九年级数学配方法
- 格式:pdf
- 大小:1.02 MB
- 文档页数:9
在初中数学中,配方法是一个非常重要的概念和方法。
配方法是用来求解一些特殊的代数方程的方法,通过配方法可以使得方程两边的式子变得对称,从而使得方程可以更加容易的求解。
下面我将为大家介绍几个例题,这些例题都是非常经典和优秀的配方法的例题。
例题1:已知a + b + ab = 33,求a² + b² + ab 的值。
解法:我们可以根据题目中给出的式子来配方法。
首先可以将a + b + ab= 33改写为a + b + ab - 33 = 0,然后我们可以将方程两边同时加上a² + b² - 2ab,这样可以使得方程变得对称,即(a + b)² + ab - 2(a+ b)ab + (ab)² - (a + b)² = 0,化简得到ab(ab - 1) - (a + b)(a + b - 2ab) = 0,再进一步化简得到ab(ab - 1) - (a + b - ab)(a + b)= 0。
进一步整理可得(ab)² + ab - 33(a + b) = 0。
接下来我们要解这个二次方程。
我们可以设ab = x,a + b = y,将方程替换为x² + x - 33y = 0,然后我们再将a + b = y替换为y² - 2x。
这样我们就得到一个关于x和y的方程组,x² + x - 33(y² - 2x) = 0。
我们可以化简这个方程组,得到x² - 35x + 33y² = 0。
然后我们可以求解这个方程组,得到x = 33,y = 2、将x和y代回原方程中,可得a = 11,b = 22、最后将a和b代入a² + b² + ab中求值,可得最终结果为495例题2:已知2x² + xy = 3x + 2y = k,求x + y的值。
解法:我们可以根据题目中给出的式子来配方法。
九年级上册数学配方法【原创版3篇】目录(篇1)1.配方法的概念2.配方法的基本步骤3.配方法在解方程中的应用4.配方法的优点与局限性正文(篇1)一、配方法的概念配方法是中学数学中一种重要的解题方法,主要用于解决一元二次方程以及一些二次函数问题。
它的核心思想是将问题转化为可以配方的形式,从而简化问题,便于求解。
二、配方法的基本步骤1.观察题目,找出需要解决的问题,明确要达到的目标。
2.尝试将问题转化为可以配方的形式,通常需要通过添加、减去一些项来实现。
3.完成配方后,将问题转化为简单的二次方程或二次函数问题,从而求解。
三、配方法在解方程中的应用配方法在解一元二次方程中应用广泛,其基本步骤如下:1.将一元二次方程转化为二次函数的形式,即 ax^2 + bx + c = 0 变为 a(x - h)^2 + k = 0 的形式。
2.通过配方,将二次函数转化为完全平方的形式,即 a(x - h)^2 + k = a(x - h + √(k - a(h^2)))(x - h - √(k - a(h^2))) = 0。
3.根据乘积为零的性质,得到 x - h + √(k - a(h^2)) = 0 或 x -h - √(k - a(h^2)) = 0,从而求解出 x 的值。
四、配方法的优点与局限性1.优点:配方法操作简单,易于理解,可以有效解决一元二次方程以及一些二次函数问题。
2.局限性:配方法并非万能,对于一些复杂问题,可能需要结合其他方法进行求解。
目录(篇2)1.配方法的概念和基本原理2.配方法的应用举例3.配方法的注意事项和技巧正文(篇2)一、配方法的概念和基本原理配方法是九年级上册数学中的一种重要方法,它是一种通过变形,将一些较难解决的数学问题转化为容易解决的问题的技巧。
配方法的基本原理是利用数学中的恒等式,将原式变形为完全平方的形式,从而使问题得到简化。
二、配方法的应用举例1.例如,对于二次方程 ax+bx+c=0,我们可以通过配方法将其转化为完全平方的形式,从而求得方程的解。
九年级数学配方法解方程《神奇的配方法解方程》小朋友们,今天我要给你们讲一个超级神奇的数学方法,叫做配方法解方程。
比如说,有一个方程x² + 6x + 5 = 0 。
我们来看看怎么用配方法解决它。
呢,我们要在方程两边加上一个数,让左边变成一个完全平方的形式。
那加多少呢?就加 9 。
为什么加 9 呢?因为 6 除以 2 等于3 ,3 的平方就是 9 。
(x + 3)² = 4 ,那 x + 3 就等于 2 或者 2 。
所以 x 就等于 1 或者 5 。
是不是很神奇呀?《一起来学配方法解方程》小朋友们,今天咱们来一起学习一个好玩的数学技巧——配方法解方程。
假设我们有个方程x² + 4x 12 = 0 。
那我们就在方程两边加上 4 ,因为 4 是 4 除以 2 的平方。
这样方程就变成了(x + 2)² 16 = 0 。
然后(x + 2)² = 16 ,那 x + 2 就是 4 或者 4 。
