别意味着在金属内部和半导体导带相对应的那部分能级上,电子的密度要小于半导体导带的电子密度,因此当它们接触时,电子便从半导体向金属扩散,结果使金属带负电,半导体带正电.对于金属而言,负电荷只能分布在表面;而对于N 型半导体来说,施主杂质失去电子成为正离子,由于掺杂浓度有限,这些正离子必须分布在一定厚度的空间电荷区内,其间的载流子(电子)浓度几乎为零,因而形成了高阻的耗尽层,电荷分布如图1所图1 金属半导体结的电荷分布示〔2〕.空间电荷区产生内建电场E i ,其方向为由N 型半导体指向金属.运用一维泊松方程可得Εd E i d x=e N D ,(1)式中Ε为半导体的介电常数,e 为电子的电量,N D 为N 型半导体的掺杂浓度.由(1)式便可求得金属-半导体结的电场分布为E i (x )=e N D Ε(x -W 0),(2)式中W 0为耗尽层的宽度.由电场E 和电势Υ的关系Υ(x )=-∫x 0E i (x )d x 可求得电势的分布为Υ(x )=-e N D 2Ε(x -W 0)2.(3)当x =0时,(3)式变为Υs =e N D 2ΕW 20.式中Υs 称为金属-半导体结的接触电势差或内建电势差〔2〕.在考虑金属-半导体结的能带时,应将这一电势差所引起的附加电子静电势能图2 耗尽层内的能量带图-e Υs 也考虑进去.这样,N 区导带电子的能量要比金属导带电子的能量低e Υs ,也即N 型半导体的能带相对于金属的能带降低一个量值e Υs.因此当金属-半导体结形成后,其能带将呈向上弯曲的状态(图2).这个向上弯曲的能带对电子形成一个阻止其由半导体向金属扩散的势垒,此势垒就是肖特基表面势垒.图2中的E cs 表示半导体的导带底;E F M 和E F s 分别为金属和半导体的费米能级;E rs 表示半导体的价带顶. 金属-半导体结的伏安特性同PN 结的伏安特性相似,都具有单向导电的整流特性.同样的分析方法可知,金属和P 型半导体接触时,当P 型半导体的逸出功大于金属的逸出功时,也可形成肖特基势垒.不过在这种情况下,金属带正电,半导体带负电,P 区导带电子的能量要比金属导带电子的能量高e Υs ,也即P 型半导体的能带相对于金属的能带要高一个能量值e Υs.金属-半导体结形成后,其能带将呈向下弯曲的状态. 显然,P 型半导体和N 型半导体与金属接触时,都有可能形成肖特基势垒.但在实际制作肖特基二极管时,由于电子比空穴的迁移率高,容易获得优良的特性,故多采用N 型半导体.2 欧姆接触 欧姆接触是半导体器件的金属引线与半导体材料之间的另一种接触方式.为了不影响半导体器件的性能,必须使金属电极与半导体的接触是低阻值的,接触电势与电流无关(即无整流作用),其伏安特性是线性的.当金属和半导体接触时,前面已谈到形成肖特基451烟台师范学院学报(自然科学版)第16卷 势垒的两种情况,还有两种情况会形成欧姆接触. 仍以N 型半导体为例.若N 型半导体的逸出功大于金属的逸出功,这种费米能级的差别意味着在金属内部和半导体导带相对应的那部分能级上,电子的密度大于半导体导带的电子密度,于是当两者接触时,电子便从金属向半导体扩散,结果使金属表面带正电,N 型半导体表面附近形成电子的积累层,从而表现出高导电的特性,也即低阻值、无整流图3 积累层的能带图的特性,其积累层的能带如图3所示.同样的分析方法可知,当金属和P 型半导体接触时,若P 型半导体的逸出功小于金属的逸出功,便在P 型半导体表面附近形成空穴的积累层,从而也表现出高导电、无整流的特性.上述两种接触由于不存在表面势垒,当然不能作为非线性电阻,但可作为半导体和金属电极之间的欧姆接触. 值得注意的是,在上面的分析中,我们都基于一种简化的理想状态,即将金属和半导体相接触所出现的四种情况只决定于逸出功,实际上,表面势垒的形成还和半导体表面能态的性质及密度有关.3 肖特基二极管及应用 肖特基二极管是近年来问世的一种低功耗、大电流、超高速的半导体整流器件,其内图4 肖特基二极管结构图部结构如图4所示.它以N 型半导体为基片,在上面形成用砷作掺杂剂的N -型外延层,阳极采用贵金属钼作材料,二氧化硅用来消除边缘区域的电场,提高管子的耐压值.N 型基片具有很小的导通电阻,其掺杂浓度较N -型层要高100倍.在N 型基片下面形成N +型阴极层,其作用是形成欧姆接触.通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒.加上正偏电压时,即金属接正极、N 型基片接负极,势垒变窄;加反偏电压时,势垒变宽.