(完整word)初二几何面积法
- 格式:doc
- 大小:195.52 KB
- 文档页数:4
面积几何知识点总结初中一、平行四边形的面积平行四边形的面积公式为:S=底×高其中,底表示平行四边形的任意一条边的长度,高表示底到对角线的距离。
二、长方形、正方形和矩形的面积长方形、正方形和矩形都属于平行四边形,因此它们的面积公式也可以通过底和高来计算。
长方形的面积公式为:S=长×宽正方形的面积公式为:S=边长×边长矩形的面积公式为:S=长×宽三、三角形的面积三角形的面积公式为:S=底×高÷2其中,底表示三角形的底边长度,高表示底边到顶点的垂直距离。
四、梯形的面积梯形的面积公式为:S=(上底+下底)×高÷2其中,上底和下底分别表示梯形的上底和下底的长度,高表示梯形的高度。
五、圆的面积圆的面积公式为:S=πr²其中,r表示圆的半径,π表示圆周率,约等于3.14。
以上是初中阶段学习的常见平面图形的面积计算公式,接下来我们将介绍一些面积性质和应用。
六、平面图形面积的性质1. 同样是四边形,其它条件相同时,长方形的面积最大,正方形次之,矩形最小。
2. 三角形的面积与底和高的乘积成正比。
3. 圆的面积与半径的平方成正比。
七、面积的应用1. 在日常生活中,人们常常需要测量房屋、土地的面积,以便做出合理的规划和设计。
2. 在商业活动中,面积的计算也是非常重要的,比如建筑物的施工、地毯的铺设等。
3. 在科学研究中,许多领域需要对空间的面积进行计算,比如地理学、农业学、建筑学等。
总之,面积是一个常见的几何量,它涉及到多种平面图形的计算和性质,对我们的日常生活和工作都有很大的影响。
因此,学习面积几何知识是非常重要的,它不仅可以提高我们的数学素养,还能帮助我们更好地理解和应用数学知识。
希望同学们能够认真学习面积几何知识,灵活运用它们,提高数学成绩,为将来的学习和工作打下坚实的基础。
A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
初中求面积的常用方法
1. 直接计算法:对于简单的图形,可以直接根据公式计算面积,如长方形的面积为长乘以宽,正方形的面积为边长的平方,三角形的面积为底边乘以高再除以2等。
2. 分割法:对于复杂的图形,可以将其分割为若干个简单的图形,计算出每个简单图形的面积,然后将它们相加即可得到整个图形的面积。
例如,对于一个不规则的多边形,可以将它分割为多个三角形,计算每个三角形的面积再相加。
3. 同等面积法:若两个图形有相等的面积,可以利用较简单的图形计算出面积,然后利用两个图形的面积相等的性质,直接得到另一个图形的面积。
例如,一个不规则的四边形和一个已知面积的矩形相等,可以通过计算矩形面积知道四边形的面积。
4. 数学推导法:通过利用几何概念和数学推导,可以得到一些特殊图形的面积公式。
例如,圆的面积公式为πr²,其中r为
半径。
这种方法通常要求对相关的数学知识有一定的掌握。
以上是初中常用的求面积方法,但实际上还有很多其他的方法,具体使用哪种方法取决于图形的形状和题目要求。
几何形的面积计算方法几何学是研究空间、形状、大小和相对位置的学科,而几何形的面积计算方法是其中一个重要的应用领域。
本文将介绍一些常见几何形的面积计算方法,包括矩形、三角形、圆形和梯形。
1. 矩形的面积计算方法:矩形是一种具有四个直角的四边形,其面积可以使用矩形的长度和宽度来计算。
公式:面积 = 长度 ×宽度2. 三角形的面积计算方法:三角形是由三条线段组成的图形,其面积可以使用三角形的底边长度和高度来计算。
公式:面积 = 底边长度 ×高度 / 23. 圆形的面积计算方法:圆形是一个封闭的曲线,其面积可以使用圆的半径或直径来计算。
公式:面积= π × 半径²或面积= π × (直径/2)²其中,π是一个常数,约等于3.14159。
4. 梯形的面积计算方法:梯形是由两条平行线段和连接它们的两条斜线段组成的四边形,其面积可以使用梯形的上底、下底和高度来计算。
公式:面积 = (上底 + 下底) ×高度 / 2除了以上介绍的几何形,还有许多其他几何形的面积计算方法。
例如,正方形的面积计算方法与矩形相同,都是长度乘以宽度;平行四边形可以通过基础和高度来计算面积;圆环可以通过两个圆的面积之差来计算等等。
对于每个几何形,了解其特定的面积计算公式是非常重要的。
除了使用公式计算面积外,还可以通过几何形的分解和重组来计算面积。
例如,圆环的面积可以通过将圆环切割成几个扇形、三角形和矩形来计算每个形状的面积,然后将它们相加得到总面积。
在实际应用中,计算几何形的面积是非常常见的。