算一算,x 就是 2 或者 6 。
就像搭积木一样,一步一步来,是不是很有趣?《用配方法解开方程的秘密》小朋友们,你们知道吗?数学里有个很厉害的方法叫配方法,可以帮助我们解开方程的秘密。
比如说方程x² 8x + 7 = 0 。
我们在方程两边加上 16 ,这是因为 8 除以 2 是 4 ,4 的平方是 16 。
于是方程变成了(x 4)² 9 = 0 。
接着(x 4)² = 9 ,那 x 4 就是 3 或者 3 。
算出 x 是 7 或者 1 。
学会这个方法,就像有了一把神奇的钥匙,可以打开数学的大门哦!《轻松学会配方法解方程》小朋友们,咱们来一起探索配方法解方程的奇妙世界。
想象有个方程x² + 10x + 21 = 0 。
我们要给它加点“魔法”,在方程两边加上 25 ,因为 10 除以2 是 5 ,5 的平方是 25 。
方程就变成了(x + 5)² 4 = 0 。
人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。
教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。
学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。
二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。
但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。
2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:配方法的原理和步骤。
2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。
五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。
2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。
六. 教学准备1.准备相关教案和教学资料。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。
例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。
第2讲 一元二次方程的解法(二)----配方法配方法:利用完全平方公式把一元二次方程转化成的形式,再利用直接开平方法解一元二次方程的方法叫做配方法.①当p >0时,方程有两个不等的实数根,;②当p=0时,方程有两个相等的实数根=-n ;③当p <0时,因为对任意实数x ,都有,所以方程无实数根. 知识要点梳理:完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-尝试解方程:x 2-4x +3=0我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.练一练 :配方.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2; 从这些练习中你发现了什么特点?(1)________________________________________________(2)________________________________________________经典例题例1. 用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x -1=0. 解(1)移项,得x 2-6x =____.方程左边配方,得x 2-2·x ·3+_ _2=7+___,即(____ __)2=__ __.所以 x -3=_______.原方程的解是x 1=_____,x 2=_____.(2)移项,得x 2+3x =1.方程左边配方,得x 2+3x +( )2=1+____,即 ____________________所以___________________原方程的解是: x 1=______________x 2=___________总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?例2.用配方法解下列方程:(1)011242=--x x (2)03232=-+x x(3)03422=+-x x例3.当x 为何值时,代数式5x 2 +7x +1和代数式x 2 -9x +15的值相等?例4.求证:不论a 、b 取何实数,多项式a 2b 2 +b 2 -6ab -4b +14的值都不小于1.例5. 