九年级数学配方法及公式法检测题
- 格式:doc
- 大小:236.50 KB
- 文档页数:6
轧东卡州北占业市传业学校<公式法>练习题〔〕一、填空题1.配方法解一元二次方程的根本思路是:〔1〕先将方程配方〔2〕如果方程左右两边均为非负数那么两边同时方,化为两个__________〔3〕再解这两个__________2.用配方法解一元二次方程ax2+bx+c=0(a≠0)时:∵a≠0,方程两边同时除以a得__________________,移项得__________配方得__________即〔x+__________〕2=__________当__________时,原方程化为两个一元一次方程_________和__________∴x1=__________,x2=____________3.利用求根公式解一元二次方程时,首先要把方程化为__________,确定__________的值,当__________时,把a,b,c的值代入公式,x1,2=____________求得方程的解.4.方程3x2-8=7x化为一般形式是________,a=__________,b=__________,c=__________,方程的根x1=__________,x2=__________.二、选择题1.用公式法解方程3x2+4=12x,以下代入公式正确的选项是A.x1、2=24 312122⨯-±B.x1、2=24 312122⨯-±-C.x1、2=24 312122⨯+±D.x1、2=32434)12()12(2⨯⨯⨯---±--2.方程x2+3x=14的解是A.x=2653±B.x=2653±-C.x=2233±D.x=2233±-3.以下各数中,是方程x2-(1+5)x+5=0的解的有①1+5②1-5③1 ④-5A.0个B.1个C.2个D.3个3 )x+6=0的解是4.方程x2+(2A.x1=1,x2=6B.x1=-1,x2=-6C.x1=2,x2=3D.x1=-2,x2=-3。
九年级(上册)数学配方法及公式法姓名:◆回顾归纳1.通过配方,把方程的一边化为______,另一边化为_____,然后利用开平方法解方程,这种方法叫配方法,如ax2+bx+c=0(a≠0),配方得a(x+_____)2=244b aca-.2.一元二次方程ax2+bx+c=0(a≠0),运用公式法求解的方法叫做公式法,•求根公式x=_______.◆课堂测控测试点1 配方法1.(1)x2-2x+_____=(x-1)2; (2)x2+32x+916=(x+_______)2.2.(1)x2+4x+_____=(x+_____)2;(2)y2-_______+9=(y-_____)2.3.若x2+6x+m2是一个完全平方式,则m的值为( )A.3 B.9 C.±3 D.±94.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2•可以配方成下列的() A.(x-p)2=5 B.(x-p)2=9 C.(x-p+2)2=9 D.(x-p+2)2=55.用配方法解下列方程:(1)x2+6x+7=0;(2)2x2-4x=-5;(3)3x2+2x-3=0; (4)12x2-3x+3=0.6.阅读下列解题过程,并解答后面的问题.用配方法解方程2x2-5x-8=0.解:2x2-5x-8=0.∴x2-5x-8=0.①∴x2-5x+(-52)2=8+(-52)2.②∴(x-52)2=574.③∴x1,x2④(1)指出每一步的解题根据:①______;②______;③_______;④_______.(2)上述解题过程有无错误,如有错在第______步,原因是_________.(3)写出正确的解答过程.测试点2 公式法7.方程(x+2)(x+3)=20的解是______.8.方程3x2+2x+4=0中,b2-4ac=_______,则该一元二次方程_______实数根.9.方程x2+4x=2的正根为()A.2..-2.-10.用求根公式解下列方程.(1)3x2-x-2=0; (2)12x2+18=-12x;(3)(x+2)(x-2);(4)3x2+2x=2.11.用公式法解方程12x2+12x+18=0.解:4x2+4x+1=0 ①∵a=4,b=4,c=1,②∴b2-4ac=42-4×4×1=0.③∴=12.④∴x1=x2=-12.(1)以上①步______,②步______,③步_______,④步_______.(2)体验以上解题过程,用公式法解方程:13x2+13x-16=0.◆课后测控1.若关于x的方程2x2+3ax-2a=0有一根为x=2,则关于y的方程y2+a=7的解是______.2.设x,x是方程x2-4x-2=0的两根,那么x=______,x=_____.3.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是______.4.将二次三项式2x2-3x-5进行配方,其结果为______.5.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_____;若一根为0,则c=______.6.若│x2-x-2│+│2x2-3x-2│=0,则x=_______.7.一元二次方程x2-2x=0的解是( )A.0 B.0或2 C.2 D.此方程无实数根11.用适当的方法解下列方程.(1)4x2-7x+2=0; (2)x2-x-1=0;(3)x2-7x+6=0;(4)3(x+1)2-5(x+1)=2.参考答案回顾归纳1.完全平方式 非负数 2ba2(b -4ac ≥0)课堂测控1.(1)1 (2)34 2.(1)4 2 (2)6y 3 3.C 4.B5.(1)x 1=-x 2=-3(2)无解(3)x 1=13-,x 2=13-(4)x 1x 2=36.(1)①把二次项系数化为1 ②移项,•方程的两边加上一次项系数一半的平方③方程左边化为完全平方式 ④直接用开平方法解方程(2)① 常数项和一次项系数未同时除以2(3)正确解答:x 2-52x -4=0,∴x 2-52x+(-54)2=4+(-54)2,∴(x -54)2=8916,∴x 1=54,x 2=54-.7.x 1=-7,x 2=28.-44 没有 9.D10.(1)x 1=1,x 2=-23 (2)x 1=x 2=-12(3)x 1x 2(4)x 1=13-+,x 2=13-11.(1)①把系数化为整数 ②确定二次项系数,一次项系数,常数项 •③求出b 2-4ac 的值 ④求出方程的根(2)2x 2+2x -1=0,∵a=2,b=2,c=-1,∴b 2-4ac=4-4×2×(-1)=12.∴==.∴x 1,x 2 课后测控1.y=±32.x=4422±==2) 3.±4(点拨:令2a+2b=x ,则(x+1)(x -1)=63,∴x=±8,∴a+b=±4)4.2[(x -34)2-4916] (点拨:2x 2-3x -5=2(x 2-32x -52) =2[x 2-32x+(-34)2-52-916]=2[(x -34)2-4916]) 5.0 0 6.2(点拨:要使等式成立,则必有x 2-x -2=0,且2x 2-3x -2=0,∴x=2)7.B8.A (点拨:x 2+y 2+2x -4y+7=(x+1)2+(y -2)2+2,∵(x+1)2≥0,(y -2)2≥0,∴x 2+y 2+2x -4y+7≥2)9.B (点拨:x 2-16x+60=0的两根为x 1=10,x 2=6,根据三角形三边关系,则10和6都可为第三边长,∴当第三边长为10,则此三角形为直角三角形,则S=24,当第三边长为6时,10.C (点拨:∵x*(x+1)=5,∴x+(x+1)2=5,即x 2+3x -4=0,∴x 1=1,x 2=-4)11.(1)这里a=4,b=-7,c=2.∴△=49-4×4×2=17,∴=.∴x 1=78,x 2=78.(2)x =,x 2 (3)(x -1)(x -6)=0,∴x -1=0或x -6=0.∴x 1=1,x 2=6.(4)令x+1=y ,则原方程变为3y 2-5y -2=0,∴y 1=-13,y 2=2. 当y 1=-13,x 1=-43;y 2=2时,x 2=1. 12.∵(x+1)△x=10,∴(x+1)2+(x+1)x+x 2=10,整理得x 2+x -3=0.解得x 12 13.∵△=4-2(2-m )=4m -4〉0,∴m>1.将m=2代入方程得x 2+2x=0,∴x 2+2x+1=1,即(x+1)2=1,∴1+x=±1,∴x 1=0,x 2=-2.14.设平均每箱应降价x 元,根据题意得(4-x )·(20+0.4x ×8)=120. 整理得x 2-3x+2=0,即(x -2)(x -1)=0.∴x=2,x=1.因为要扩大销售量,减少库存,所以应取x=2,将x=1舍去,∴每箱牛奶应降价2元. 拓展创新设道路宽为x 米,列方程为20×32-(20+32)x+x 2=540,∴x 1=2,x 2=50(舍去),•∴道路宽为2米.。
初三数学配方法公式法练习题在初三数学学习过程中,配方法和公式法是其中的两个重要的解题方法。
配方法主要适用于一元二次方程的解题,而公式法则广泛适用于各种数学题型。
下面我们来进行一些练习题,通过运用这两种方法解题,加深对它们的理解。
1. 配方法1.1 一元二次方程题问题:求解方程x^2 + 6x + 9 = 0的解。
解答:按照配方法的步骤来解题,我们需要先判断a、b、c的值分别是多少。
在这个方程中,a为1,b为6,c为9。
1. 将b除以2,得到3。
2. 计算3的平方,得到9。
3. 判断是否满足(a-b/2)^2 = c。
在这个例子中,(1-6/2)^2=9。
4. 若满足配方法的条件,可以进行下一步计算。
在这个例子中,满足条件。
5. 计算(x-b/2)^2 = c,即(x-3)^2 = 9。
6. 开方得到x-3=±3,即x=6或x=0。
所以,方程x^2 + 6x + 9 = 0的解为x=6或x=0。
2. 公式法2.1 面积计算题问题:求解一个半径为5cm的圆的面积。
解答:根据圆的面积公式S = πr^2,其中r为半径。
1. 将半径的值代入公式中,得到S = π(5)^2。
2. 进行计算,得到S = 25π。
所以,一个半径为5cm的圆的面积为25πcm²。
2.2 三角函数题问题:求解正弦函数f(x) = sin(x)在区间[0, π/2]上的极大值和极小值。
解答:根据三角函数的极值定理,f(x)在区间[0, π/2]上的极大值和极小值可通过求f'(x) = 0的根来得到。
其中,f'(x)代表f(x)的导数。
1. 对f(x) = sin(x)求导数,得到f'(x) = cos(x)。
2. 解方程f'(x) = 0,即cos(x) = 0。
在区间[0, π/2]上,cos(x) = 0的解为x = π/2。
3. 根据二阶导数的符号来判断极值类型。
在这个例子中,f''(x) = -sin(x)小于0,说明在x = π/2处是极大值。
解一元二次方程配方法练习题1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x -5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x -b )2的形式,则ab=_______.4.将一元二次方程x 2-2x -4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a -2)2+1B .(a+2)2-1C .(a+2)2+1D .(a -2)2-17.把方程x+3=4x 配方,得( )A .(x -2)2=7B .(x+2)2=21C .(x -2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .- D .29.不论x 、y 为什么实数,代数式x 2+y 2+2x -4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x -15=0 (4)41x 2-x -4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x2+5x+1的最大值。
12. 用配方法证明:(1)的值恒为正; (2)的值恒小于0.13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率.21a a -+2982x x -+-解一元二次方程公式法练习题一、双基整合 步步为营1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____,当b -4ac<0时,方程_________.2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有________, 若有两个不相等的实数根,则有_________,若方程无解,则有__________.3.若方程3x 2+bx+1=0无解,则b 应满足的条件是________.4.关于x 的一元二次方程x 2+2x+c=0的两根为________.(c ≤1)5.用公式法解方程x 2=-8x -15,其中b 2-4ac=_______,x 1=_____,x 2=________.6.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.7.一元二次方程x 2-2x -m=0可以用公式法解,则m=( ).A .0B .1C .-1D .±184y 2=12y+3)A .y=B .y= C .y= D .y=9.已知a 、b 、c 是△ABC 的三边长,且方程a (1+x 2)+2bx -c (1-x 2)=0的两根相等, 则△ABC 为( )A .等腰三角形B .等边三角形C .直角三角形D .任意三角形10.不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x -1=0中,有实数根的方程有( )A .0个B .1个C .2个D .3个11.解下列方程;(1)2x 2-3x -5=0 (2)2t 2+3=7t (3)x 2+x -=0(4)x 2-x+1=0 (5)0.4x 2-0.8x=1 (6)y 2+y -2=0 32-±32±32±32-±16132313二、拓广探索:12.当x=_______时,代数式与的值互为相反数. 13.若方程x -4x+a=0的两根之差为0,则a 的值为________.14.如图,是一个正方体的展开图,标注了字母A 的面是正方体的正面, 如果正方体的左面与右面所标注代数式的值相等,求x 的值.三、智能升级:15.小明在一块长18m 宽14m 的空地上为班级建造一个花园,所建花园占空地面积的,请你求出图中的x .16.要建一个面积为150m 2的长方形养鸡场,为了节约材料, 鸡场的一边靠着原有的一堵墙,墙长为am ,另三边用竹篱笆围成,如果篱笆的长为35m .(1)求鸡场的长与宽各是多少? (2)题中墙的长度a 对解题有什么作用.13x +2214x x +-12。
解一元二次方程练习题(配方法)1.用适当的数填空:①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是 6.用配方法将二次三项式a 2-4a+5变形,结果是 7.把方程x 2+3=4x 配方,得 8.用配方法解方程x 2+4x=10的根为 9.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41 x 2-x-4=010.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