可见,在肖特基二极管的结构中,金属与半导体之间既有欧姆接触,又有肖特基势垒. 肖特基二极管的结构及原理与PN 结二极管有很大区别.前者仅用一种载流子,在势垒外侧无过剩载流子的积累,因此不存在电荷的储存问题,反向恢复电荷近于零,使开关特性得到明显改善,反向恢复时间可缩短到10n s 以内,但其反向耐压较低,一般不超过100V .因此被广泛用作高频、低压、大电流整流,近年来又被用于微波混频和检波,尤其在微波鉴频器中,两个支路的检波器特性应尽可能一致且稳定可靠,比较理想的是肖特基二极管检波器,因此这种半导体器件是微波领域中一种重要的微波器件.参考文献:[1] 〔美〕森吐瑞,韦德劳著,清华大学应用电子学及电工学教研组译.电子线路及应用〔M 〕.北京:人民邮电出版社,1981.186—187.[2] 王蕴仪等.微波器件与电路〔M 〕.南京:江苏科学技术出版社,1981.3—6.551第2期孟庆忠:肖特基势垒和欧姆接触651烟台师范学院学报(自然科学版)第16卷 Schottcky barr ier and Ohm ic con tactM EN G Q ing2zhong(Physics D epartm ent of N o r m al Co llege,Q ingdao U niversity,Q ingdao266071,Ch ina)Abstract:T he m echan is m w h ile the m etal and sem iconducto r com e in to con tact each o th2 er is analysed by u sing the standpo in t of energy2band structu re.T he structu re and app li2 cati on of Scho ttcky di ode are also in troduced in b rief.Key words:Scho ttcky barrier;O hm ic con tact;Fer m i level(责任编辑 闫冬春)(上接第100页)Globa l pha se portra its of a four-order systemKAN G Dong2sheng(D epartm ent of M athem atics,Zhum adian T eachers Co llege,Zhum adian463000,Ch ina)Abstract:T he fin ite and infin ite singu lar po in ts of a fou r2o rder system are studied.Its global phase po rtraits are derived.Key words:fou r2o rder system;singu lar po in t;phase p lane;phase po rtrait(责任编辑 闫冬春)。
第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)及半导体与介质材料之间的接触。
§7-1 外电场中的半导体无外加电场时,均匀掺杂的半导体中的空间电荷处处等于零。
当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(rρ的空间电荷和强度为)(r∈的电场。
载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。
图7-1a 表示对n 型半导体施加外电场时的电路图。
在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。
这些空间电荷随着离开样品表面的距离的增加而减少。
空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。
空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。
电子势能的变化量为)()(r eV r U -=,其中)(r V是空间电场(也称表面层电场)的静电势。
此时样品的能带变化为)()(r U E r E c c+=)(r E v =)(r U E v+ (7-1) 本征费米能级变化为 )()(r U E r E i i+=杂质能级变化为 )()(r U E r E d d+= (7-2)由于半导体处于热平衡状态,费米能级处处相等。