试证:不论k 取何实数,关于x 的方程 (k 2 -6k +12)x 2 = 3 - (k 2 -9)x 必是一元二次方程.经典练习一、选择题1.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对2. 若9x 2 -ax +4是一个完全平方式,则a 等于( );A. 12B. -12C. 12或-12D. 6或-63.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-14.把方程x x 432=+,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=25.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .D .6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数二、填空1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2⑤ (x - )2 = x 2 - 32x + ;2.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.三.用配方法解方程:(1)x2+8x-2=0 (2)x2-5x-6=0.(3)2x2-x=6 (4)4x2-6x+()=4(x-)2=(2x-)2(5)x2+px+q=0(p2-4q≥0).四、用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。
第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x2-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m +17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.教师寄语同学们,生活让人快乐,学习让人更快乐。
新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法知识点一、配方法解一元二次方程()002≠=++a c bx ax 222442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、试用配方法说明322+-x x 的值恒大于0。
例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。
例4、分解因式:31242++x x一元二次方程的解法(二)针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1 .★★★3、若912322-+--=x x t ,则t 的最大值为,最小值为。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为。
知识点二、根的判别式从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。
而2244aac b -与0的大小关系又取决于ac b 42-;所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。
由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=? 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。
人教版九年级数学上册《配方法的应用》专项练习题-附带答案类型一 配方法求字母的值1.如果221016890x y x y +--+= 求x y的值. 【答案】58 【解析】【分析】先将89拆成64+25 然后配成两个完全平方式相加 再根据非负数的性质“两个非负数相加和为0 这两个非负数的值都为0” 解出x 、y 的值即可求解.【详解】解:由已知221016890x y x y +--+=得()()22580x y -+-=()()225=080x y ∴--=, 5,8x y ∴==58x y ∴=. 【点睛】本题考查了配方法的应用和非负数的性质 解题关键是掌握两个非负数相加和为0 这两个非负数的值都为0.2.阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式 例如:把x 2 + 6x ﹣16分解因式 我们可以这样进行:x 2 + 6x ﹣16=x 2 +2·x ·3+32-32﹣16(加上32 再减去32)=(x +3)2-52(运用完全平方公式)=(x +3+5)(x +3﹣5) (运用平方差公式)=(x +8)(x ﹣2)(化简)运用此方法解决下列问题:(1)把x 2﹣8x ﹣9分解因式.