解一元二次方程练习题(公式法)一、填空题1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是__ ___ 当b-4ac<0时,方程____.2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有_______ ,•若有两个不相等的实数根,则有______,若方程无解,则有__________.3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________. 4.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个5.若方程x 2-4x+a=0的两根之差为0,则a 的值为________. 二、利用公式法解下列方程(1)220x -+= (2) 012632=--x x (3)x=4x 2+2(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9因式分解法解一元二次方程练习题1.填空题(1)方程t(t+3)=28的解为_______.(2)方程(2x+1)2+3(2x+1)=0的解为__________.(3)方程x(x-5)=5-x的解为__________.3.用因式分解法解下列方程:(1)x2+12x=0;(2)4x2-1=0;(3)x2=7x;(4)(2t+3)2=3(2t+3)(5)(3-y)2+y2=9;(6)(1+2)x2-(1-2)x=0; (7)x2+3=3(x+1).1.(4分)(2014年山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=32.(2014年山东烟台)关于x 的方程x 2﹣ax+2a=0的两根的平方和是5,则a 的值是( )A .﹣1或5B . 1C . 5D . ﹣1 3.(3分)(2014•威海)方程x 2﹣(m+6)+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,4. 若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则b a= . 5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程 x 2 -12x+k=O 的两个根,则k 的值是( )A 27B 36C 27或36D 18 6.(3分)(2014•枣庄)x 1、x 2是一元二次方程3(x ﹣1)2=15的两个解,且x 1<x 2,) )林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同. (1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?9.(4分)(2014•德州)方程x 2+2kx+k 2﹣2k+1=0的两个实数根x 1,x 2满足x 12+x 22=4,则k 的值为 .一元二次方程根与系数的关系练习题1.如果x 1、x 2是一元二次方程02x 6x 2=--的两个实数根,则x 1+x 2=_________.2.一元二次方程03x x 2=--两根的倒数和等于__________.3.关于x 的方程0q px x 2=++的根为21x ,21x 21-=+=,则p=______,q=____.4.若x 1、x 2是方程07x 5x 2=--的两根,那么_______________x x 2221=+, .________)x (x 221=-5.已知21x ,x 为方程01x 3x 2=++的两实根,则.__________20x 3x 221=+- 6.方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________. 7.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________. 8.设α、β是方程02012x x 2=-+的两个实数根,则βαα++22的值为( ) A .2009 B.2010 C.2011 D.2012 9.不解方程,求下列方程的两根x 1、x 2的和与积。
九年级上册数学解一元二次方程配方法、公式法同步练习及答案1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( )A .4,13B .-4,19C .-4,13D .4,193.方程x 2-x -2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程:(1)x 2+5x -1=0;(2)2x 2-4x -1=0;(3)2x 2+1=3x .7.用公式法解下列方程:(1)x 2-6x -2=0;(2)4y 2+4y -1=-10-8y .8.阅读下面的材料并解答后面的问题:小力:能求出x 2+4x +3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x 2+4x +3=x 2+4x +4-4+3=(x 2+4x +4)+(-4+3)=(x +2)2-1,而(x +2)2≥0,所以x 2+4x +3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x 2-8x +5的最小值?如果能,写出你的求解过程.9.已知关于x 的一元二次方程x 2-mx -2=0.(1)若x =-1是这个方程的一个根,求m 的值和方程的另一根;(2)对于任意的实数m ,判断方程的根的情况,并说明理由.10.已知关于x 的方程x 2-2x -2n =0有两个不相等的实数根.(1)求n 的取值范围;(2)若n <5,且方程的两个实数根都是整数,求n 的值.答案1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292. ∴x 1=29-52,x 2=-29-52. (2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12. 配方,得x 2-2x +1=32,(x -1)2=32. ∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2,∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0.∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32. 8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11,∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根,所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2.所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0,a =1,b =-2,c =-2n ,∴Δ=b 2-4ac =4+8n >0.解得n >-12. (2)由原方程,得(x -1)2=2n +1.∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5,∴0<2n +1<11,且2n +1是完全平方形式.∴2n +1=1,2n +1=4或2n +1=9.解得,n =0,n =1.5或n =4.。
九年级数学上册同步测试:2.2 用配方法求解一元二次方程一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥23.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣44.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=196.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=157.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+98.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.510.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=10912.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.4014.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=215.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3二、填空题(共7小题)16.方程x2=2的解是.17.一元二次方程x2+3﹣2x=0的解是.18.若将方程=.19.将=.20.方程x2﹣2x﹣2=0的解是.21.方程x2﹣2﹣4,则=.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)25.解方程:(2x﹣1)2=x(3x+2)﹣7.26.解方程(1)x2﹣2x﹣1=0(2)=.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.29.解方程:x2﹣4x+1=0.30.用配方法解关于x的一元二次方程ax2+bx+c=0.北师大版九年级数学上册同步测试:2.2 用配方法求解一元二次方程参考答案与试题解析一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【考点】解一元二次方程-直接开平方法.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2【考点】解一元二次方程-直接开平方法.【分析】首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.【解答】解;(,∵一元二次方程(≥0,故选:B.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【考点】解一元二次方程-直接开平方法.【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5【考点】解一元二次方程-直接开平方法.【分析】首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.【解答】解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.【点评】此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.10.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,利用完全平方公式化简得到结果即可.【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【专题】转化思想.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.40【考点】解一元二次方程-配方法.【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.【解答】解:4x2+12x﹣1147=0,移项得:4x2+12x=1147,4x2+12x+9=1147+9,即(2x+3)2=1156,2x+3=34,2x+3=﹣34,解得:x=,x=﹣,∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,∴a=,b=﹣,∴3a+b=3×+(﹣)=28,故选B.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.14.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,(,h,k均为常数,m ≠0)得x=﹣h±,而关于≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.15.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【专题】计算题.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.【点评】此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.二、填空题(共7小题)16.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.17.一元二次方程x2+3﹣2x=0的解是x1=x2=.【考点】解一元二次方程-配方法.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.【点评】此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.18.若将方程=3.【考点】解一元二次方程-配方法.【分析】此题实际上是利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(=3.故答案为:3.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.将=3.【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.20.方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.【考点】解一元二次方程-配方法.【分析】首先把常数﹣2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.【解答】解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.故答案为:x1=+1,x2=﹣+1.【点评】此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.若一元二次方程a+1与2m﹣4,则=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.【解答】解:∵x2=,∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b的两个根分别是2与﹣2,∴=2,∴=4.故答案为:4.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【考点】解一元二次方程-配方法.【专题】阅读型.【分析】(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.25.解方程:(2x﹣1)2=x(3x+2)﹣7.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.26.解方程(1)x2﹣2x﹣1=0(2)=.【考点】解一元二次方程-配方法;解分式方程.【专题】计算题.【分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.【考点】解一元二次方程-配方法.【专题】阅读型.【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.【考点】解一元二次方程-配方法;解一元一次不等式组.【专题】计算题.【分析】(1)方程两边都加上1,配成完全平方的形式,然后求解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)x2﹣2x+1=2,(x﹣1)2=2,所以,x1=1+,x2=1﹣;(2),解不等式①得,x≥﹣2,解不等式②得,x<,所以,不等式组的解集是﹣2≤x<.【点评】(1)考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.(2)主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29.解方程:x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】计算题;配方法.【分析】移项后配方得到x2﹣4x+4=﹣1+4,推出(x﹣2)2=3,开方得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程、解一元一次方程的应用,关键是配方得出(x﹣2)2=3,题目比较好,难度适中.30.用配方法解关于x的一元二次方程ax2+bx+c=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.。
目标:会用配方法与公式法求二次函数c bx ax y ++=2
的顶点坐标
一.知识回顾
1. 形如k h x a y +-=2)(的二次函数解析式叫做顶点式.