例如,建筑设计中需要计算房间的面积来确定地板覆盖材料的数量;土地测量中需要计算不规则地块的面积来确定土地的价值等。
因此,熟练掌握各种几何形的面积计算方法对于许多行业和领域都是至关重要的技能。
总结起来,本文介绍了一些常见几何形的面积计算方法,包括矩形、三角形、圆形和梯形。
除了使用公式计算面积外,还可以通过几何形的分解和重组来计算面积。
面积法在中学数学解题中的巧用利用同一图形的面积相等,可以列方程计算线段的值,或证明线段间的数量关系;利用图形面积的和、差关系列方程,将相等的高或底约去,可以计算或证明线段间的数量关系。
利用等积变形,可以排除图形的干扰,实现“从形到数”的转化,从而从数量方面巧妙地解决问题。
用面积法解题就是根据题目给出的条件,利用等积变换原理和有关面积计算的公式、定理或图形的面积关系进行解题的方法。
运用面积法,巧设未知元,可获“柳暗花明”的效果。
有关面积的公式(1)矩形的面积公式:S=长⨯宽 (2)三角形的面积公式:ah S 21=(3)平行四边形面积公式: S=底⨯高(4)梯形面积公式: S=21⨯(上底+下底)⨯高(5)对角线互相垂直的四边形:S=对角线乘积的一半(如正方形、菱形等) 有关面积的公理和定理 1、面积公理(1)全等形的面积相等;(2)一个图形的面积等它各部分面积之和; 2、相关定理(1)等底等高的两个三角形面积相等;夹在平行线间的两个共底的三角形面积相等;如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD(2)等底等高的平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;(3)等底的三角形、平行四边形面积之比等于其高之比;等高的三角形、平行四边形面积之比等于其底之比;(4)相似三角形的面积的比等于相似比的平方;(5)在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;(6)等底等高的平行四边形面积是三角形面积的2倍。
一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的15%,黄色三角形的面积是21平方厘米。
问:长方形的面积是__________平方厘米。
等面积法的应用一:利用平行线间两个共底的三角形面积相等解题。
如图,矩形ABCD 中,AB=3cm ,AD=6cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且EF=2BE ,则AFC S =△ 9 2cm如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D 为止。
专题复习一、面积法何谓面积法在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。
(一)证明面积问题常用的理论依据用面积法解几何问题常用到下列性质:1、全等三角形的面积相等;2、三角形的中线把三角形分成面积相等的两部分;3、同底同高或等底等高的两个三角形面积相等。
4、同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
一、证线段相等1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CEED C B A2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F.求证:DE=DF.3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF.P(2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。
F ED CB AP A B C4、(1)已知等边△ABC 内有一点P ,PD ⊥AB ,PE ⊥BC ,PF ⊥CA ,垂足分别为D 、E 、F ,又AH 为△ABC 的高,求证:PD+PE+PF=AH. PH F E D C B A(2)若P 是等边△ABC 外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。
AB C DE F H P二、证角相等5、点C 是线段AB 上一点,分别以AC 、BC 为边在AB 同侧作等边△ACD 和等边△BCE ,连接BD 、AE 交于O 点,再连接OC ,求证:∠AOC=∠BOC.1、Rt △ABC 中,∠BAC=90°,AB=3,M 为边BC 上一点,连接AM ,若将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点B ′处,那么点M 到AC 的距离是 。