(2)已知:a 2+b 2﹣6a +10b +34=0 求多项式4a 2 +12ab +9b 2的值.【答案】(1)()()19x x +-;(2)81【解析】【分析】(1)按照阅读材料的方法进行因式分解即可;(2)利用配方法把原式变形得()()22350a b -++= 从而可得3a =5b =- 再由()222412923a ab b a b ++=+ 进行求解即可. 【详解】解:(1)289x x --22224449x x =-⋅⋅+--()2245x =--()()4545x x =-+--()()19x x =+-;(2)∵22610340a b a b +-++=∵226910250a a b b -++++=∵()()22350a b -++=∵3a = 5b =-∵()()222241292361581a ab b a b ++=+=-=.【点睛】本题考查的是配方法的应用 掌握完全平方公式和平方差公式、偶次方的非负性是解题的关键.3.已知a -b =2 ab +2b -c 2+2c =0 当b ≥0 -2≤c <1时 整数a 的值是_____.【答案】2或3【解析】【分析】由a −b =2 得出a =b +2 进一步代入2220ab b c c +-+= 利用完全平方公式得到()()222130b c +---= 再根据已知条件求出b 的值 进一步求得a 的值即可. 【详解】解:∵a −b =2∵a =b +2∵222ab b c c +-+()2222b b b c c =++-+()2242b b c c =+--()()22213b c =+---=0∵()()22213b c +=-+∵b ≥0 −2≤c <1∵310c -≤-<∵()2019c <-≤∵()231312c <-+≤∵3<()22b +≤12∵a 是整数∵b 是整数∵b =0或1∵a =2或3故答案为:2或3.【点睛】此题考查配方法的运用 掌握完全平方公式是解决问题的关键.4.若a =x +19 b =x +20 c =x +21 则a 2+b 2+c 2-ab -bc -ac =___________.【答案】3【解析】【分析】先利用已知条件求解,,,a b b c a c 再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦ 再整体代入求值即可. 【详解】 解: a =x +19 b =x +20 c =x +211,1,2,a b b c a c∴ a 2+b 2+c 2-ab -bc -ac =()22222221222a b c ab bc ac ++--- 22222212222a ab b b bc c a ac c 22212a b b c a c 222111126322故答案为:3【点睛】本题考查的是利用完全平方式的特点求解代数式的值 因式分解的应用 掌握“完全平方式的特点”是解题的关键.5.阅读材料:若m 2+2mn +2n 2﹣6n +9=0 求m 和n 的值.解:∵m 2+2mn +2n 2﹣6n +9=0∵m 2+2mn +n 2+n 2﹣6n +9=0∵(m +n )2+(n ﹣3)2=0∵m +n =0且n ﹣3=0∵m =﹣3 n =3根据你的观察 探究下面的问题:(1)若x 2+2xy +2y 2﹣2y +1=0 求x 、y 的值;(2)已知a b c 是∵ABC 的三边长 满足a 2+b 2=10a +12b ﹣61 且∵ABC 是等腰三角形 求c 的值.【答案】(1)x =-1 y =1;(2)5或6【解析】【分析】(1)仿照材料的过程进行凑成两个非负数的和为0 即可求得结果;(2)仿照材料的过程进行凑成两个非负数的和为0 即可分别求得a和b的值再根据等腰三角形的性质可求得c的值.【详解】(1)∵x2+2xy+2y2﹣2y+1=0∵x2+2xy+y2+y2﹣2y+1=0∵(x+y)2+(y﹣1)2=0∵x+y=0且y﹣1=0∵x=﹣1 y=1(2)∵a2+b2=10a+12b﹣61∵a2+b2-10a-12b+61=0∵(a-5)2+(b﹣6)2=0∵a-5=0且b﹣6=0∵a=5 b=6∵∵ABC是等腰三角形∵c=a=5或c=b=6即c的值为5或6.【点睛】本题是材料问题考查了配方法的应用平方非负性的性质等腰三角形的性质等知识关键是读懂材料中提供的解题过程和方法.6.在平面直角坐标系xOy中满足不等式x2+y2≤2x+2y的整数点坐标(x y)的个数为_____.【答案】9【解析】【分析】由已知不等式变形后利用完全平方公式化简根据x与y均为整数确定出x与y的值即可得到结果.