2.二次函数y =﹣2x 2的图象开口方向是( )
A.向下 B.向左 C.向上 D.向右
3.抛物线y =﹣(x +1)2﹣3的顶点坐标是( )
A.(1,3) B.(﹣1,3) C.(﹣1,﹣3) D.(1,﹣3)
4.二次函数y =﹣2(x ﹣1)2图象的对称轴是( )
A.直线x =﹣1 B.直线x =0 C.直线x =1 D.直线x =﹣2
二、新知学习: 配方法求顶点坐标
5.用配方法把二次函数化为y=a(x-h)2+k的形式,然后再写出顶点坐标.
(1)522++=x x y (2) 1422--=x x y
(3)322——x x y +=
三.公式法求二次函数的顶点坐标
6.数学需要总结,找规律,你想找到一个万能的方法吗?用配方法求二次函数c bx ax y ++=2图象的对称轴和顶点坐标。
c bx ax y ++=2k h x a y +-=2)( 开口方向
顶点坐标 对称轴 0>a
( , ) 直线 0<a
顶点坐标公式:
7.用公式法求二次函数的顶点坐标.
(1) 34-2+=x x y (2) 322
——x x y +=
(3) 1321
2—x x y += (4)
)5)(2-(+=x x y
)4a b -4ac 2a b 2,—(。
解一元二次方程专项练习题(带答案)1、用配方法解以下方程:(1)x2+12 x+25=0(3)x2-6x=112、用配方法解以下方程:(1)6x2-7x+1=0(3)4x2-3x=523、用公式法解以下方程:(1) 2x 2-9x+8=0(3)16x2+8x=34、运用公式法解以下方程:(1)5x 2+ 2x-1= 0(2)x2+4x=10(4)x2-2 x-4=0(2)5x2-18=9x(4)5x2=4-2x(2)9x2+6x+1=0(4)2x2-4x-1=0(2)x2+6 x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2 x2 5 (2)x2 2 3x 3 0( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 47、解以下对于x 的方程 :(1) x2+2x- 2=0(2)3x2+4x- 7=(3) (x+3)( x-1)=5(4)(x- 2 )2+4 2 x=08、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程: x2—4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3(x- 5)2=2(5 - x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】(1)-611;(2)-214;(3) 3 2 5;(4)1 52、【答案】x =, x =1(2)x=3,x=-6(1)11 2 1 26 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】( 1)x=917 ( 2)x1=x2=-14 3( 3)x1=1,x2=-3( 4)x=264 4 24、【答案】(1)x1= 1 6, x2 1 6 (2). x1=- 3+ 7 ,x2=- 3-7 5 5() x =2 , x =-1( 4)x=11133 1 2635、【答案】( 1)x1=x2=-1(2)x1=1,x2=-2 3 3( 3)x=-3, x =1(4)x =3 , x =91 2 1 22 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3)x1 5, x2 4;( 4)x1 2, x23 37、【答案】(1)x=- 1± 3 ;7 (2) x1=1, x2=-3(3)x1=2, x2=- 4; 1=x2=- 28、【答案】解:( 1)x13, x21 ( 2)x123, x2 23( 3)x1510 , x2 5 10 ( 4)x15, x2 13 。
初三数学解一元二次方程——配方法.选择题(共 1 小题)二.填空题(共 8 小题)2.( 2013 秋?湖里区校级月考)用配方法解一元二次方程 为.3.(2013秋?曲阜市期中) 用配方法解一元二次方程4.用配方法解一元二次方程﹣ 3x 2+4x+1=0 的第一步是把方程的两边同时除 以.25.( 2006秋?仙桃期末)用配方法解一元二次方程 x 2+8x ﹣9=0 时,当配成完全平方后,原方程可变为 .26.( 2014 春?莱州市期末)用配方法解一元二次方程 x 2﹣ x=1 时,应先两边都加上.7.(2010 秋?宜城市期中) 用配方法解一元二次方程 x 2﹣ 8x+1=0,把右边配成完全平方后为(x ﹣ ) 2= .22 8.( 2006 秋?西城区校级月考)用配方法解一元二次方程 2x 2+3x+1=0 ,变形为( x+h )2=k ,则 h= , k= .9.( 2013秋?鼓楼区期中)将一元二次方程 x 2﹣4x ﹣ 7=0用配方法化成( x+h )2=k 的形式为.三.解答题(共 11 小题)210.(2008?青岛)用配方法解一元二次方程: x 2﹣2x ﹣2=0.1.( 2013 春?奉化市校级月考)用配方法解一元二次方程A .1B .C .D .x 2+8x+7=0 ,则方程可化 x 2﹣ 4x+2=0 时,可配方得,两边应同时加上的数2 y是( )211.用配方法解一元二次方程: x 2+3x+1=0 .12.( 2010 秋 ?上海校级月考)(2)用配方法解一元二次方程:13.(2013?自贡)用配方法解关于 x 的一元二次方程 ax 2+bx+c=0 .14.(2012 春?威海期末)已知三角形两边长分别是 8 和 6,第三边长是 16x+60=0 的一个根.请用配方法解此方程,并计算出三角形的面积.215.(1)解一元二次方程: (x ﹣3) 2+2x (x ﹣3)=0 (2)用配方法解一元二次方程: 2x 2+1=3x .16.(2013 秋?大理市校级月考)解一元二次方程: (1)4x 2﹣1=12x (用配方法解); (2) 2x 2﹣ 2=3x (用公式法解) .217.用公式法解一元二次方程: 3x 2+5x ﹣2=0.x 2﹣2x ﹣2=0次方程 x 2﹣1)化简:2 18.(2010 秋?岳池县期末)已知关于x 的一元二次方程x2+kx ﹣5=0 (1)求证:不论k 为任何实数,方程总有两个不相等的实数根;(2)当k=4 时,用配方法解此一元二次方程.19.用配方法解下列关于x 的一元二次方程:9x2﹣12x=1 .20.(2012 春?兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x ﹣12=0(2)3(x﹣5)2=2(x﹣5)二.填空题(共 8 小题)2.(2013 秋?湖里区校级月考) 用配方法解一元二次方程 x 2+8x+7=0 ,则方程可化为 (x+4)2=9 .考 解一元二次方程 - 配方法. 点: 专 计算题. 题:分 方程常数项移到右边,两边加上 16 变形即可得到结果. 析:解 解:方程移项得: x 2+8x=﹣ 7,答: 配方得: x 2+8x+16=9 ,即( x+4 ) 2=9.故答案为:( x+4) 2=9.点 此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键. 评:初三数学解一元二次方程——配方法参考答案与试题解析.选择题(共 1 小题)1.( 2013 春?奉化市校级月考)用配方法解一元二次方程A .1B .C .D .考 点: 专 题: 分 析: 解 答:配方法.等式两边同时加上一次项系数一半的平方. 解: ∵y 2﹣ y=1 ,,,∴ 用配方法解一元二次方程 y 2 ﹣ y=1 ,两边应同时加上的数是 点评: 故选 C .此题考查了学生应用配方法的熟练程度.,两边应同时加上的数是()2 y解一元二次方程 -配方法. =1+∴ y225.( 2006秋?仙桃期末)用配方法解一元二次方程 x 2+8x ﹣9=0 时,当配成完全平方后,原 方程可变为 (x+4 )2=25 .考 解一元二次方程 - 配方法. 点: 专 配方法.题:分 首先移项变形成 x 2+8x=9 的形式, 然后方程两边同时加上一次项系数的一半的平方即 析: 可变形成左边是完全平方式,右边是常数的形式. 解 解: ∵x 2+8x ﹣9=0 答: ∴ x 2+8x=9∴ x +8x+16=9+1623.( 2013 秋?曲阜市期中)用配方法解一元二次方程 2=2 .x 2﹣ 4x+2=0 时,可配方得x ﹣2)考点专题分解一元二次方程 -配方法. 计算题.方程移项后,两边加上 4 变形即可得到结果.解 解:方程移项得: x 2﹣ 4x= ﹣ 2, 答: 配方得: x 2﹣ 4x+4=2 ,即( x ﹣2)2=2,故答案为:(x ﹣2)2=2.点 此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键. 评:24.用配方法解一元二次方程﹣ 3x 2+4x+1=0 的第一步是把方程的两边同时除以 ﹣ 3考 点: 专 题: 分析: 解答:解一元二次方程 -配方法. 计算题.点评:利用配方法解一元二次方程时,首先将方程二次项系数化为 ﹣ 3,故解方程第一步在方程两边同时除以﹣3. 2 解:﹣ 3x 2+4x+1=0 , 方程两边同时除以﹣ 3 得: x 2﹣ x ﹣ =0, 则此方程用配方法解时的第一步是把方程的两边同时除以﹣ 故答案为:﹣ 3 此题考查了解一元二次方程﹣配方法,利用此方法解方程时, 化为 1,常数项移到方程右边,然后在方程左右两边都加上一次项系数一半的平方, 左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求 解.1,此方程二次项系数为3.首先将方程二次项系数2∴ (x+4)2=25.点配方法的一般步骤:评:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1 ;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2 的倍数.6.(2014春?莱州市期末)用配方法解一元二次方程x2﹣x=1 时,应先两边都加上()2.考解一元二次方程-配方法.点:专计算题.题:分两边加上一次项系数一半的平方即可析:解解:x2﹣x+()2=1+()2,答(x﹣)2= .故答案为()2.点本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m )2=n 的形式,再评:利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(2010 秋?宜城市期中)用配方法解一元二次方程x2﹣8x+1=0,把右边配成完全平方后为(x﹣ 4 )2= 15 .考解一元二次方程- 配方法.点:专计算题.题:分在本题中,把常数项 1 移项后,应该在左右两边同时加上一次项系数﹣8 的一半的平析:方.解解:把方程x2﹣8x+1=0 的常数项移到等号的右边,得到x2﹣8x= ﹣1答:方程两边同时加上一次项系数一半的平方,得到x2﹣8x+16= ﹣1+16配方得(x﹣4)2=15.故答案为4,15.点配方法的一般步骤:评:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1 ;配方,得本题考查了解一元二次方程﹣﹣配方法.选择用配方法解一元二次方程时,最好使方 程的二次项的系数为 1,一次项的系数是 2 的倍数.9.( 2013秋?鼓楼区期中)将一元二次方程 x 2﹣4x ﹣7=0用配方法化成( x+h )2=k 的形式为2(x ﹣ 2) 2=11 .考 解一元二次方程 - 配方法. 点:分 根据配方法的步骤把常数项移到等号的右边, 再在等式两边同时加上一次项系数一半 析: 的平方,然后进行配方即可求出答案. 解 解: x 2﹣4x ﹣ 7=0,( 3)等式两边同时加上一次项系数一半的平方. 选择用配方法解一元二次方程时,最好使方程的二次项的系数为 2 的倍数.1,一次项的系数是8.( 2006 秋?西城区校级月考)用配方法解一元二次方程 2x 2+3x+1=0 ,变形为( x+h )2=k ,,k=考 点: 分析: 解一元二次方程 -配方法. 解 答:配方法的一般步骤:( 1)把常数项移到等号的右边;( 2)把二次项的系数化为 1 ;( 3)等式两边同时加上一次项系数一半的平方. 