神经干动作电位传导速度的测定
- 格式:doc
- 大小:21.00 KB
- 文档页数:4
任务8 神经干动作电位及其传导速度的测定(虚拟实验)【任务要求】1、操作“神经干动作电位及其传导速度的测定”模拟实验2、神经干的单、双相复合动作电位的记录3、神经干动作电位的传导速度测定【知识目标】1、加深理解神经冲动形成和传导的原理2、强化刺激与反应、兴奋与抑制、兴奋性与刺激阈的概念与关系【技能目标】1、学习模拟实验教学软件的使用方法2、学会观察神经干的单、双相复合动作电位3、学习神经干动作电位传导速度的测定方法【态度目标】1、培养科学研究的兴趣;2、培养自主学习的能力。
【实施步骤】(一)实验准备1、实验环境:机能实验室2、仪器设备:生物信号采集系统,模拟实验教学软件3、实验人员:阅读实验教程、预习教学软件使用说明;穿工作服。
(二)实施与检查1、打开模拟实验教学软件,进入“神经干动作电位”模拟实验菜单,选择具体实验项目,进入具体实验项目后,根据提示即可进行模拟实验。
2、选择“神经干动作电位的观察” 实验项目,观察神经干的单、双相复合动作电位,分析和判别动作电位的波形,测量其波幅、时程及潜伏期。
3、选择“神经干传导速度的测定” 实验项目,学习测定方法。
4、完成实验,退出模拟实验教学软件。
(三)分析与评价1、实验结果收集、整理,以备分析和讨论使用。
2、环境清洁,关闭电源。
3、心得分享,相互切磋,正确评价。
【注意事项】1、请认真按实验软件指示操作,不进行与本实验无关的操作,及时记录数据并绘制曲线。
2、在使用软件的过程中如有疑问,应及时请教带教老师。
【思考与探索】1、何谓刺激伪迹?有何意义?2、随着刺激强度的逐步增加,神经干动作电位的幅度和波形有何变化?为什么?3、神经干双相动作电位的前后相有何不同?为什么?。
神经干动作电位传导速度的测定原理引言:神经干动作电位传导速度是指神经纤维中电信号传导的速度。
它是衡量神经系统功能的重要指标,对于诊断和治疗神经疾病具有重要意义。
本文将介绍神经干动作电位传导速度的测定原理及相关知识。
一、神经干动作电位的定义神经干动作电位是指神经纤维兴奋后,在其上产生的电信号。
当神经纤维被刺激时,离开刺激点的电信号会沿着神经纤维传导,从而形成干动作电位。
二、神经干动作电位传导速度的意义神经干动作电位传导速度是评估神经纤维功能的重要指标。
在临床诊断中,通过测定神经干动作电位传导速度,可以判断神经纤维是否正常,以及是否存在神经传导速度慢或中断等异常情况。
在神经疾病的治疗中,也可以通过监测神经干动作电位传导速度的变化,评估治疗效果。
三、神经干动作电位传导速度的测定方法神经干动作电位传导速度的测定方法主要包括传统方法和现代方法。
1. 传统方法传统方法是通过电极记录干动作电位,然后根据刺激点和记录点之间的距离以及信号传导时间来计算传导速度。
这种方法的优点是简单易行,但测量的误差较大。
2. 现代方法现代方法利用电刺激器和电极阵列,对神经纤维进行刺激和记录。
通过将多个电极放置在不同位置,可以同时记录多个干动作电位,从而提高测量的准确性。
此外,现代方法还可以利用计算机和相关软件进行信号处理和分析,进一步提高测定的精确度。
四、神经干动作电位传导速度的影响因素神经干动作电位传导速度受多种因素的影响,主要包括以下几个方面:1. 神经纤维类型:不同类型的神经纤维传导速度不同。
例如,A型神经纤维传导速度较快,而C型神经纤维传导速度较慢。
2. 温度:体温的升高可以加快神经干动作电位的传导速度,而体温的降低则会减慢传导速度。
3. 神经病变:神经病变会影响神经纤维的传导功能,从而导致传导速度减慢或中断。
4. 神经纤维直径:神经纤维的直径越大,传导速度越快。
五、神经干动作电位传导速度的临床应用神经干动作电位传导速度的测定在临床上具有广泛的应用。
神经干动作电位传导速度的测定实验对象:蟾蜍一实验目的掌握坐骨神经标本的制备方法。
掌握引导神经干复合动作电位和测定其传导速度的基本原理。
二相关知识(一)兴奋及兴奋性的概念(二)动作电位的潜伏期、动作电位时程和幅值1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础上发生一次短暂的,可向周围扩布的电位波动。
这种电位波动称为动作电位。
(三)、动作电位的传导局部电流的形式1、细胞外记录2、神经干的动作电位神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。
三实验原理(一)、单根神经纤维动作电位的引导及其传导1、记录出了一个先升后降的双相动作电位的原理当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。
在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。
这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。