【详解】解:由题设x2+y2≤2x+2y得0≤(x﹣1)2+(y﹣1)2≤2因为x y 均为整数 所以有或22(1)0(1)1x y ⎧-=⎨-=⎩或22(1)1(1)1x y ⎧-=⎨-=⎩或22(1)1(1)0x y ⎧-=⎨-=⎩ 解得:11x y =⎧⎨=⎩ 或12x y =⎧⎨=⎩或10x y =⎧⎨=⎩或01x y =⎧⎨=⎩或00x y =⎧⎨=⎩或02x y =⎧⎨=⎩或21x y =⎧⎨=⎩或20x y =⎧⎨=⎩或22x y =⎧⎨=⎩ 以上共计9对(x y ).故答案为:9.【点睛】本题考查坐标与图形的性质、配方法的应用、非负数的性质等知识 是重要考点 掌握相关知识是解题关键.7.阅读下面的材料:若22228160m mn n n -+-+= 求m n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-= 2(4)0n -=.4n ∴= 4m =.根据你的观察 探究下列问题:(1)已知等腰三角形ABC 的两边长a b 都是正整数 且满足221012610a b a b +--+= 求ABC 的周长;(2)已知6a b -= 216730ab c c +-+= 求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【解析】【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值 然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =- 然后代入等式可得()2616730a a c c -+-+= 进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=∵22102512360a a b b -++-+=∵()()22560a b -+-=∵50,60a b -=-=∵5,6a b ==∵等腰三角形ABC 的两边长a b 都是正整数∵当5a =为腰 则6b =为底 满足三角形三边关系 故ABC 的周长为5+5+6=16;当6b =为腰 则5a =为底 满足三角形三边关系 故ABC 的周长为5+6+6=17;(2)∵6a b -=∵6b a =-∵()221673616730ab c c a a c c +-+=-+-+=226916640a a c c -++-+=()()22380a c -+-=∵30,80a c -=-=∵3,8a c ==∵363b =-=-∵8a b c ++=.【点睛】本题主要考查配方法的应用 熟练掌握完全平方公式是解题的关键.类型二 配方法求最值8.已知y =x y 均为实数) 则y 的最大值是______.【答案】【解析】【分析】将根据题意0y ≥ 14x ≤≤ 原式y = 可得248y ≤≤故2y ≤≤进而即可求得最大值.【详解】解:0y ≥ 15x ≤≤ 244y =+=+248y ∴≤≤.0y ≥2y ∴≤≤∴y的最大值为故答案为:【点睛】本题考查了二次根式的求值问题 配方法的应用 解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.9.已知实数m n 满足21m n -= 则代数式22242m n m ++-的最小值等于___________.【答案】3【解析】【分析】由21m n -=可得21,n m 再代入22242m n m ++- 再利用配方法配方 从而可得答案.【详解】 解: 21m n -=21,n m ()222242=2142m n m m m m ∴++-+-+-264m m()23133,m =+-≥ 所以22242m n m ++-的最小值是3故答案为:3【点睛】本题考查的是代数式的最值 配方法的应用 熟练的运用配方法求解代数式的最值是解本题的关键. 10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式 此公式与古希腊几何学家海伦提出的公式如出一辙 即三角形的三边长分别为a b c 记2a b c p ++= 则其面积S =这个公式也被称为海伦—秦九韶公式.若3p = 2c = 则此三角形面积的最大值是_________.【解析】【分析】根据公式算出a +b 的值 代入公式 根据完全平方公式的变形即可求出解.【详解】解:∵2a b c p ++=p =3 c =2 ∵232a b ++= ∵a +b =4∵a =4−b∵S∵当b =2时 S【点睛】本题考查了二次根式与完全平方公式的应用 解答本题的关键是明确题意 表示出相应的三角形的面积.二、解答题(共0分)11.【阅读材料】把代数式通过配凑等手段 得到局部完全平方式 再进行有关运算和解题 这种解题方法叫做配方法.如:对于268a a ++.(1)用配方法因式分解:223x x +-;(2)对于代数式2128x x - 有最大值还是最小值?