解:原方程可以化为: 移项,得x= ﹣ ,x= ﹣ ,x 2+ 等式的两边同时加上一次项系数一半的平方,得x 2+ x+x+)2比较对应系数,有:故答案是: 、.、.点评: 则 h=,2,答:x2﹣4x=7,x2﹣4x+4=7+4 ,(x﹣2)2=11;故答案为:(x﹣2)2=11.点此题考查了配方法解一元二次方程,掌握配方法的不好走是本题的关键;评:般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为同时加上一次项系数一半的平方.配方法的一1;(3)等式两边三.解答题(共11 小题)10.(2008?青岛)用配方法解一元二次方程:x2﹣2x ﹣2=0.考解一元二次方程- 配方法.点:专配方法.题:分把常数项﹣ 2 移项后,在左右两边同时加上 1 配方求解.析:解解:x2﹣2x+1=3答:(x﹣1)2=3∴ x﹣1= 或x﹣1= ﹣∴,点配方法的一般步骤:评:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1 ;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为2 的倍数.1,一次项的系数是11.用配方法解一元二次方程:x2+3x+1=0 .考点:分析:解答:解一元二次方程-配方法.利用配方法把左边配成完全平方式,右边化为常数.解:移项得x2+3x=﹣1,配方得x2+3x+ ()2=﹣1+()点评:此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0 型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.22(2)形如ax2+bx+c=0 型,方程两边同时除以二次项系数,即化成x2+px+q=0 ,然后配方.12.(2010 秋?上海校级月考)( 1 )化简:2)用配方法解一元二次方程:x2﹣2x﹣2=0考点解一元二次方程-配方法;分式的乘除法.专题:计算题.分析(1)先将x2﹣1 分解因式,再根据分式的除法法则,进行计算即可;(2)先移项,再把左边配成完全平方式,右边化为常数.解答:解:(1)原式= = ;(2)移项得,x2﹣2x=2 ,配方得,x2﹣2x+1=2+1 ,即(x﹣1)2=3,(3 分)开方得,x﹣1= ,∴ x1=1+ ,x2=1﹣.(6 分)点评本题考查了分式的乘除法及用配方法解一元二次方程.13.(2013?自贡)用配方法解关于x 的一元二次方程ax2+bx+c=0 .考点:解一元二次方程-配方法.分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解答:解:∵关于x 的方程ax2+bx+c=0 是一元二次方程,∴ a≠0.∴ 由原方程,得2x + x= ﹣,等式的两边都加上,得2x + x+ = ﹣+ ,配方,得(x+ )2=﹣,当b2﹣4ac>0 时,开方,得:x+ =±,解得x1= ,x2= ,当b2﹣4ac=0 时,解得:x1=x2=﹣;当b2﹣4ac<0 时,原方程无实数根.点本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:评:(1)形如x2+px+q=0 型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.22(2)形如ax2+bx+c=0 型,方程两边同时除以二次项系数,即化成x2+px+q=0 ,然后配方.2 14.(2012春?威海期末)已知三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0 的一个根.请用配方法解此方程,并计算出三角形的面积.考点:解一元二次方程-配方法;三角形三边关系.专题:应用题;配方法.分析:首先从方程中,确定第三边的边长,其次考查三边长能否构成三角形,依据三角形三边关系,不难判定两组数均能构成三角形,从而求出三角形的面积.解答:解:首先解方程x2﹣16x+60=0 得,原方程可化为:(x﹣8)2=4,解得x1=6 或x 2=10;如图(1)根据勾股定理的逆定理,△ ABC 为直角三角形,S△ABC = ×6×8=24;如图(2)AD= = ,S△ABC = ×8×2 =8 .点 求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形 评: 的好习惯,不符合题意的应坚决弃之.215.( 1)解一元二次方程: (x ﹣ 3) +2x ( x ﹣ 3)=0(2)用配方法解一元二次方程: 2x 2+1=3x . 考点:解一元二次方程 -因式分解法;解一元二次方程 -配方法.分 析: ( 1)方程的左边可以利用提公因式法分解因式,因而可以利用分解因式法解方程;( 2)首先把方程移项、二次项系数化成 1,然后配方变形成( x+a ) 2=b 的形式,即可转化成一元一次方程,从而求解.解答: 解:( 1)原方程即:( x ﹣3)( x ﹣3+2x )=0, 则( x ﹣3)( 3x ﹣3) =0, 则方程的解是: x 1=3 , x 2=1; 2)移项,得: 2x 2﹣ 3x=﹣1,则 x ﹣ = ± ,则方程的解是: x 1=1 , x 2= .点 本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 评: 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(2013 秋?大理市校级月考)解一元二次方程:(1)4x 2﹣1=12x (用配方法解);(2) 2x 2﹣ 2=3x (用公式法解) .考点解一元二次方程 -公式法;解一元二次方程 -配方法. 点:分 ( 1)根据配方法的步骤先把常数项移到等号的右边,一次项移到等号的右边,再在 两边同时加上一次项系数的一半,配成完全平方的形式,然后开方即可;)2=即( x﹣ 即: x 2﹣ x=﹣配方: x 2﹣ x+ ( )点 此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般 评: 形式,找出 a ,b 及 c 的值,当根的判别式的值大于等于 0时,代入求根公式即可求2)首先找出公式中的 a ,b , c 的值,再代入求根公式解 答: 可.解:( 1) 4x 2﹣1=12x , 4x 2﹣12x=1,﹣ 3x= ,﹣ 3x+ = + ,( x ﹣ )2x ﹣ =± ,+= , x 2= ﹣ + = , x 2= ﹣ ( 2)2x 2﹣ 2=3x ,2 2x 2﹣3x ﹣2=0, x 1== = ∵ a=2, b=﹣3, c=﹣ 2, ==x 1=2 , x 2=﹣ . 点 此题考查了配方法和公式法解一元二次方程, 关键是熟练掌握配方法的步骤和公式法 评: 的步骤,公式法解题时要注意将方程化为一般形式,确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.2 17.用公式法解一元二次方程: 3x 2+5x ﹣2=0.考 解一元二次方程 - 公式法.点:分析: 先找出 a ,b 及 c 的值,再代入求根公式解解: 3x 2+5x ﹣2=0, 答: ∵ a=3, b=5, c= ﹣ 2,∴ x=x= 进行计算即可.出解.2 18.(2010 秋?岳池县期末)已知关于 x 的一元二次方程 x 2+kx ﹣5=0 (1)求证:不论 k 为任何实数,方程总有两个不相等的实数根; (2)当 k=4 时,用配方法解此一元二次方程.考 根的判别式;解一元二次方程 - 配方法.点: 专 证明题.题:分 ( 1)由根的判别式可得 △=k 2+20,再由 k 2 的非负性即可得到 k 2+20>0,证得不论 k 析: 为任何实数,方程总有两个不相等的实数根;( 2)此题用配方法,注意按配方法的步骤求解即可.解 解:( 1) ∵ a=1,b=k , c=﹣5,答: ∴ △=b 2﹣ 4ac=k 2﹣4×1×(﹣ 5) =k 2+20 ,∵ k 2 ≥0,2∴ k 2+20≥20> 0,∴ 不论 k 为任何实数,方程总有两个不相等的实数根;( 2)∵当 k=4 时,方程为: x 2+4x ﹣5=0,∴ x 2+4x=5 ,2∴ x +4x+4=5+4 ,2∴ ( x+2) 2=9,∴ x+2= ±3,解得: x 1=﹣ 5, x 2=1 .∴ 原方程的解为: x 1=﹣ 5,x 2=1.点 此题考查了根的判别式与配方法解一元二次方程.题目比较基础,解答时要注意配方 评: 法的应用.219.用配方法解下列关于 x 的一元二次方程: 9x 2﹣12x=1 .方程变形后,利用完全平方公式配方,开方即可求出解.点 此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键. 评: x= 解:方程变形得: x 2 考点: 专题: 分 析: 解答: 解一元二次方程 -配方法. 计算题. 配方得: x 2 开方得: x ﹣ x+ = =± ,±,,即( x ﹣ ) 2解得: x 1= ,x 2=20.(2012 春?兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x ﹣12=0(2)3(x﹣5)2=2(x﹣5)考解一元二次方程- 因式分解法;解一元二次方程-配方法.点:专计算题.题:分(1)根据一般配方法的要求将方程配方,再解方程即可;析:(2)先移项,再提取公因式即可.解解:(1)∵原方程可化为(x+2 )2=16答:解得x1=2,x2=﹣6;(2)∵移项得,3(x﹣5)2﹣2(x﹣5)=0,∴ (x﹣5)(3x﹣17)=0,∴ x﹣5=0 或3x﹣17=0 ,解得x1=5,x2= .点本题考查的是因式分解法和配方法解一元二次方程,熟知解一元二次方程的基本方法评:是解答此题的关键.。
轧东卡州北占业市传业学校<配方法公式法解一元二次方程>◆根底过关1、将二次三项式x 2-4x+1配方后得〔 〕 A .〔x-2〕2+3 B .〔x-2〕2-3 C .〔x+2〕2+3 D .〔x+2〕2-3 2、x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的选项是〔 〕 A 、x 2-8x+42=31 B 、x 2-8x+42=1 C 、x 2+8x+42=1 D 、x 2-4x+4=-11 3、用配方法解方程x 2+x=2,应把方程的两边同时〔 〕 A 、加41 B 、加21 C 、减 41 D 、减21 4、一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程为〔 〕A.(x -1)2=m 2+1B.(x -1)2=m -1C.(x -1)2=1-mD.(x -1)2=m +1 5、填写适当的数使下式成立.①x 2+6x +______=(x +3)2 ②x 2-______x +1=(x -1)2③x 2+4x +______=(x +______)2 ④ x 2-3x+________=〔x-_______〕2⑤ a 〔x 2+x+_______〕=a 〔x+_______〕2 6、假设代数式322--x x为()k m x +-2的形式,其中k m ,为常数,那么m+k= 。
7、假设方程()01342=+--x m x 的左边是一个完全平方式,那么m 的值为 。
8、代数式2221x x x ---的值为0,求x 的值.9、解以下方程:〔1〕x 2+6x+5=0; 〔2〕2x 2+6x-2=0; 〔3〕2420x x ++= ●拓展提高1、配方法解方程2x 2-43x-2=0应把它先变形为〔 〕A 、〔x - 13〕2 =89B 、〔x - 23〕2 =0C 、〔x - 13〕2 =89D 、〔x - 13〕2 =109 2、用配方法解方程x 2 - 23x+1=0正确的解法是〔 〕 A 、〔x - 13〕2 =89,x=13B 、〔x - 13〕2 = -89,原方程无解C 、〔x - 23〕2 =59,x 1=23x 2D 、〔x - 23〕2 =1,x 1 =53,x 2 = -13 3、不管x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值〔 〕A .总不小于2B .总不小于7C .可为任何实数D .可能为负数4、无论x 、y 取任何实数,多项式222416x y x y +--+的值总是_______数. 5、如果16〔x-y 〕2+40〔x-y 〕+25=0,那么x 与y 的关系是________. 6、三角形的两边长分别是3和4,第三边的长是方程035122=+-x x的一个根,那么该三角形的周长是 7、用配方法解以下方程:〔1〕x 2+4x+1=0; 〔2〕〔1+x 〕2+2〔1+x 〕-4=0. 〔3〕9y 2-18y-4=0 〔4〕x 2x.8、如果a 、b2-12b+36=0,求ab 的值. 9、用配方法解方程22300x -=,下面的过程对吗?如果不对,找出错在哪里,并改正.解:方程两边都除以2并移项,得215x =,配方,得2211()1524x +=+, 即2161()24x -=,解得12x -=,即12x x ==.●中考链接1、 用配方法解方程2250x x --=时,原方程应变形为〔 〕A .()216x +=B .()216x -=C .()229x +=D .()229x -=2、 方程2(2)9x -=的解是〔 〕 A .125,1x x ==- B .125,1x x =-= C .1211,7x x ==- D .1211,7x x =-=3、〔2021年,〕x 是一元二次方程0122=+-x x 的根,求代数式)252(6332--+÷--x x x x x 的值。
