第7章 随机利率模型 0讲解
- 格式:ppt
- 大小:1.41 MB
- 文档页数:44
第七章 等价鞅测度模型和无套利均衡基本定理一、等价鞅测度的基本涵义1、鞅的定义:随机过程[Z n ,n ≥0]如果满足以下两个条件: (1)∞<||n Z E ,对于n ≥0的任何n 。
(2)n n n Z Z Z Z E =+}|{01 2、等价鞅测度的定义随机过程{S (t ),),0(+∞∈t }是一个鞅(对应于信息结构t φ和条件概率P *)如果对任意t >0,满足以下三个条件: (1)S (t )在t φ信息结构下已知。
(2)+∞<|)(|t S E(3)())()(t S T S E =τ,t <T ,以概率为1成立。
即∑===ki t i t S S P T S E 1)(*}|)({*φ式中T 时S (T )的可能取值S 1,S 2……S k 共k 种,P*为相应的条件概率。
则称条件概率P*为真实概率P 的等价鞅测度或等价鞅概率。
根据等价鞅测度的关系,正是表达风险中性定价原则,即各阶段依信息结构t φ决定的条件概率所求的平均价值的现值,总与初始阶段的价值相等,这样就可以求解条件概率P*,在无套利条件下作为现实世界的P ,为期权的风险中性定价服务。
为了更好地理解风险中性定价,我们可以举一个简单的例子来说明。
假设一种不支付红利证券(no-dividend-paying )目前的市价为100元,我们知道在半年后,该股票价格要么是110元,要么是90元。
假设现在的无风险年利率等于10%,现在我们要找出一份6个月期协议价格为105元的该股票欧式看涨期权的价值。
由于欧式期权不会提前执行,其价值取决于半年后证券的市价。
若6个月后该股票价格等于110元,则该期权价值为5元;若6个月后该股票价格等于90元,则该期权价值为0。
为了找出该期权的价值,我们假定所有投资者都是风险中性的。
在风险中性世界中,我们假定该股票上升的概率为P*,下跌的概率为1-P*。
这种概率被称为风险中性概率,它与现实世界中的真实概率是不同的。