并求出2128x x-的最大值或最小值.【答案】(1)()()31x x +-(2)代数式2128x x -有最大值 最大值为18- 【解析】【分析】(1)先用配方法 再用平方差公式分解即可;(2)先利用配方法变形 根据偶次方的非负性可知最小值 继而即可求得2128x x-的最大值. (1)223x x +-2214x x =++- ()214x =+- ()()1212x x =+++-()()31x x =+-;(2)∵228x x -()224x x =-()22444x x =-+-()2224x ⎡⎤=--⎣⎦()2228x =--∵当2x =时 ()2228x --即228x x -有最小值-8∵代数式2128x x -有最大值 最大值为18-. 【点睛】本题考查配方法在因式分解中的应用及代数式求值 解题的关键是熟练掌握配方法. 12.阅读下面的解答过程 求y 2+4y +5的最小值.解:y 2+4y +5=y 2+4y +4+1=(y +2)2+1∵(y +2)2≥0 即(y +2)2的最小值为0∵y2+4y+5=(y+2)2+1≥1∵y2+4y+5的最小值为1仿照上面的解答过程求:(1)m2﹣2m+2的最小值;(2)3﹣x2+2x的最大值.【答案】(1)1;(2)4【解析】【分析】(1)利用完全平方公式把原式变形根据偶次方的非负性解答即可.(2)利用完全平方公式把原式变形根据偶次方的非负性解答即可.【详解】解:(1)m2﹣2m+2=m2-2m+1+1=(m-1)2+1∵(m-1)2≥0∵(m-1)2+1≥1 即m2﹣2m+2的最小值为1;(2)3-x2+2x=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4∵(x-1)2≥0∵-(x-1)2≤0∵-(x-1)2+4≤4 即3-x2+2x的最大值为4.【点睛】本题考查的是配方法的应用掌握完全平方公式、偶次方的非负性是解题的关键.13.配方法可以用来解一元二次方程还可以用它来解决很多问题.例如:求﹣3(a+1)2+6的最值.解:∵﹣3(a+1)2≤0 ∵﹣3(a+1)2+6≤6 ∵﹣3(a+1)2+6有最大值6 此时a=﹣1.(1)当x=时代数式2(x﹣1)2+3有最(填写大或小)值为.(2)当x=时代数式﹣x2+4x+3有最(填写大或小)值为.(3)如图矩形花园的一面靠墙另外三面的栅栏所围成的总长度是16m 当垂直于墙的一边长为多少时花园的面积最大?最大面积是多少?【答案】(1)1 小3(2)2 大7(3)当垂直于墙的一边长为4米时花园有最大面积为32【解析】【分析】(1)先根据平方的性质求出代数式的取值范围再进行分析计算即可;(2)先配方把多项式变成完全平方形式再进行分析计算;(3)根据总长为16m 构造方程求解即可.(1)解:∵2(x﹣1)2≥0∵2(x﹣1)2+3≥3∵当x=1时代数式有最小值为3.故答案为:1 小3.(2)解:﹣x2+4x+3=﹣(x2﹣4x)+3=﹣(x2﹣4x+4﹣4)+3=﹣(x﹣2)2+7∵﹣(x﹣2)2≤0∵﹣(x﹣2)2+7≤7∵当x=2时代数式有最大值为7.故答案为:2 大7.(3)解:设垂直于墙的一边长为x m 则平行于墙的一边长为(16﹣2x)m花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x)=﹣2(x2﹣8x+16﹣16)=﹣2(x﹣4)2+32∵﹣2(x﹣4)2≤0∵﹣2(x﹣4)2+32≤32∵当x=4时代数式有最大值为32即当垂直于墙的一边长为4米时花园有最大面积为32.【点睛】本题主要考查配方法的实际运用解题的关键在于通过配方法把代数式化成完全平方式再进行分析.类型三配方法在几何图形中的应用14.如图∵ABC=90° AC=6 以AB为边长向外作等边∵ABM连CM则CM的最大值为________________.【答案】3##3+【解析】【分析】过点M作MD∵BC交BC的延长线于点D设AB=x利用勾股定理表示出BC利用解直角三角形表示出MD BD再利用勾股定理求得CM的长根据配方法利用非负数的性质即可得到CM的最大值.【详解】如图 过点M 作MD ∵BC 交BC 的延长线于点D设AB =x 则BC∵∵ABM 是等边三角形∵BM =AB =x ∵ABM =60°∵∵ABC =90°∵∵MBD =30°∵MD ∵BC1122MD BM x ∴==BD x ==在Rt∵MDC 中CM =∵当x 2=18时 CM369723+∵CM 的最大值为:3.故答案为:3.【点睛】本题考查勾股定理以及配方法 掌握配方法求出最值是解题的关键.15.已知点P 的坐标为(2 3) A 、B 分别是x 轴、y 轴上的动点 且90APB ∠=︒C 为AB 的中点 当OC 最小时则点B 的坐标为____.