解一元二次方程计算题专项训练(50道)目录【训练一、配方法】 (1)【训练二、公式法】 (8)【训练三、因式分解法】 (15)【训练一、配方法】1.用配方法解下列方程:(1)2230x x -++=;(2)2118022x x -+=.(1)214240x x ++=;(2)21130x x -=-;(3)228=0x x --;(4)210110--=.x x()2536x -=56x -=±,∴1211,1x x ==-.3.用配方法解方程:()()23616x x +-=.5.用配方法解方程245=0x x --.【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法,掌握配方法解方程是关键.运用配方法求解即可.【详解】解:方程移项得:245x x -=,配方得:2449x x -+=,即()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.6.用配方法解方程:2220x mx m +-=.(1)2440x x ++=;(2)22320x x -+=.8.解方程:2340+-=(用配方法)x x【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法;掌握配方法解方程是关键.【详解】解:方程变形得:245x x -=,即2449x x -+=,变形得:()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.14.用配方法解方程:23210x x --=.【训练二、公式法】16(1)()()2121x x +-=;(2)()223220x x x -+=+.(1)231y +=;(2)23210x x ++=;(3)()()()33211x x x x -=-+.(1)2120--=;x x(2)2x x+-=;2530 (3)2x x-+=;2770(4)210x--=.21.(用公式法)解一元二次方程:2x x--=.2630(1)2120--=;x x(2)2+-=;x x2530(3)2-+=.x x277024.用公式法解方程:.--=460 x x--=x x2029.解方程:2290x x --=(用公式法)410x x -+=【训练三、因式分解法】31.(1)用公式法解方程:2470x x --=;(2)用因式分解法解方程:()220x x x -+-=.(1) ()4312x x x +=+;(2) ()24220x x ---=;(3)()()2291250x x -+-=.33.解方程:2323230x x ----= 【答案】10x =,22x =【分析】本题考查了一元二次方程的解法,将原方程化成一元二次方程的一般形式是解答本题的关键.先将原方程化成一元二次方程的一般形式,然后再用因式分解法解答即可.【详解】解:()()22323230x x ----=241296430x x x -+-+-=2480x x -=()420x x -=40x =或20x -=\10x =,22x =.34.解方程:(1)2(3)3x x x -=-;(2)(1)(2)1x x +-=.(1)22350x x --=;(2)2(5)3(5)x x x -=-.【答案】126,1x x ==-【分析】本题主要考查解一元二次方程,将方程整理为2560x x --=,再运用因式分解法求解即可.【详解】解:22(2)+6x x x x -=+,22246x x x x -=++,222460x x x x ----=,2560x x --=,()()610x x -+=,60,10x x -=+=,∴126,1x x ==-.37.解方程 ()()252552+60x x ---=(1)(3)30x x x -+-=(2)2410x x -+=(1)263x x -= ;(2)()25410x x x -=-.(1)2410x x -+=;(2)2(4)5(4)x x +=+;(3)26061x x -=-;(4)2230x x +-=.41.解方程:()()2131x x x +=+.42.解方程:2121x x -=-.(1)()()2(31)23x x x -+=-.(2)(1)(2)2(2)0x x x +-+-=(3)3(1)22x x x-=-(1)22410x x --=.(2)()()2312y y --=(2)解:∵()()2312y y --=,∴223612y y y --+=,∴2560y y --=,∴()()610y y -+=,∴60y -=或10y +=.解得16y =,21y =-.45.解方程:(1)()2116x +=;(2)()()215140x x ---+=.(1)2450x x --=;(2)3(1)2(1)x x x -=-.(1)()()3239x x x +-=--(2)22980x x -+=(1)2316x x =.(2)22740x x +-=.(1)()234x x x -=-.(2)()22239x x -=-.()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==50.解方程432625122560x x x x -+++=.。
九年级上册第二十一章?配方法解一元二次方程?同步练习题一、选择题〔每题只有一个正确答案〕1.用配方法解方程x2−4x−2=0变形后为()A.(x−2)2=6B.(x−4)2=6C.(x−2)2=2D.(x+2)2=62.将方程x2+8x+9=0左边变成完全平方式后,方程是〔〕A.(x+4)2=7B.(x+4)2=25C.(x+4)2=−9D.(x+4)2=−7 3.假设方程x2﹣8x+m=0可以通过配方写成〔x﹣n﹣2=6的形式,那么x2+8x+m=5可以配成〔〕A.﹣x﹣n+5﹣2=1B.﹣x+n﹣2=1C.﹣x﹣n+5﹣2=11D.﹣x+n﹣2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.假如一元二次方程x2-ax+6=0经配方后,得〔x+3﹣2=3,那么a的值为〔〕A.3 B.-3 C.6 D.-6二、填空题6.方程x2﹣2x﹣2﹣0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.〔1〕x2+6x+9=(x+____)2,〔2〕x2-_______+p24=(x−p2)2.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;假设多项式x2-ax+2a-3是一个完全平方式,那么a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:x2−2x=4﹣12.用配方法解方程:2x2−3x+1=0﹣13.用配方法说明:不管x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.关于x的一元二次方程kx2+2x﹣1=0有实数根,第 1 页〔1〕求k的取值范围;〔2〕当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为1,再进展配方.现请你先阅读如下方程〔1〕的解答过程,并按照此方法解方程〔2〕.方程〔1〕2x2−2√2x−3=0.解:2x2−2√2x−3=0,(√2x)2−2√2x+1=3+1,(√2x−1)2=4,√2x−1=±2,x1=−√22,x2=3√22.方程〔2〕3x2−2√6x=2.参考答案1.A【解析】【分析】在此题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得〔x-2〕2=6.应选:A【点睛】配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】﹣x2+8x+9=0﹣﹣x2+8x=−9﹣﹣x2+8x+16=−9+16﹣﹣(x+4)2=7.应选A.【点睛】配方法的一般步骤:〔1〕将常数项移到等号右边;〔2〕将二次项系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.3.D【解析】分析:方程x2﹣8x+m=0可以配方成〔x﹣n〕2=6的形式,把x2﹣8x+m=0配方即可第 1 页得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴〔x﹣4〕2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴〔x+4〕2=11,即〔x+n〕2=11.应选D.点睛:考察理解一元二次方程﹣配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0﹣﹣x-5﹣2=0﹣x1=x2=5﹣所以他们两人的说法都是错误的,应选D.【点睛】此题考察了配方法解一元二次方程,纯熟掌握配方法的一般步骤是解题的关键.配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1﹣﹣3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把〔x+3〕2=3按完全平方式展开,比照即可知a的值.【详解】根据题意,〔x+3〕2=3可变为:x2+6x+6=0,和一元二次方程x2-ax+6=0比拟知a=-6.应选:D【点睛】此题考核知识点:此题考察了配方法解一元二次方程,是根底题.6.x1﹣1﹣√3﹣x2﹣1﹣√3【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,〔x-1〕2=3,两边直接开平方得:x-1=±√3,那么x1=√3+1,x2=-√3+1.故答案为:x1=1+√3,x2=1-√3.点睛: 此题主要考察了配方法解一元二次方程,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考察了配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第 3 页8.3 px【解析】【详解】根据完全平方公式得,x 2+6x +9=(x +3)2﹣x 2-px +p 24=(x −p 2)2. 故答案为3﹣px .9.3(x −13)2=103﹣2或6.【解析】【分析】首先把一元二次方程3x 2-2x -3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x 2-2x -3=0化成,括号里面配方得,,即; ∵多项式x 2-ax+2a -3是一个完全平方式,,∴解得a=2或6.故答案为﹣(1). 3(x −13)2=103﹣ (2). 2或6.【点睛】此题考察了配方法解一元二次方程,解题的关键是纯熟掌握用配方法解一元二次方程的步骤.10. 94, 32 【解析】分析:根据配方法可以解答此题.详解:∵x 2﹣3x +94=〔x ﹣32〕2, 故答案为:94,32.点睛:此题考察了配方法的应用,解题的关键是纯熟掌握配方法.11.x 1=1+√5,x 2=1−√5.【解析】【分析】第 5 页两边都加1,运用配方法解方程.【详解】解:x 2−2x +1=5,(x −1)2=5,x −1=±√5,所以x 1=1+√5,x 2=1−√5.【点睛】此题考核知识点:解一元二次方程. 