因此费米能级与能带之间的距离在表面层附近发生变化。
无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v+] (7-4)比较(7-3)和(7-4)式则知如果E c 和E f 之间的距离减少)(r U,E f 与E v 之间的距离则增加)(r U。
当外电场方向改变时,n 型半导体表面层的电子密度将减少,空穴密度将增加,在样品表面附近的导电类型有可能发生变化,从而使半导体由n 型变为p 型,产生反型层,在离表面一定距离处形成本征区,此处的费米能级位于禁带的中央,见图7-2。
直接带隙半导体:导带边和价带边处于k空间相同点的半导体通常被称为直接带隙半导体。
电子要跃迁的导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。
例子有GaAs,InP,InSb。
间接带隙半导体:导带边和价带边处于k空间不同点的半导体通常被称为间接带隙半导体。
形成半满能带不只需要吸收能量,还要该变动量。
例子有Ge,Si。
准费米能级:非平衡态的电子与空穴各自处于热平衡态--准平衡态,可以定义EFn、EFp分别为电子和空穴的准费米能级。
有效质量:在讨论半导体的载流子在外场力的作用下的运动规律时,由于载流子既受到外场的作用,又受到晶体内部周期性势场的作用,只要将内部势场的复杂作用包含在引入的有效质量中,并用它来代替惯性质量,就可以方便地采用经典力学定律来描写。
由于晶体的各向异性,有效质量和惯性质量不一样,它是各向异性的。
有效质量是半导体内部势场的概括。
纵向有效质量和横向有效质量:由于半导体材料的k空间等能面是椭球面,有效质量是各向异性的。
在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰,在分析时引入纵向有效高质量和横向有效质量表示旋转椭球等能面在长轴方向和短轴方向上的有效质量的差别。
是晶体各向异性的反映。
扩散长度: 指的是非平衡载流子在复合前所能扩散深入样品的平均距离,它由扩散系数和材料的非平衡载流子的寿命决定,即L=√Dt。
牵引长度:是指非平衡载流子在电场E作用下,在寿命t时间内所漂移的的距离, 即L(E)=Eut,有电场,迁移率和寿命决定。
费米能级:表示系统处于热平衡状态时,在不对外做功的情况下,增加一个电子所引起系统能量的变化。
它标志了电子填充能级水平,与温度,材料的导电类型以及掺杂浓度等因素有关。
电子亲和势:表示要使得半导体导带底的电子逃逸出体外(相对于真空能级)所需的最小能量,对半导体材料而言,它与导电类型,掺杂浓度无关。
复合中心:半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大的影响。
欧姆接触是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。
欲形成好的欧姆接触,有二个先决条件:(1)金属与半导体间有低的势垒高度(Barrier Height)(2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3)前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。
若半导体不是硅晶,而是其它能量间隙(Energy Cap)较大的半导体(如GaAs),则较难形成欧姆接触(无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Met al-p+-p等结构。
理论任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。
费米能级和真空能级的差值称作工函。
接触金属和半导体具有不同的工函,分别记为φM和φS。
当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。
从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。
最终得到的静电势称为内建场记为Vbi。
这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。
内建场是导致半导体连接处能带弯曲的原因。
明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。
欧姆接触或肖特基势垒形成于金属与n型半导体相接触。
