神经干动作电位实验报告
- 格式:docx
- 大小:13.43 KB
- 文档页数:2
神经干动作电位实验报告一、实验目的研究神经干动作电位的基本特征及产生机制。
二、实验原理神经细胞的兴奋状态可以通过记录神经干动作电位来研究。
神经干动作电位是由大量神经细胞同时产生的、电位差较大的电信号。
当神经细胞兴奋峰值超过一定阈值时,会产生神经冲动,传导到轴突末梢,并触发神经干动作电位。
三、实验器材和试剂1.脉冲发生器2.示波器3.探针4.青蛙腓肠神经5.盐水试剂四、实验步骤1.准备工作:将青蛙放入盐水中,使其神经麻痹,然后取出青蛙腓肠神经进行实验。
2.将脉冲发生器的输出端与示波器的输入端相连接,将示波器的探针分别连接到接地端和腓肠神经上。
3.调整脉冲发生器的参数,包括幅值、频率和脉冲宽度等,观察示波器上的波形变化。
4.记录神经干动作电位的波形、幅值和频率等特征。
五、实验结果和分析根据实验结果及已知知识,我们可以进一步分析神经干动作电位的产生机制。
神经细胞内外的离子浓度存在差异,细胞外Na+浓度较高,而细胞内K+浓度较高。
当神经细胞兴奋时,细胞膜上的离子通道会打开,导致Na+离子大量进入细胞内,从而产生快速上升期;随后,Na+通道关闭,而K+通道打开,导致K+离子大量流出,产生快速下降期。
在超极化期,细胞膜上的Na+/K+泵恢复细胞内外离子的平衡,使细胞膜电位恢复至静息状态。
六、实验结论通过神经干动作电位实验,我们掌握了神经干动作电位的基本特征和产生机制。
神经干动作电位具有典型的波形特征,包括快速上升期、峰值期、快速下降期和超极化期。
神经细胞的兴奋状态可以通过记录神经干动作电位来研究,并且神经干动作电位的产生是由于细胞内外离子浓度差异以及离子通道的打开和关闭所导致的。
七、实验总结神经干动作电位是研究神经细胞兴奋状态的重要方法之一、通过实验,我们不仅了解了神经干动作电位的基本特征和产生机制,还掌握了记录和观察神经干动作电位的实验技巧。
该实验对于进一步研究神经细胞的功能和机制具有重要意义。
神经干动作电位的实验报告神经干动作电位的实验报告引言:神经干动作电位(nerve conduction action potential)是指神经细胞在受到刺激后产生的电信号,它是神经系统正常功能的重要指标之一。
本实验旨在研究神经干动作电位的特征及其在临床应用中的意义。
实验方法:本次实验采用了小鼠尾神经为研究对象。
首先,将小鼠固定在实验台上,用电刺激仪器对尾神经进行刺激。
刺激强度和频率分别为10mA和1Hz。
同时,使用电极记录尾神经上的动作电位,并将信号放大放大后通过示波器显示和记录。
实验结果:经过实验记录和数据分析,我们得到了以下结果:1. 动作电位的波形特征:在实验中,我们观察到尾神经上的动作电位呈现出典型的波形特征。
首先是负向的初始反应,随后是正向的峰值反应,最后是负向的复极化反应。
这一波形特征反映了神经细胞在受到刺激后的电活动过程。
2. 动作电位的幅值和潜伏期:通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性。
实验结果显示,动作电位的幅值和潜伏期与刺激强度和频率呈正相关关系。
这一结果表明,神经传导速度和神经细胞的兴奋性受到刺激强度和频率的调节。
3. 动作电位的传导速度:实验结果显示,动作电位在尾神经中的传导速度为Xm/s。
这一结果与已有的文献报道相符,进一步验证了本实验的可靠性。
实验讨论:神经干动作电位的实验结果对于临床应用具有重要意义。
首先,通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性,从而诊断和监测神经系统疾病。
例如,在神经病学领域,动作电位的异常可以提示神经疾病的存在和发展。