解题关键点:掌握配方法.12.x 1=12,x 2=1.【解析】【分析】利用配方法得到〔x ﹣34〕2=116,然后利用直接开平方法解方程即可.【详解】x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, 〔x ﹣34〕2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点睛】此题考察理解一元二次方程﹣配方法:将一元二次方程配成〔x +m 〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比拟代数式2x 2+5x-1的值总与代数式x 2+7x-4的大小,即2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2;当x=1时,两代数式的差最小为2.【详解】解:2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2,∵〔x-1〕2≥0,∴〔x-1〕2+2>0,即2x 2+5x-1-〔x 2+7x-4〕>0,∴不管x 取任何值,代数式2x 2+5y-1的值总比代数式x 2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】此题考核知识点:配方.解题关键点:用求差法和配方法比拟代数式的大小.14.〔1〕k ≥﹣1且k ≠0;〔2〕x 1=√3−12,x 2=−√3−12. 【解析】试题分析:﹣1〕当k =0时,是一元一次方程,有解;当k ≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式﹣≥0,求出k 的取值范围;﹣2〕当k =2时,把k 值代入方程,用配方法解方程即可.解:〔1〕∵一元二次方程kx 2+2x ﹣1=0有实数根,∴22+4k ≥0,k ≠0,解得,k ≥﹣1且k ≠0;〔2〕当k=2时,原方程变形为2x 2+2x ﹣1=0,2〔x 2+x 〕=1,2〔x 2+x +〕=1+,2〔x +〕2=,〔x +〕2=x +=±, x 1=,x 2=. 15.x 1=√6+2√33 ,x 1=√6−2√33. 【解析】【分析】参照范例的步骤和方法进展分析解答即可.【详解】原方程可化为:(√3x)2−2×√3×√2x +(√2)2=2+(√2)2,﹣ (√3x −√2)2=4,∴ √3x−√2=±2,∴x1=√6+2√33,x2=√6−2√33.【点睛】读懂范例中的解题方法和步骤是解答此题的关键.第 7 页。
2022-2023学年九年级上数学第21章一元二次方程21.2.1配方法和公式法解一元二次方程一、选择题1.一元二次方程210x -=的根是()A .121x x ==B .121x x ==-C .11x =-,21x =D .1x =2.方程24x =的根为()A .2x =B .2x =-C .0x =D .2x =±3.用配方法解方程2210x x +-=时,配方结果正确的是()A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=4.若将一元二次方程2890x x --=化成2()x n d +=的形式,则n ,d 的值分别是()A .4,25B .4-,25C .2-,5D .8-,735.一元二次方程20(0)ax bx c a ++=≠的求根公式是()A .2b x a -=B .2b x a =C .x =D .x 6.用公式法解方程2263t t =+时,a ,b ,c 的值分别为()A .2,6,3B .2,6-,3-C .2-,6,3-D .2,6,3-7.方程210x x +-=的根是()A .1-BC .1-D 二、填空题8.若2280x -=,则x =.9.一元二次方程2(1)4x +=的解为.10.方程2220x x +-=配方得到2()3x m +=,则m =.11.方程2250x x --=配方后可化为.12.一元二次方程210x x +-=的解是.13.用公式法解一元二次方程,得y =,则该一元二次方程为.三、解答题14.解方程:(1)2(1)16x -=;(2)22310x x +-=.15.解方程:(1)(2)3x x -=;(2)210x x +-=.一、选择题1.下列配方中,变形正确的是()A .222(1)x x x +=+B .2243(2)1x x x --=-+C .222432(1)1x x x ++=++D .222(1)1x x x -+=-+-2.用配方法解下列方程,其中应在两端同时加上4的是()A .225x x -=B .2245x x -=C .245x x +=D .225x x +=3.利用配方法解方程22103x x --=时,应先将其变形为()A .2110()39x +=B .2110()39x -=C .218()39x -=D .218(39x +=4.方程(1)2x x -=的两根为()A .10x =,21x =B .10x =,21x =-C .11x =,22x =D .11x =-,22x =5.已知等腰ABC ∆中的三边长a ,b ,c 满足22248180a b a b +--+=,则ABC ∆的周长是()A .6B .9C .6或9D .无法确定6.已知方程264x x -+=□,等号右侧的数字印刷不清楚.若可以将其配方成2()7x p -=的形式,则印刷不清的数字是()A .6B .9C .2D .2-7.若方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,则该方程的解为()A .1x =,2x =B .11x =,23x =-C .11x =-,23x =D .11x =-,22x =-二、填空题8.已知x ,y 是有理数,且2226100x x y y ++-+=,则y x =.9.方程(4)(5)1x x +-=的根为.三、解答题10.解下列方程:(1)2(2)240x x --+=;(2)2410x x --=.11.解下列方程:(1)(4)3x x -=;(2)2215x x +-=.一、选择题1.(2022•聊城)用配方法解一元二次方程23610x x +-=时,将它化为2()x a b +=的形式,则a b +的值为()A .103B .73C .2D .432.(2022•雅安)若关于x 的一元二次方程260x x c ++=配方后得到方程2(3)2x c +=,则c 的值为()A .3-B .0C .3D .93.(2022•甘肃)用配方法解方程222x x -=时,配方后正确的是()A .2(1)3x +=B .2(1)6x +=C .2(1)3x -=D .2(1)6x -=4.(2021•赤峰)一元二次方程2820x x --=,配方后可变形为()A .2(4)18x -=B .2(4)14x -=C .2(8)64x -=D .2(4)1x -=5.(2021•丽水)用配方法解方程2410x x ++=时,配方结果正确的是()A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x +=6.(2021•海南)用配方法解方程2650x x -+=,配方后所得的方程是()A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=7.(2020•泰安)将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是()A .4-,21B .4-,11C .4,21D .8-,698.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是()A .2317()416x -=B .231(42x -=C .2313(24x -=D .2311()24x -=9.(2022•郴州)一元二次方程2210x x +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根10.(2022•贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,011.(2022•营口)关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围为()A .4m <B .4m >-C .4m D .4m - 12.(2022•北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A .4-B .14-C .14D .413.(2022•辽宁)下列一元二次方程无实数根的是()A .220x x +-=B .220x x -=C .250x x ++=D .2210x x -+=14.(2022•湖北)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且1212(2)(2)217x x x x ++-=,则(m =)A .2或6B .2或8C .2D .615.(2022•宜宾)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是A .0a ≠B .1a >-且0a ≠C .1a - 且0a ≠D .1a >-16.(2022•常德)关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是()A .4k >B .4k <C .4k <-D .1k >二、填空题17.(2022•荆州)一元二次方程2430x x -+=配方为2(2)x k -=,则k 的值是.18.(2020•扬州)方程2(1)9x +=的根是.19.(2022•上海)已知20x m -+=有两个不相等的实数根,则m 的取值范围是.20.(2022•铜仁市)若一元二次方程220x x k ++=有两个相等的实数根,则k 的值为.21.(2022•鄂州)若实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,则11ab+的值为.三、解答题22.(2022•齐齐哈尔)解方程:22(23)(32)x x +=+.23.(2022•无锡)(1)解方程:2250x x --=;24.(2021•兰州)解方程:2610x x --=.参考答案基础训练1.【答案】C【解析】解:210x -= ,21x ∴=,1x ∴=±,即11x =-,21x =.故选:C .2.【答案】D【解析】解:24x = ,2x ∴=±,故选:D .3.【答案】B【解析】解:2210x x +-=,移项得221x x +=,等式两边同时加21得22111x x ++=+配方得2(1)2x +=.,故选:B .4.【答案】B【解析】解:2890x x --= ,281625x x ∴-+=,2(4)25x ∴-=,4n ∴=-,25d =,故选:B .5.【答案】A【解析】解:一元二次方程的求根公式为x =,故选:A .6.【答案】B【解析】解:方程化为22630t t --=,所以2a =,6b =-,3c =-.故选:B .7.【答案】D【解析】解:210x x +-=,1a = ,1b =,1c =-,∴△224141(1)50b ac =-=-⨯⨯-=>,故122b b ac x a --==,故选:D .8.【答案】2±【解析】解:由原方程,得228x =,24x ∴=,直接开平方,得2x =±.故答案为:2±.9.【答案】11x =,23x =-【解析】解:2(1)4x +=12x +=±21x =±-11x =,23x =-,故答案为:11x =,23x =-.10.【答案】1【解析】解:222x x +=,2213x x ++=,2(1)3x +=.所以1m =,故答案为1.11.【答案】2(1)6x -=【解析】解:2250x x --= ,2216x x ∴-+=,2(1)6x ∴-=,故答案为:2(1)6x -=.12.【答案】1152x -+=,2152x --=【解析】解:1a = ,1b =,1c =-,∴△2141(1)5=-⨯⨯-=,x ∴=,所以1x =,2x =.故答案为1152x -+=,2152x -=.13.【答案】23510x x +-=【解析】解:根据题意得:3a =,5b =,1c =-,则该一元二次方程是23510x x +-=.故答案为:23510x x +-=.14.