负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。
当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。
如果互换正、负电极的位置,则记录到先降后升的双相动作电位。
C. A点神经纤维多于B点(次要原因)。
(二)、神经干动作电位的引导及其传导四实验步骤(一)、制备蛙类坐骨神经-胫腓神经标本通过观看录象让学生学习制作方法(二)、连接实验装置注意电极的安装,正负不要接反。
神经干动作电位传导速度的测定及不应期神经干动作电位(ACTION POTENTIAL)是神经元在受到刺激后产生的一种电信号,它的传导速度可以反映神经元的功能状态,测定神经干动作电位传导速度及不应期对临床诊断具有重要意义。
神经干电刺激对神经传递的影响取决于刺激的强度、刺激的波形、刺激的频率以及神经病理的程度等因素。
神经病理可以导致神经元的功能损害,这将影响神经干动作电位的产生和传导。
因此,测定神经干动作电位传导速度及不应期是一种常用的神经生理检查方法,可以评估神经系统的正常功能和病理情况。
神经干动作电位的传导速度取决于多个因素,包括神经元的轴突直径、髓鞘的存在、髓鞘的厚度、Na+、K+离子通道的数目和分布等。
在传导速度的测定中,可以通过电极对神经元进行刺激和检测,例如可以将电极放置在相距一定距离的相应位置上测量信号传递的时间。
在神经干动作电位传导速度的测定中,可以采用多种刺激方式,包括直接刺激、间接刺激和磁刺激。
其中,间接刺激是一种相对安全和可靠的方法。
在间接刺激中,使用一个高频脉冲刺激一个中枢神经干,同时在距离刺激位置一定距离内的皮肤表面上测量到反射的神经干动作电位。
在此基础上,可以计算出该神经干的传导速度,从而评估神经系统是否正常。
除了传导速度外,不应期也是评估神经系统功能的重要指标之一。
神经不应期是指神经元在发放一个动作电位后不能立即再次被兴奋的时间,不应期的长短取决于神经元的生物学特性,在某些神经病理情况下,不应期会有所改变。
测定神经干动作电位的不应期可以通过间隔给神经干传递脉冲来测定。
在这个过程中,脉冲与脉冲之间的间隔时间被逐渐缩短,直到神经元再次被兴奋。
这个过程可以通过测量神经干动作电位的延迟时间来评估神经元的不应期。
总体来说,神经干动作电位传导速度的测定及不应期是一种重要的神经生理检查方法,可以评估神经系统的正常功能和病理情况,对于神经病理的诊断和治疗具有重要意义。
实验二神经干动作电位及传导速度的测定【实验目的】学习神经干动作电位的测定方法,观察动作电位的波形、时程、幅度,学会测定动作电位的传导速度。
【实验原理】神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。
如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相动作电位。
神经细胞的动作电位是以“全或无”方式发生的。
坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。
复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。
用蟾蜍坐骨神经-胫腓神经标本来观察神经干动作电位及其传导,测定神经兴奋传导速度。
【实验对象】蟾蜍或蛙【实验材料】生物机能实验系统、神经标本屏蔽盒、蛙类手术器械、剪刀、手术剪、镊子、探针、玻璃分针、滴管、培养皿、烧杯、锌铜弓、棉花、缝线、任氏液。
【方法和步骤】1.制备蟾蜍坐骨神经干标本(1)破坏脑和脊髓取蟾蜍一只,用水洗净。
左手握住蟾蜍,用示指压住头部前端使头前俯。
右手持探针从枕骨大孔垂直刺入,左右划动,横断脑和脊髓。
再将探针刺入颅腔,左右搅动捣毁脑髓。
然后将探针撤回向后伸入椎管破坏脊髓。
当脑和脊髓完全破坏时,此时蟾蜍的呼吸停止,四肢松软。
(2)剪除躯干上部及内脏在骶髂关节水平以上 1.5~2.0cm处剪断脊柱。
左手握蟾蜍后肢,使蟾蜍头与内脏下垂,右手持普通剪刀,沿脊柱断端两侧剪除内脏及头胸部,仅留下后肢、骶骨、脊柱及由它发出的坐骨神经。
(3)剥皮左手握脊柱断端,右手捏住其上的皮肤边缘,向下剥掉全部后肢的皮肤,将标本放在盛有任氏液的培养皿中。
(4)分离左右两腿用镊子将标本提起,剪去向上突出的骶骨,梨状肌(注意勿损伤坐骨神经),然后沿正中线用普通剪刀将脊柱分为两半,并从耻骨联合中央剪开两侧大腿,放在盛有任氏液的培养皿中。
(5)制作坐骨神经-胫腓神经标本取出一侧下肢,用蛙钉固定于蛙板上。
For personal use only in study and
research; not for commercial use
神经干动作电位传导速度的测定
实验对象:蟾蜍
一实验目的
掌握坐骨神经标本的制备方法。
掌握引导神经干复合动作电位和测定其传导速度的基本原理。