欧姆接触或肖特基势垒形成于金属与p型半导体相接触。
在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能级跳到弯曲的导带顶。
穿越势垒所需的能量φB是内建势及费米能级与导带间偏移的总和。
同样对于n型半导体,φB = φM − χS当中χS是半导体的电子亲合能(electron affinity),定义为真空能级和导带(CB)能级的差。
对于p型半导体,φB = Eg − (φM − χS)其中Eg是禁带宽度。
当穿越势垒的激发是热力学的,这一过程称为热发射。
真实的接触中一个同等重要的过程既即为量子力学隧穿。
WKB近似描述了最简单的包括势垒穿透几率与势垒高度和厚度的乘积指数相关的隧穿图像。
对于电接触的情形,耗尽区宽度决定了厚度,其和内建场穿透入半导体内部长度同量级。
耗尽层宽度W可以通过解泊松方程以及考虑半导体内存在的掺杂来计算:在MKS单位制ρ 是净电荷密度而ε是介电常数。
几何结构是一维的因为界面被假设为平面的。
对方程作一次积分,我们得到积分常数根据耗尽层定义为界面完全被屏蔽的长度。
就有其中V(0) = Vbi被用于调整剩下的积分常数。
这一V(x)方程描述了插图右手边蓝色的断点曲线。
耗尽宽度可以通过设置V(W) = 0来决定,结果为对于0 < x < W,ρ = eNdopant是完全耗尽的半导体中离子化的施主和受主净电荷密度Ndopant以及e是电荷。
ρ和Vbi对于n型半导体取正号而对于p型半导体取负号,n型的正曲率V''(x)和p型的负曲率如图所示。
从这个大概的推导中可注意到势垒高度(与电子亲和性和内建场相关)和势垒厚度(和内建场、半导体绝缘常数和掺杂密度相关)只能通过改变金属或者改变掺杂密度来改变。
总之工程师会选择导电、非反应、热力学稳定、电学性质稳定且低张力的接触金属然后提高接触金属下方区域掺杂密度来减小势垒高度差。
高掺杂区依据掺杂种类被称为n + 或者p + 。
因为在隧穿中透射系数与粒子质量指数相关,低有效质量的半导体更容易被解除。
另外,小禁带半导体更容易形成欧姆接触因为它们的电子亲和度(从而势垒高度)更低。
上述简单的理论预言了φB = φM − χS,因此似乎可以天真的认为工函靠近半导体的电子亲和性的金属通常应该容易形成欧姆接触。
事实上,高工函金属可以形成最好的p型半导体接触而低工函金属可以形成最好的n型半导体接触。
不幸的是实验表明理论模型的预测能力并不比上述论断前进更远。
在真实条件下,接触金属会和半导体表面反应形成具有新电学性质的复合物。
界面处一层污染层会非常有效的增加势垒宽度。
半导体表面可能会重构成一个新的电学态。
接触电阻与界面间化学细节的相关性是导致欧姆接触制造工艺可重复性为如此巨大的制造挑战的原因。
肖特基接触是指金属和半导体材料相接触的时候,在界面处半导体的能带弯曲,形成肖特基势垒。
势垒的存在才导致了大的界面电阻。
与之对应的是欧姆接触,界面处势垒非常小或者是没有接触势垒。
AlGaN/GaN HEMT欧姆接触的研究进展裴风丽1,2,冯震2,陈炳若1(1武汉大学物理科学与技术学院,武汉430072;2中国电子科技集团公司第十三研究所,石家庄050051)1引言AlGaN/GaN是国际上广泛关注的新型宽禁带化合物半导体材料,具有较宽的禁带宽度(GaN:34eV,AlN:62eV),较高的击穿场强(1~3×1010V·cm-1),高电子饱和漂移速率(22×1010cm·s-1)以及良好的热稳定性。
与此同时,AlGaN/GaN异质结具有较大的导带不连续性,注入效率较高,界面处又有强烈的自发极化与压电极化效应,2DEG可达到很高的电子密度(不掺杂可达1013cm-2)。
因此凭借优良的材料特性,AlGaN/GaNHEMT在高温、高频、大功率器件方面有很好的应用前景。
2003年JoshinK等人[1]报道了用在WCDMA通信上174W输出功率的高效功率放大器。
2004年WuYF等人[2]报道了利用场板技术研制的GaNHEMT,在4GHz下输出的功率密度为32.2W/mm,PAE为54.8%;在8GHz下输出功率密度为30.6W/mm,PAE为496%。
2005年MoonJ等人[3]报道了工作在Ka波段30GHz的AlGaN/GaNHEMT输出功率密度达57W/mm,PAE为45%。
尽管目前国际上AlGaN/GaNHEMT的研制已经日趋成熟,并正走向应用,但要真正实现实用化的批量生产,还有许多亟待解决的问题。
欧姆接触的好坏直接影响到AlGaN/GaNHEMT的两个关键参数---跨导和饱和电流。