【解析】解:(1)2(1)16x -=,14x -=±,14x -=或14x -=-,15x =,23x =-;(2)22310x x +-=,△2342(1)9817=-⨯⨯-=+=,3174x -±∴=,13174x -+∴=,23174x --=.15.【解析】解:(1)方程整理得:223x x -=,配方得:2214x x -+=,即2(1)4x -=,开方得:12x -=或12x -=-,解得:13x =,21x =-;(2)这里1a =,1b =,1c =-,△1=+122b b ac x a --∴==,解得:1152x -+=,2152x -=.1.【答案】C【解析】解:22x x +2211x x =++-2(1)1x =+-,A 错误.243x x --24443x x =-+--2(44)(43)x x =-++--2(2)7x =--.B 错误.2243x x ++22(2)3x x =++22(211)3x x =++-+22(21)213x x =++-⨯+22(1)23x =+-+22(1)1x =++.C 正确.22x x -+2(211)x x =--+-2(21)1x x =--++2(1)1x =-++D 错误.故选:C .2.【答案】C【解析】解:A .由225x x -=得22151x x -+=+,不符合题意;B .由2245x x -=得2522x x -=,所以252112x x -+=+,不符合题意;C .由245x x +=得24454x x ++=+,符合题意;D .由225x x +=得22151x x ++=+,不符合题意;故选:C .3.【答案】B【解析】解:22103x x --=,移项,得2213x x -=,配方,得222211(1()333x x -+=+,即2110()39x -=,故选:B .4.【答案】D【解析】解:方程移项并化简得220x x --=,1a =,1b =-,2c =-△180=+12x ±∴=解得11x =-,22x =.故选:D .5.【答案】B【解析】解22248180a b a b +--+= ,222(1)(4)0a b ∴-+-=,10a ∴-=,40b -=,解得1a =,4b =,35c << ,ABC ∆ 是等腰三角形,4c ∴=.故ABC ∆的周长为:1449++=.故选:B .6.【答案】C【解析】解:设印刷不清的数字是a ,2()7x p -=,2227x px p -+=,2227x px p ∴-=-,222411x px p ∴-+=-,方程264x x -+=□,等号右侧的数字印刷不清楚,可以将其配方成2()7x p -=的形式,26p ∴-=-,211a p =-,3p ∴=,21132a =-=,即印刷不清的数字是2,故选:C .7.【答案】B【解析】解:方程2230x mx +-=的二次项系数、一次项系数、常数项分别是1,2m ,3-,方程2230x mx +-=的二次项系数、一次项系数、常数项的和为0,12(3)0m ∴++-=,解得:1m =,即方程为2230x x +-=,解得:11x =,23x =-,故选:B .8.【答案】1-【解析】解:2226100x x y y ++-+=,22(21)(69)0x x y y +++-+=,22(1)(3)0x y ++-=,则1030x y +=⎧⎨-=⎩,1x ∴=-,3y =,3(1)1y x ∴=-=-,故答案为:1-.9.【答案】1x 2x =【解析】解:(4)(5)1x x +-=,整理得:2210x x --=,224(1)41(21)85b ac -=--⨯⨯-=,1852x ±=,112x +=,212x =,故答案为:1x =2x =.10.【解析】解:(1)2(2)240x x --+=,2(2)2(2)0x x ---=,(2)(22)0x x ---=,20x -=或220x --=,解得:12x =,24x =;(2)2410x x --=,241x x -=,配方,得24414x x -+=+,2(2)5x -=,开方得:2x -=,解得:12x =+,22x =-.11.【解析】解:(1)(4)3x x -=,243x x -=,配方,得24434x x -+=+,2(2)7x -=,开方,得2x -=解得:12x =+,22x =-;(2)2215x x +-=,2260x x +-=,224142(6)148490b ac -=-⨯⨯-=+=> ,x ∴==,解得:132x =,22x =-.1.【答案】B【解析】解:23610x x +-= ,2361x x ∴+=,2123x x +=,则212113x x ++=+,即24(1)3x +=,1a ∴=,43b =,73a b ∴+=.故选:B .2.【答案】C【解析】解:260x x c ++=,26x x c +=-,2699x x c ++=-+,2(3)9x c +=-+.2(3)2x c += ,29c c ∴=-+,解得3c =,故选:C .3.【答案】C【解析】解:222x x -=,22121x x -+=+,即2(1)3x -=.故选:C .4.【答案】A【解析】解:2820x x --= ,282x x ∴-=,则2816216x x -+=+,即2(4)18x -=,故选:A .5.【答案】D【解析】解:方程2410x x ++=,整理得:241x x +=-,配方得:2(2)3x +=.故选:D .6.【答案】D【解析】解:把方程2650x x -+=的常数项移到等号的右边,得到265x x -=-,方程两边同时加上一次项系数一半的平方,得到26959x x -+=-+,配方得2(3)4x -=.故选:D .7.【答案】A【解析】解:2850x x --= ,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=,4a ∴=-,21b =,故选:A .8.【答案】A 【解析】解:由原方程,得23122x x -=,23919216216x x -+=+,2317()416x -=,故选:A .9.【答案】A【解析】解: △2142(1)1890=-⨯⨯-=+=>,∴一元二次方程2210x x +-=有两个不相等的实数根,故选:A .10.【答案】B【解析】解:设方程的另一根为a ,2x =- 是一元二次方程220x x m ++=的一个根,440m ∴-+=,解得0m =,则20a -=,解得0a =.故选:B .11.【答案】D【解析】解: 关于x 的一元二次方程240x x m +-=有两个实数根,∴△2441()1640m m =-⨯⨯-=+ ,解得:4m - ,故选:D .12.【答案】C【解析】解:根据题意得△2140m =-=,解得14m =.故选:C .13.【答案】C【解析】解:A 、△2141(2)90=-⨯⨯-=>,则该方程有两个不相等的实数根,故本选项不符合题意;B 、△2(2)41040=--⨯⨯=>,则该方程有两个不相等的实数根,故本选项不符合题意;C 、△21415190=-⨯⨯=-<,则该方程无实数根,故本选项符合题意;D 、△2(2)4110=--⨯⨯=,则该方程有两个相等的实数根,故本选项不符合题意;故选:C .14.【答案】A【解析】解: 关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,∴△22(2)4(41)0m m m =---- ,即14m - ,且21241x x m m =--,122x x m +=,1212(2)(2)217x x x x ++-= ,1212122()4217x x x x x x ∴+++-=,即12122()417x x x x ++-=,2444117m m m ∴+-++=,即28120m m -+=,解得:2m =或6m =.故选:A .15.【答案】B【解析】解:由题意可得:20240a a ≠⎧⎨+>⎩,1a ∴>-且0a ≠,故选:B .16.【答案】A【解析】解: 关于x 的一元二次方程240x x k -+=无实数解,∴△2(4)410k =--⨯⨯<,解得:4k >,故选:A .17.【答案】1【解析】解:2430x x -+= ,243x x ∴-=-,24434x x ∴-+=-+,2(2)1x ∴-=,一元二次方程2430x x -+=配方为2(2)x k -=,1k ∴=,故答案为:1.18.【答案】12x =,24x =-【解析】解:2(1)9x +=,13x +=±,12x =,24x =-.故答案为:12x =,24x =-.19.【答案】3m <【解析】解: 关于x 的方程20x m -+=有两个不相等的实数根,∴△2(40m =-->,解得:3m <.故答案为:3m <.20.【答案】1【解析】解:根据题意得△22410k =-⨯⨯=,即440k -=解得1k =.故答案为:1.21.【答案】43【解析】解: 实数a 、b 分别满足2430a a -+=,2430b b -+=,且a b ≠,a ∴、b 可看作方程2430x x -+=的两个不相等的实数根,则4a b +=,3ab =,则原式43a b ab +==,故答案为:43.22.【解析】解:方程:22(23)(32)x x +=+,开方得:2332x x +=+或2332x x +=--,解得:11x =,21x =-.23.【解析】解:(1)2250x x --=,225x x -=,22151x x -+=+,2(1)6x -=,1x ∴-=,解得11x =+,21x =-.24.【解析】解:2610x x --=,移项得:261x x -=,配方得:26910x x -+=,即2(3)10x -=,开方得:3x -=,则13x =+23x =。
新人教版九年级数学上册暑期讲义:第三课 配方法、公式法配方法:()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ 公式法:⑴条件:)04,02≥-≠ac b a 且⑵公式: aac b b x 2422,1-±-=,()04,02≥-≠ac b a 且 例1.试用配方法说明322+-x x 的值恒大于0。
例2.已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3.已知0136422=+-++y x y x ,x,y 为实数,求yx 的值。
例4.在实数范围内......分解因式:31242++x x例5.在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --例6.如果012=-+x x ,那么代数式7223-+x x 的值。
课堂同步:1.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( ) A .27 B .33 C .27和33 D .以上都不对2.小明用配方法解下列方程时,只有一个配方有错误,请你确定小明错的是( ) A .22990x x --=化成2(1)100x -= B .2890x x ++=化成2(4)25x += C .22740t t --=化成2781416t ⎛⎫-=⎪⎝⎭ D .23420y y --=化成221039y ⎛⎫-= ⎪⎝⎭ 3.一元二次方程032=+x x 的解是 ;用配方法解方程2x ²+4x+1 =0,配方后得到的方程是 ;用配方法解方程23610x x -+=,则方程可变形为 . 4.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的面积 为5.在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解是6.已知041122=---+x x x x ,则=+x x 17.用配方法解方程:⑴ 016102=++x x ⑵0432=--x x ⑶05632=-+x x⑷0942=--x x (5)(x-2)(x-5)=-2 (6)x x 3122=+(7)04632=+-x x8.用公式法解方程:(1)0122=-+x x ⑵04122=--x x ⑶112842+=++x x x⑷()x x x 824-=- ⑸022=+x x ⑹010522=++x x9.试用配方法说明47102-+-x x 的值恒小于0。
九年级(上册)数学配方法及公式法姓名:
◆回顾归纳
1.通过配方,把方程的一边化为______,另一边化为_____,然后利用开平方法解方程,这种方法叫配方法,如
ax2+bx+c=0(a≠0),配方得a(x+_____)2=
24
4
b ac
a
.