二相关知识
(一)兴奋及兴奋性的概念
(二)动作电位的潜伏期、动作电位时程和幅值
1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础
上发生一次短暂的,可向周围扩布的电位波动。
这种电位波动称为动作电位。
(三)、动作电位的传导
局部电流的形式
1、细胞外记录
2、神经干的动作电位
神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。
三实验原理
(一)、单根神经纤维动作电位的引导及其传导
1、记录出了一个先升后降的双相动作电位的原理
当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。
在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。
这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。
负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。
当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。
如果互换正、负电极的位置,则记录到先降后升的双相动作电位。
C.?? A点神经纤维多于B点(次要原因)。
(二)、神经干动作电位的引导及其传导
四实验步骤
(一)、制备蛙类坐骨神经-胫腓神经标本
通过观看录象让学生学习制作方法
(二)、连接实验装置
注意电极的安装,正负不要接反。
(三)、实验参数设置:
(四)、实验观察、记录和测量
启动刺激器,逐渐增大刺激强度,确定阈刺激(阈强度)和最大刺激强度。
调节刺激强度至图形最佳并记录双相动作电位。
?
?一、蟾蜍坐骨神经干动作电位引导及传导速度测定?
实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。
熟悉仪器设备的操作。
?
实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。
?
潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的
距离,v=???(s2-s1)/(t2-t1)。
??
实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。
????????????
2.连接仪器,引导动作电位波形。
?
???? 3.剪裁编辑图形,计算传导速度。
?
五实验结果:
?1.预刺激电位的测量:电压从0.10V向上递增,最终在0.16V的电压下开始发现波动,得知预刺激电位为0.16V。
2.最适刺激电位的测量:从0.16v开始向上递增电压,波形的振幅不断增大,最终在0.30V时达到最大,继续增大电压振幅不再发生变化,得知最适刺激电位为0.30v
3. 传导速度的测定:由图像可知,A,B两个通道的动作电位波峰之间的时间差为0.48ms,又已知两个红色电位夹之间的距离为1cm,由此可得传导速度为
v=1cm/0.48ms=20.83m/s
?
六?分析讨论:?
1.?刺激引起组织兴奋必须在三方面达一定值,即一定的刺激强度,一定刺激持续时间及强度/时间变化率,本实验固定时间和强度/时间变化率,用连续两次同样的刺激作用神经干,观察第二次刺激能刚好能引起动作电位产生的时间即为绝对不应期,第二次刺激
刚好能引起相同大小的动作电位则可测出相对不应期.?
2.?一条神经干中有无数条神经纤维,每条神经纤维的直径和长度不同,膜特性也不完全一样,故兴奋性不同,阈值各异,而本实验记录到的双相动作电位是神经干中各条神经纤维动作电位的复合表现,故随着刺激强度的增大双相动作电位幅度也增大.?
3.?神经纤维传导兴奋需要神经具有生理完整性,即结构和功能完整,?
4.?神经干结扎棉线不要留得太长,以免引起干扰信号,调整接地电极的位置可减小刺激伪迹的干扰作用,如果实验中未能引导出动作电位曲线,可检查以下项目::(1)坐骨神经干在分离过程中是否损伤(2)刺激电极的极性是否接反(3)引导电极是否接上或神经
标本是否与引导电极接触良好(4)记录系统灵敏度是否调到一定大小。
?
?
实验结论:
(一)、备的标本尽可能长些,避免损伤。
(二)、标本不能接触屏蔽盒或发生折返。
(三)、制备标本时要经常向神经干滴加林格液,保持标本湿润,但屏蔽盒内不可积液。
(四)、电刺激强度要逐渐增加,找到最大强度后再向下调整刺激强度至波形最佳状态。
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschun g, zu kommerziellen Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。