深入初二数学教材中的立体几何面积计算在初中数学教材中,立体几何面积计算是一个重要的知识点。
通过深入学习和理解,我们可以掌握不同几何体的面积计算方法,并应用于实际问题中。
本文将深入初二数学教材,探讨立体几何面积计算的相关内容。
一、平面图形面积计算在初二数学教材中,我们首先学习了平面图形的面积计算。
对于不规则图形,我们可以利用近似方法,将其分割为许多小矩形,然后计算出每个小矩形的面积,并将所有小矩形的面积相加,即可得到整个图形的面积。
而对于规则图形,比如矩形、三角形等,我们可以直接使用相应的公式计算面积。
以矩形为例,一个矩形的面积可以通过长乘以宽来计算,即$S=长\times宽$。
而三角形的面积可以通过底长乘以高的一半来计算,即$S=\frac{1}{2}\times底\times高$。
通过掌握这些公式,我们可以准确地计算出各种平面图形的面积。
二、立体几何体表面积计算除了平面图形的面积计算,初二数学教材还教授了立体几何体的表面积计算。
常见的立体几何体包括长方体、正方体、圆柱体、圆锥体和球体等。
对于长方体和正方体,我们可以分别计算出它们的侧面积、底面积和顶面积,然后将这些面积相加,即可得到整个立体几何体的表面积。
而对于圆柱体、圆锥体和球体,我们需要根据不同的情况选择相应的计算公式。
以圆柱体为例,它的表面积包括两个底面的面积和一个侧面的面积。
底面的面积可以通过$\pi\times半径^2$来计算,而侧面的面积可以通过圆周长乘以高来计算,即$2\pi\times半径\times高$。
将底面的面积和侧面的面积相加,即可得到圆柱体的表面积。
三、实际问题中的应用初二数学教材中的立体几何面积计算不仅仅是为了纯粹的理论推导,更是为了能够应用到实际问题中。
通过学习立体几何面积计算,我们可以解决一些与几何形体表面相关的实际问题。
比如,我们可以利用立体几何面积计算来估算一块地上建筑物的墙体面积,从而计算建筑材料的用量。
我们可以通过测量墙体的长度和高度,然后根据墙体的形状选择相应的面积计算公式,最后计算出墙体的面积。
部编版初中数学八年级下册必背几何公式汇总1. 三角形相关公式1.1 周长和面积公式- 三角形的周长公式为:周长 = 边长1 + 边长2 + 边长3。
- 三角形的面积公式为:面积 = (底边长 ×高)/ 2。
1.2 直角三角形相关公式- 直角三角形的斜边长度公式为:斜边长度 = 根号下(直角边1的平方 + 直角边2的平方)。
- 直角三角形的勾股定理公式为:直角边1的平方 + 直角边2的平方 = 斜边长度的平方。
2. 四边形相关公式2.1 矩形相关公式- 矩形的周长公式为:周长 = (长 + 宽)× 2。
- 矩形的面积公式为:面积 = 长 ×宽。
2.2 正方形相关公式- 正方形的周长公式为:周长 = 边长 × 4。
- 正方形的面积公式为:面积 = 边长 ×边长。
2.3 平行四边形相关公式- 平行四边形的周长公式为:周长 = (边长1 + 边长2)× 2。
- 平行四边形的面积公式为:面积 = 底边长 ×高。
3. 圆相关公式3.1 圆的周长和面积公式- 圆的周长公式为:周长= 2 × π × 半径。
- 圆的面积公式为:面积= π × 半径的平方。
3.2 扇形和弧长公式- 扇形的面积公式为:面积 = 1/2 ×扇形的圆心角度数× π × 半径的平方。
- 弧长的公式为:弧长 = 扇形的圆心角度数/360 × 2 × π × 半径。
以上是部编版初中数学八年级下册必背的几何公式汇总,希望对你有所帮助!。
几何图形的面积计算方法一、平面几何图形的面积概念及计算方法1.面积的概念:面积是用来表示平面图形占据平面空间大小的量。
2.计算方法:(1)矩形的面积计算:矩形的面积等于长乘以宽。
(2)平行四边形的面积计算:平行四边形的面积等于底乘以高。
(3)三角形的面积计算:三角形的面积等于底乘以高除以2。
(4)梯形的面积计算:梯形的面积等于上底加下底的和乘以高除以2。
(5)圆的面积计算:圆的面积等于π乘以半径的平方。
(6)扇形的面积计算:扇形的面积等于π乘以半径的平方乘以圆心角除以360°。
二、立体图形的体积及表面积计算方法1.体积的概念:体积是用来表示立体图形占据空间大小的量。
2.表面积的概念:表面积是用来表示立体图形各表面大小之和的量。
3.计算方法:(1)长方体的体积计算:长方体的体积等于长乘以宽乘以高。
(2)长方体的表面积计算:长方体的表面积等于(长乘以宽+长乘以高+宽乘以高)乘以2。