【答案】(0,3)【解析】【分析】利用中点坐标公式将C 点坐标表示出来后 运用勾股定理222AP PB AB +=得到y 与x 的关系式再将OC 的长度用含有y 的式子表示出来 利用配方法即可求出当OC 最小时点B 的坐标.【详解】解:设A 点坐标为(,0)x B 点坐标为(0,)y 则中点C 点坐标为(,)22x y;∵90APB ∠=︒∵222AP PB AB +=∵2222(2)94(3)x y x y -+++-=+化简得:2313x y +=1332yx -=∵12OC ==将1332yx -=代入上式得:12OC =变形得:OC∵当3y =时 OC 最小 此时B 点坐标为(0,3).故答案为(0,3).【点睛】本题主要考查运用配方法求解动点问题 正确理解题意、熟练掌握相关知识、灵活应用数形结合思想是解题的关键 属于综合类问题.16.已知:如图 在Rt ABC 中 90B ∠=︒ 8cm AB BC ==.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动 同时点Q 从点B 开始沿BC 边向点C 以1cm/s 的速度移动.(1)求几秒后 PBQ △的面积等于26cm(2)求几秒后 PQ 的长度等于?(3)求几秒后 PQ 的长度能取得最小值 其最小值为多少cm ?【答案】(1)2秒或6秒;(2)1秒或7秒;(3)4 【解析】【分析】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据三角形面积公式列出方程即可;(2)设运动时间为y 秒 则8PB y =- PQ y = 根据勾股定理列出方程即可;(3)设运动时间为t 秒 则8PB t =- PQ t = 根据勾股定理列出2PQ 的式子 根据配方法即可求得最小值;【详解】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据题意得:()1862x x -= 解得122,6x x ==答:2秒或6秒后 PBQ △的面积等于26cm(2)设运动时间为y 秒 则8PB y =- PQ y =90B ∠=︒在Rt PQC 中222PQ PB BQ =+(()2228y y =-+ 解得121,7y y ==答:1秒或7秒后 PQ 的长度等于(3)设运动时间为t 秒 则8PB t =- PQ t =90B ∠=︒在Rt PQC 中222PQ PB BQ =+22(8)t t =-+221664t t =-+22(816)32t t =-++22(4)32t =-+32≥∴当4t =时 取得最小值为PQ ==即4秒后 PQ 取得最小值 最小值为【点睛】本题考查了一元二次方程的应用 配方法的应用 根据题意列出方程是解题的关键.17.配方法在初中数学中运用非常广泛 可以求值 因式分解 求最值等.如:求代数式的最值:2222(1)1x x x 在1x =-时 取最小值1(1)求代数式24x x -的最小值.(2)2245x x --+有最大还最小值 求出其最值.(3)求221x x +的最小值.(4)22614a b ab b ++-+的最小值.(5)三角ABE 和三角形DEC 的面积分别为4和9 求四边形ABCD 的面积最小值.【答案】(1)-4;(2)有最大值 且为7;(3)2;(4)2;(5)25【解析】【分析】(1)(2)(3)(4)利用配方法变形 可得最值;(5)设S △BEC =x 由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED从而可得S △AED =36x再将四边形ABCD 的面积变形得到21312++ 可得结果.【详解】解:(1)()222444424x x x x x -=-+-=--∵在x =2时 有最小值-4;(2)2245x x --+=()2225x x -++=()222115x x -++-+=()2217x -++∵当x =-1时 有最大值 且为7;(3)221x x +=2221x x ⎛⎫⎪⎭+-≥⎝∵当x =1时 221x x +的最小值为2;(4)22614a b ab b ++-+ =22213612244a ab b b b +++-++ =()22134224a b b ⎛⎫++-+ ⎪⎝⎭当a =-2 b =4时 代数式有最小值2;(5)设S △BEC =x 已知S △AEB =4 S △CED =9则由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED∵x :9=4:S △AED∵S△AED=36 x∵四边形ABCD面积=4+9+x+36x=21312++∵当x=36时四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的需要正确变形才可以应用本题中等难度略大.。