其次,动作电位的传导速度可以用来评估神经损伤的程度和康复进展。
在临床上,这对于神经损伤患者的康复治疗和预后评估非常重要。
此外,神经干动作电位的实验方法还可以应用于药物研发和毒理学研究中。
通过测量动作电位的变化,我们可以评估药物对神经细胞兴奋性的影响,从而指导药物的合理使用和毒性评估。
神经干动作电位的引导实验报告一、实验目的1、学习并掌握神经干动作电位的引导方法。
2、观察神经干动作电位的基本特征,包括双相动作电位和单相动作电位。
3、了解刺激强度、刺激频率对神经干动作电位的影响。
二、实验原理神经干由许多神经纤维组成,在神经干的一端给予电刺激,产生的兴奋会沿着神经纤维传导。
由于不同神经纤维的兴奋性和传导速度不同,因此记录到的神经干动作电位是由多个神经纤维动作电位复合而成的。
动作电位是指可兴奋细胞在受到刺激时,细胞膜电位在静息电位的基础上发生的一次快速、可逆、可传播的电位变化。
在神经纤维上,动作电位表现为“全或无”的特性,即刺激强度达到阈值时,动作电位产生,且幅度不随刺激强度的增加而增大。
当在神经干的一端给予刺激时,兴奋会向两端传导,在记录电极处可记录到双相动作电位。
如果将两个记录电极之间的神经干损伤,兴奋只能通过未损伤的部位向一个方向传导,此时记录到的是单相动作电位。
三、实验材料1、实验动物:蟾蜍2、实验器材:蛙类手术器械、神经屏蔽盒、刺激电极、引导电极、生物信号采集处理系统、任氏液等。
四、实验步骤1、制备蟾蜍坐骨神经干标本破坏蟾蜍的脑和脊髓,将其仰卧固定在蛙板上。
从脊柱的下部开始,沿脊柱两侧剪开皮肤,分离肌肉,暴露脊柱。
用玻璃分针分离出坐骨神经,尽量去除神经周围的结缔组织和血管,将神经干从梨状肌下孔中轻轻拉出,在其下面穿线,结扎并剪断神经的分支,制成约 3-4cm 长的坐骨神经干标本。
将标本放入装有任氏液的培养皿中备用。
2、连接实验装置将神经干标本置于神经屏蔽盒内,用棉花蘸取任氏液保持标本湿润。
刺激电极连接刺激输出端,引导电极连接信号输入端,接地电极接地。
3、调节实验参数打开生物信号采集处理系统,选择合适的采样频率和增益。
设置刺激参数,包括刺激强度、刺激波宽、刺激频率等。
4、引导神经干动作电位给予神经干单个刺激,观察并记录双相动作电位。
逐渐增加刺激强度,观察动作电位的幅度变化,确定阈值和最大刺激强度。
⽣理学实验神经⼲动作电位的测定实验四神经⼲动作电位的测定【实验⽬的】学习⽣物电活动的细胞外记录法;观察坐⾻神经⼲动作电位的基本波形、潜伏期、幅值以及时程。
【实验原理】神经组织属于可兴奋组织,其兴奋的客观标志是产⽣动作电位,即当受到有效刺激时,膜电位在静息电位的基础上将发⽣⼀系列的快速、可逆、可扩布的电位变化。
动作电位可以沿着神经纤维传导。
在神经细胞外表⾯,已兴奋的部位带负电,未兴奋的部位带正电。
采⽤电⽣理学实验⽅法可以引导出此电位差或电位变化,根据引导的⽅式不同,所记录到的动作电位可呈现单向或双向的波形。
由于坐⾻神经⼲是由许多神经纤维组成的,所以其产⽣的动作电位是众多神经纤维动作电位的叠加,即为⼀个复合动作电位。
这些神经纤维的兴奋性是不同的,所以在⼀定范围内增⼤刺激强度可以使电位幅度增⼤。
这和单⼀细胞产⽣的动作电位是有区别的。
本实验所引导出的动作电位即为坐⾻神经⼲的复合动作电位。
【实验对象】蛙或蟾蜍。
【实验材料】两栖类⼿术器械 1 套、滴管、BL-410⽣物机能实验系统、神经屏蔽盒、刺激电极、接收电极、任⽒液。
【实验步骤】1.制备坐⾻神经⼲标本坐⾻神经⼲标本的制备⽅法与制备坐⾻神经-腓肠肌标本相似。
⾸先按照制备坐⾻神经- 腓肠肌标本的⽅法分离坐⾻神经,当游离⾄膝关节处时,在腓肠肌两侧找到胫神经和腓神经,任选其⼀剪断,然后分离留下的⼀⽀直⾄⾜趾并剪断。
保留与坐⾻神经相连的⼀⼩段脊柱,其余组织均剪除。
此时,即制成了坐⾻神经⼲标本。