(3)正方体的体积计算:正方体的体积等于棱长的三次方。
(4)正方体的表面积计算:正方体的表面积等于棱长的平方乘以6。
(5)圆柱体的体积计算:圆柱体的体积等于π乘以底面半径的平方乘以高。
(6)圆柱体的表面积计算:圆柱体的表面积等于底面圆的周长乘以高加上底面圆的面积乘以2。
(7)圆锥体的体积计算:圆锥体的体积等于π乘以底面半径的平方乘以高除以3。
(8)圆锥体的表面积计算:圆锥体的表面积等于底面圆的周长乘以母线除以2加上底面圆的面积。
三、面积单位及换算1.面积单位:平方米(m²)、平方分米(dm²)、平方厘米(cm²)、公顷(hm²)、平方千米(km²)等。
2.面积单位换算:(1)1平方米(m²)=100平方分米(dm²)(2)1平方米(m²)=10000平方厘米(cm²)(3)1公顷(hm²)=10000平方米(m²)(4)1平方千米(km²)=100公顷(hm²)=1000000平方米(m²)四、面积的实际应用1.计算土地面积:如农田、住宅区、公园等。
二次函数与几何综合—-面积问题➢ 知识点睛1.“函数与几何综合"问题的处理原则:_________________,__________________.2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息.3.二次函数之面积问题的常见模型①割补求面积—-铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .➢ 例题示范例1:如图,抛物线y =ax 2+2ax —3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (—3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,—3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】解:(1)由223y ax ax a =+-(3)(1)a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =,∴(03)C -,, 将(03)C -,代入223y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3〈x P <0; (2)设计方案:1()2APBB A S PM x x =⋅⋅-△注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP .【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--设点P 的横坐标为t ,则2(23)P t t t +-,, ∵PQ ∥y 轴, ∴(3)Q t t --,,∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139()(30)222ACP C A S PQ x x t t t =⋅-=---<<△ ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-, ∴当32t =-时,ACP S △最大,为278. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素: 要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(—1,m ),当四边形是□ABFE 时,由(30)A -,,(10)B ,可知,F 1代入抛物线解析式,可得,m =12, ∴F 1(3,12); 当四边形是□ABEF 时,由(30)A -,,(10)B ,可知,F 2(—5,m )可得,m =12, ∴F 2(—5,12).②当AB 为对角线时,AB 与EF 互相平分,AB 的中点D (—1,0),设E (—1,m ),则F (—1,—m ),代入抛物线解析式,可得,m =4, ∴F 3(—1,-4).综上:F 1(3,12),F 2(—5,12),F 3(—1,—4).精讲精练1.如图,抛物线经过A (—1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB ,MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及四边形OBMC 的最大面积;若不存在,2.