如何获得接触电阻小、表面形貌好、轮廓清晰度高和稳定可靠的欧姆接触是AlGaN/GaNHEMT研制的重要问题之一。
2欧姆接触的机理欧姆接触形成的机理可用金属与半导体接触的电流传输机制来说明。
以n型半导体与金属的接触为例,电子越过金属半导体结的输运方式有四种[4],如图1所示:(1)电子越过势垒顶部从半导体发射到金属中的热电子场发射机理;(2)量子力学隧道穿过势垒的场发射机理;(3)在空间电荷区中电子与空穴的复合;(4)在半导体中性区电子与空穴的复合。
在这四种输运方式中,第四种方式在一般情况下可忽略,第三种方式使肖特基势垒偏离理想行为,但也可用来形成欧姆接触。
为了实现AlGaN/GaNHEMT源和漏区的欧姆接触,可采用两种机制:一是尽可能地降低肖特基势垒高度;二是尽可能地使肖特基势垒变薄。
常用的方法有表面处理技术、金属化系统和重掺杂技术等。
3表面处理技术GaN和AlGaN的表面都很活跃,很容易被氧化。
另外,在材料的外延生长时,表面也容易吸附一些有机物,这种表面的氧化物和被吸附的有机物就在导电的外延层上形成一层绝缘层。
GaN和AlGaN都是极性很强的材料,表面态密度较低,费密能级钉扎效应较弱,经适当的表面处理,其表面态要比GaAs低一个数量级左右。
表面清洗和等离子处理就是目前常用的两种表面处理技术。
表面清洗是通过物理作用及化学反应破坏沾污物质与表面的作用力,以达到消除杂质污染清洁表面的作用。
SelvanathanD等人[5]研究了经SiCl4反应离子刻蚀过的n-GaN和n-Al0.2Ga0.8N表面,在室温下分别用BOE,HCl溶液和氨水来清洗,用XPS和AES分析发现用BOE清洗过的样品O/N比是最小的,BOE能最有效地去除经SiCl4反应离子刻蚀过的n-GaN和n-Al0.2Ga0.8N表面的氧化物。
除了表面清洗之外,离子刻蚀也常用来提高金属与半导体的欧姆接触特性。
SelvanathanD等人[5]发现用SiCl4离子处理GaN和AlGaN的表面费密能级向导带发生了偏移,这种偏移是由于N空位的产生增加了表面n型施主杂质的浓度。
ButtariD等人[6]提出了用Cl2离子刻蚀表面的氧化物和AlGaN层,用700nm的刻蚀深度使接触电阻从0.45Ω·mm降到0.27Ω·mm。
JeonCM等人[7]用室温欧姆接触制作了AlGaN/GaNHFET,该欧姆接触是用N2ICP进行表面处理的,N2等离子使非掺杂AlGaN表面产生了大量N空位。
ZhangAP等人[8]也研究了用N2流ICP来改善AlGaN/GaNHEMT的欧姆接触,在适度的离子流量(约为4×1016cm2·s-1)和低离子能(125eV)的条件下没有观察到AlGaN表面粗糙,在最优化的条件下离子处理减小了欧姆接触电阻。
4金属化系统4.1方案的设计欧姆接触的形成是一个复杂的过程,涉及到各种各样的固态反应,利用物理学、冶金学和化学的相关知识,设计包含多层金属的金属化系统,经加热金属化系统可能产生合金化或固相再生长,从而形成“金属重掺杂夹层半导体”的欧姆接触。
据文献[4,9]报道,GaN或AlGaN上合金欧姆接触的形成需要满足一些基本设计要求,图2为多层金属设计原理示意图。
首先是势垒层,该层选择金属的原则是能形成低阻、低功函数、薄的和热稳定的金属性势垒层化合物,能在GaN或AlGaN表面下形成高密度的N空位。
Ti,Ta,Zr和Co等符合要求,其中Ti具有难熔性,比其他几种金属具有更高的化学活性,功函数又低,是目前该层最常用的金属。
其次是覆盖层,该层金属起催化的作用,增强了N原子与势垒层金属原子的固相反应,另外它应和势垒层的金属形成薄的、低功函数和结实的合金相,甚至也和N原子形成了薄的氮化物。
目前,该层最常用的金属是Al。
第三是扩散阻挡层,一般帽层金属的功函数较高,当帽层金属的参与或半导体元素的过多外扩不利于欧姆接触的形成时,则在帽层与覆盖层之间沉积阻挡层以阻止各元素间相互扩散。
一般来说,熔点较高的金属特别是难熔金属,原子扩散能力较低,具有较好的扩散阻挡特性,如Pt,Pa,Ni,Cr,Mo,Ta和W等。
根据文献[10]报道,Mo是很好的扩散阻挡层材料,理由如下:Pt,Pa和Ni都是高功函数的金属,当这些金属扩散到GaN或AlGaN表面时,将导致M/S接触的势垒高度增加,不利于欧姆接触的形成;另外根据相图,在850℃的温度下,他们在Au中的溶度都比Mo要高;Ta和W很难蒸发,在其蒸发期间,由于温度很高导致光刻胶出现熔化的现象;Cr比Mo的熔点要低,电阻也比Mo大。