将标本浸于任⽒液中,待其兴奋性稳定后开始实验。
2.接标本与实验仪器1)棉球沾任⽒液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电(图 4-1 屏蔽盒)极端(即 0刻度端),其神经部分横搭在各个电极上。
2)取出 BL-410 ⽣物机能实验系统专⽤刺激电极,将其插头插在与主机“刺激”插⼝中,另⼀端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接⼝上。
红⾊接正极,⿊⾊接负极。
一、实验目的1. 理解神经干动作电位的基本概念和形成机制。
2. 掌握神经干动作电位的引导方法和步骤。
3. 通过实验观察神经干动作电位的特点,包括波形、传导速度和不应期。
4. 分析神经干动作电位在不同条件下的变化,如刺激强度、损伤和药物作用等。
二、实验原理神经干动作电位是神经纤维在受到有效刺激时产生的可传导的电位变化,是神经细胞兴奋的客观标志。
神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
三、实验材料1. 实验对象:青蛙或蟾蜍2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N系统四、实验方法和步骤1. 制备神经标本:将青蛙或蟾蜍处死,解剖出坐骨神经干,用任氏液浸泡并保持湿润。
2. 安放引导电极:将引导电极固定在神经干上,确保电极与神经干良好接触。
3. 安放刺激电极:将刺激电极固定在神经干上,距离引导电极适当距离。
4. 启动试验系统:连接BL-420N系统,打开软件,设置实验参数。
5. 观察记录:逐渐增加刺激强度,观察并记录神经干动作电位的波形、传导速度和不应期。
6. 分析实验结果:分析不同刺激强度下神经干动作电位的变化,以及损伤和药物作用对神经干动作电位的影响。
五、实验结果1. 神经干动作电位波形:观察到神经干动作电位呈双相波形,第一相为上升支,第二相为下降支。
2. 神经干动作电位传导速度:随着刺激强度的增加,神经干动作电位传导速度逐渐提高。
3. 神经干动作电位不应期:观察到神经干动作电位存在不应期,不应期随刺激强度的增加而缩短。
六、讨论1. 神经干动作电位的形成机制:神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
2. 刺激强度对神经干动作电位的影响:随着刺激强度的增加,神经干动作电位传导速度逐渐提高,不应期缩短。
神经干动作电位实验报告
一、实验目的
1. 学习蛙的坐骨神经干标本的剥制方法;
2.学习动作电位的测定方法;
3.了解双相和单相神经动作电位产生的基本原理。
二.原理
神经或肌肉发生兴奋时,兴奋部位发生电位变化,这种可扩布性的电位变化即为动作电位。
三、试剂与器材
蟾蜍或蛙、计算机、生物信号处理系统、解剖针、手术剪、眼科剪、圆头手术镊、尖头手术镊、玻璃勾针、神经屏蔽盒及连接导线,任氏液、棉花、蛙板、烧杯。
四、实验内容(步骤)
(一)坐骨神经标本的制备(看示范和录象)
(二)连接实验装置
(三)实验观察
1. 动作电位的观察:
2. 倒换神经干的放置方向,动作电位有无变化。
3. 在两记录电极之间滴上KCl溶液,观察动作电位的变化。
观察到变化后,用任氏液洗掉KCl溶液,直至动作电位恢复。
4. 在两电极之间滴上普鲁卡因,观察动作电位的变化。
(四)不应期的测定
采用双刺激。
调节刺激器的“延时”,逐渐缩短两刺激之间的时间间隔。
观察出现的效应
五.注意事项
标本剥制过程,尽量减少神经的损伤;
刺激参数设置要合理,过大会损毁神经。
双刺激的参数要一致。
六、结果和目标
观察和记录神经干动作电位并对其特性进行分析;
测出动作电位的各个时期;
测出绝对不应期和相对不应期。