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E . (1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在直线AD 下方的抛物线上,是否存在点G ,使得6AEG S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.(4)已知点Q 在x 轴上,点P 在抛物线上,Q 的坐标.3.如图,已知抛物线y =ax 2-2ax -b (a 〉0)与x 轴交于A ,B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC ,CD ,∠ACD =90°. (1)求抛物线的解析式;(2)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,设M 的横坐标为m ,求m 的值.(3)已知点E 在抛物线的对称轴上,点F 在抛物线上,且以A ,B ,E ,F 为顶点的四边形是平行四边形,求点F 的坐标.4.如图,抛物线254y ax ax =-+(0a <)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为点D ,在抛物线上是否存在异于点B 的一点Q ,使△CDQ 的面积与△CDB 的面积相等?若存在,求出点Q 的横坐标;若不存在,请说明理由.(3)已知点F 是抛物线上的动点,点E 是直线y =—x 上的动点,且以O ,C ,E ,F 为顶点的四边形是平行四边形,求点E 的横坐标.。
专题复习一、面积法
何谓面积法
在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。
(一)证明面积问题常用的理论依据
用面积法解几何问题常用到下列性质:
1、全等三角形的面积相等;
2、三角形的中线把三角形分成面积相等的两部分;
3、同底同高或等底等高的两个三角形面积相等。
4、同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
一、证线段相等
1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CE
E
D C B A
2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F.
求证:DE=DF.
3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF.
P
(2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。
F E
C
B A
A
4、(1)已知等边△ABC内有一点P,PD⊥AB,PE⊥BC,PF⊥CA,垂足分别为D、E、F,又AH 为△ABC的高,求证:PD+PE+PF=AH.
P
H
F
E
D
C
B
A
(2)若P是等边△ABC外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。
A
B C
D
E
F
H
P
二、证角相等
5、点C是线段AB上一点,分别以AC、BC为边在AB同侧作等边△ACD和等边△BCE,连接BD、AE交于O点,再连接OC,求证:∠AOC=∠BOC.
1、Rt△ABC中,∠BAC=90°,AB=3,M为边BC上一点,连接AM,若将△ABM沿直线AM翻折
后,点B 恰好落在边AC 的中点B ′处,那么点M 到AC
的距离是。
2、△ABC 中,AB=AC ,∠A=120°,BC=6,PE ⊥AB 于E ,PF ⊥AC 于F ,则PE+PF= 。
3、设AD 、BE 和CF 是△ABC 的三条高,求证:AD ·BC =BE ·AC =CF ·AB
A
F
E
B D C
4、在△ABC 中,AD 是∠BAC 的平分线,求证:AB ︰AC=BD ︰CD.
(提示:AB ︰AC=S △ABD ︰S △ACD )
5、证明三角形三条中线交于一点。
A
B C D F
E
O
6、在△ABC 中,D 是AB 的中点,E 在AC 上,且
CE AC 13,CD 和BE 交于G ,求△ABC 和四
边形ADGE 的面积比。
A
D
G E
B C
7、设D 是∆ABC 边BC 上一点,E 是AD 上一点,求证:
DC DB S S CAE BAE =∆∆。
(共边比例定理) B A
C D E
8、如图,在∆ABC 与∆A'B'C'中,若有∠A=∠A',则C A B A AC AB S
S C B A ABC '
'⋅
''⋅='''∆∆。
(共角比例定理) A C
C'。