2.一元二次方程ax2+bx+c=0(a≠0),运用公式法求解的方法叫做公式法,•求根公式x=_______.◆课堂测控
测试点1 配方法
1.(1)x2-2x+_____=(x-1)2;(2)x2+3
2
x+
9
16
=(x+_______)2.
2.(1)x2+4x+_____=(x+_____)2;(2)y2-_______+9=(y-_____)2.
3.若x2+6x+m2是一个完全平方式,则m的值为()
A.3 B.9 C.±3 D.±9
4.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2•可以配方成下列的() A.(x-p)2=5 B.(x-p)2=9 C.(x-p+2)2=9 D.(x-p+2)2=5
5.用配方法解下列方程:
(1)x2+6x+7=0;(2)2x2-4x=-5;
(3)3x2+2x-3=0;(4)1
2
x2-3x+3=0.
6.阅读下列解题过程,并解答后面的问题.用配方法解方程2x2-5x-8=0.
解:2x2-5x-8=0.
∴x2-5x-8=0.①
∴x2-5x+(-5
2
)2=8+(-
5
2
)2.②
∴(x-5
2
)2=
57
4
.③
∴x1,x2④
(1)指出每一步的解题根据:①______;②______;③_______;④_______.(2)上述解题过程有无错误,如有错在第______步,原因是_________.
(3)写出正确的解答过程.
测试点2 公式法
7.方程(x+2)(x+3)=20的解是______.
8.方程3x2+2x+4=0中,b2-4ac=_______,则该一元二次方程_______实数根.9.方程x2+4x=2的正根为()
A.2..-2.-
10.用求根公式解下列方程.
(1)3x2-x-2=0;(2)1
2
x2+
1
8
=-
1
2
x;
(3)(x+2)(x-2);(4)3x2+2x=2.
11.用公式法解方程1
2
x2+
1
2
x+
1
8
=0.
解:4x2+4x+1=0 ①
∵a=4,b=4,c=1,②
∴b2-4ac=42-4×4×1=0.③
∴x=424-±⨯=12
. ④ ∴x 1=x 2=-12
. (1)以上①步______,②步______,③步_______,④步_______. (2)体验以上解题过程,用公式法解方程:
13x 2+13x -16=0.
◆课后测控
1.若关于x 的方程2x 2+3ax -2a=0有一根为x=2,则关于y 的方程y 2
+a=7的解是______.
2.设x ,x 是方程x 2-4x -2=0的两根,那么x=______,x=_____.
3.如果(2a+2b+1)(2a+2b -1)=63,那么a+b 的值是______.
4.将二次三项式2x 2-3x -5进行配方,其结果为______.
5.若方程ax 2+bx+c=0的一个根为-1,则a -b+c=_____;若一根为0,则c=______.
6.若│x 2-x -2│+│2x 2-3x -2│=0,则x=_______.
7.一元二次方程x 2-2x=0的解是( )
A .0
B .0或2
C .2
D .此方程无实数根
11.用适当的方法解下列方程.
(1)4x 2-7x+2=0; (2)x 2-x -1=0;
(3)x 2-7x+6=0; (4)3(x+1)2-5(x+1)=2.
参考答案
回顾归纳
1.完全平方式 非负数 2b
a
2.2b a -±(b -4ac ≥0)
课堂测控
1.(1)1 (2)3
4 2.(1)4 2 (2)6y 3 3.C 4.B
5.(1)x 1=-x 2=-3(2)无解
(3)x 1=13-,x 2=13--
(4)x 1x 2=36.(1)①把二次项系数化为1 ②移项,•方程的两边加上一次项系数一半的平方
③方程左边化为完全平方式 ④直接用开平方法解方程
(2)① 常数项和一次项系数未同时除以2
(3)正确解答:x 2-5
2x -4=0,
∴x 2-52x+(-54)2=4+(-54)2
,
∴(x -54)2=89
16,∴x 1,x 2.
7.x 1=-7,x 2=2
8.-44 没有 9.D
10.(1)x 1=1,x 2=-2
3 (2)x 1=x 2=-1
2
(3)x 1x 2
(4)x 1x 211.(1)①把系数化为整数 ②确定二次项系数,一次项系数,常数项 •③求出b 2-4ac 的值
④求出方程的根
(2)2x 2+2x -1=0,∵a=2,b=2,c=-1,
∴b 2-4ac=4-4×2×(-1)=12.
∴x=221
2242-±-±-==⨯.
∴x 1=
12-,x 2=12
--. 课后测控
1.y=±3
2.==2 3.±4(点拨:令2a+2b=x ,则(x+1)(x -1)=63,
∴x=±8,∴a+b=±4)
4.2[(x -34)2-4916
] (点拨:2x 2-3x -5=2(x 2-32x -52
) =2[x 2-32x+(-34)2-52-916]=2[(x -34)2-4916
]) 5.0 0 6.2(点拨:要使等式成立,则必有x 2-x -2=0,且2x 2-3x -2=0,∴x=2)
7.B
8.A (点拨:x 2+y 2+2x -4y+7=(x+1)2+(y -2)2+2,
∵(x+1)2≥0,(y -2)2≥0,∴x 2+y 2+2x -4y+7≥2)
9.B (点拨:x 2-16x+60=0的两根为x 1=10,x 2=6,根据三角形三边关系,则10和6都可为第三边长,∴当第三边
长为10,则此三角形为直角三角形,则S=24,当第三边长为6时,
10.C (点拨:∵x*(x+1)=5,∴x+(x+1)2=5,即x 2+3x -4=0,∴x 1=1,x 2=-4)
11.(1)这里a=4,b=-7,c=2.
∴△=49-4×4×2=17,∴x=77248
±±=⨯.
∴x 1=78+8,x 2=78-8.
(2)x =,x 2. (3)(x -1)(x -6)=0,∴x -1=0或x -6=0.
∴x 1=1,x 2=6.
(4)令x+1=y ,则原方程变为3y 2
-5y -2=0,
∴y 1=-13
,y 2=2. 当y 1=-13,x 1=-43
;y 2=2时,x 2=1. 12.∵(x+1)△x=10,∴(x+1)2+(x+1)x+x 2=10,
整理得x 2+x -3=0.
解得x 1,x 2. 13.∵△=4-2(2-m )=4m -4>0,∴m>1.
将m=2代入方程得x 2+2x=0,∴x 2+2x+1=1,
即(x+1)2=1,∴1+x=±1,∴x 1=0,x 2=-2.
14.设平均每箱应降价x 元,根据题意得
(4-x )·(20+
0.4x ×8)=120. 整理得x 2-3x+2=0,即(x -2)(x -1)=0.
∴x=2,x=1.
因为要扩大销售量,减少库存,所以应取x=2,将x=1舍去,∴每箱牛奶应降价2元. 拓展创新
设道路宽为x 米,列方程为20×32-(20+32)x+x 2
=540,
∴x 1=2,x 2=50(舍去),•∴道路宽为2米.
感谢您的支持与配合,我们会努力把内容做得更好!。