函数的零点 -课件PPT
- 格式:ppt
- 大小:1.72 MB
- 文档页数:38
一、 函数的零点1. 零点的概念:对于函数y =f (x )(x ∈D ),把使f (x )=0成立的实数x 叫做函数y =f (x )(x ∈D )的零点. 2. 函数零点的意义:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 3. 零点存在性判定定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 就是方程f (x )=0的根. 4. 二次函数零点的判定(1)二次函数零点的判定二次函数2y ax bx c =++的零点个数,方程20ax bx c ++=的实根个数见下表.(2① 二次函数的图象是连续的,当它通过零点时(不是二次零点),函数值变号. ② 相邻两个零点之间的所有的函数值保持同号.【说明】对任意函数,只要它的图象是连续不间断的,上述性质同样成立. (3)二次函数的零点的应用① 利用二次函数的零点研究函数的性质,作出函数的简图.② 根据函数的零点判断相邻两个零点间函数值的符号,观察函数的一些性质.重难点【定理1】21x x k ≤<⇔⎪⎪⎩⎪⎪⎨⎧>->≥-=∆k ab k af ac b 20)(042 如图所示:f【定理2】kx x <≤21⇔⎪⎪⎩⎪⎪⎨⎧<->≥-=∆k ab k af ac b 20)(042.如图所示:【定理3】21x k x <<⇔0)(<k af .如图所示:推论1 210x x <<⇔0<ac . 推论2 211x x <<⇔0)(<++c b a a .【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f如图所示:【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a【定理6】2211k x x k <≤<⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b如图所示:二、 二分法1. 对于在区间[],a b 上连续,且满足()()0f a f b <的函数()y f x =通过不断把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而得到零点从而得到零点近似值的方法,叫做二分法.2. 用二分法求函数零点的近似值第一步:确定区间[],a b ,验证()()0f a f b <,给定精确度. 第二步:求区间(),a b 的中点1x . 第三步:计算()1f x○1若()10f x =,则1x 就是函数的零点; ○2若()()1.0f a f x <,则令1b x =; ○3若()()10f x f b <,则令1a x =.第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点的近似值a (或b ),否则重复第二、三、四步.函数零点的性判定及求解:【例1】 判断下列函数在给定的区间上是否纯在零点.(1)()2318f x x x =--,[]1.8x ∈ (2)()331f x x x =--,[]1,2x ∈- (3)()()2log 2f x x x =+-,[]1,3x ∈.【解析】(1)方法一:()1200f =-<,()8220f =>,()()180f f ∴⋅<.故()2318f x x x =--在[]1,8上存在零点. 方法二:令23180x x --=,解得3x =-或6x =,()23180f x x x ∴=--=在[]1,8上存在零点. (2)()110f -=-<,()250f =>,()31f x x x ∴=--在[]1,2-上存在零点. (3)()()221log 121log 210f =+->-=,()()223log 323log 830f =+-<-=,()()130f f ∴⋅<.故()()2log 2f x x x =+-在[]1,3上存在零点.【例2】 设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图像交点为()00,x y ,则0x 所在的区间( )A .()0,1B .()1,2C .()1,3D .()3,4【答案】B【例3】 (天津理2)函数()23x f x x =+的零点所在的一个区间是( )A.()2,1-- B.()1,0- C.()0,1 D.()1,2【答案】B【解析】解法1.因为()22260f --=-<,()11230f --=-<,()00200f =+>,所以函数()23x f x x =+的零点所在的一个区间是()1,0-.故选B. 解法2.()230x f x x =+=可化为23x x =-.画出函数2x y =和3y x =-的图象,可观察出选项C,D不正确,且()00200f =+>,由此可排除A,故选B.例题精讲【例4】 (2010宣武一模理4)设函数231()2x f x x -⎛⎫=- ⎪⎝⎭,则其零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【答案】B【解析】 ()f x 在R 上单调增,(1)10f =-<,(2)70f =>,故零点所在区间(1,2).【例5】 (合肥第三次质检)“14a =-”是“函数()21f x ax x =--只有一个零点”的( )A .充要条件B .充分而不必要C .必要而不充分D .既不充分也不必要【答案】B【解析】由“函数()21f x ax x =--只有一个零点”可得14a =-或0a =,故14a =-充分而不必要.【例6】 (2010浙江文)已知x 是函数()121x f x x=+-的一个零点.若()101,x x ∈,()20,x x ∈+∞,则 A .()10f x <,()20f x < B .()10f x <,()20f x > C .()10f x >,()20f x <D .()10f x >,()20f x >【答案】B【例7】 (山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,()3f x x x =-,则函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为( ) A .6B .7C .8D .9【答案】A【解析】因为当02x <≤时,()3f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且()00f =,所以()()()()6420f f f f ===,又因为()10f =,所以()30f =,()50f =,故函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为6个,选A .【例8】 (2010福建文)函数()223,0-2+ln ,0x x x f x x x ⎧+-=⎨>⎩≤的零点个数为 ( )A .3B .2C .1D .0【答案】B【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C .二次函数的零点问题【例9】 方程()2250x m x m +-+-=的两根都大于2,则m 的取值范围________. 【答案】(]5,4--【解析】令()()225f x x m x m =+-+-,要使()0f x =的两根都大于2,则()()()22450,20,22,2m m f m ⎧⎪=---⎪⎪>⎨⎪-⎪>⎪⎩Δ≥ 54m -<<-.【例10】 关于x 的方程()234210m x mx m +-+-=的两根异号,且负的绝对值不正的绝对值大,那么实数m 的取值范围时( )A .30m -<<B .03m <<C .3m <-或0m >D .0m <或3m >【解析】由题意知()()2121216432104032103m m m m x x m m x x m ⎧=-+->⎪⎪⎪+=<⎨+⎪⎪-⋅=<⎪+⎩Δ得30m -<<,故选A .【变式】(福建文6)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .()(),22,-∞-+∞ D .()(),11,-∞-+∞.【答案】C【变式】(重庆理10)设m ,k 为整数,方程220mx kx -+=在区间(0,1)内有两个不同的根,则m k +的最小值为( )A .-8B .8C .12D . 13【答案】D【例11】 已知m ∈R ,函数()()21f x m x x a =-+-恒有零点,求实数a 的取值范围.【答案】当0m =时,a R ∈;当0m ≠时,11a -≤≤【解析】 (1)当0m =时,()0f x x a =-=解得x a =恒有解,此时a R ∈;.(2)当0m ≠时,∵ ()0f x =,即20mx x m a +--=恒有解,∴ 211440m am ∆=++≥恒成立,令()2441g m m am =++ ∵()0g m ≥恒成立,∴2α2∆=16-16≤0,解得11a -≤≤,综上所述知,当0m =时,a R ∈; 当0m ≠时,11a -≤≤.函数图象与方程【例12】 关于x 的方程10ax a +-=在区间()0,1内有实根,求实数a 的取值范围是( )A .1a >B .12a <C .112a << D .12a <或1a > 【解析】只需()()010f f <即可,解得112a <<.【例13】 (2010•上海理17)若0x 是方程1312xx ⎛⎫= ⎪⎝⎭的解,则0x 属于区间( )【例14】 设123,,x x x 依次是方程12log 2x x +=,2log (2)x +22x x +=的实数根,试比较123,,x x x 的大小 .【答案】231x x x <<【解析】 在同一坐标内作出函数2y x =-,12x12log y x=,2x y =-的图象从图中可以看出,310x x << 又20x <,故231x x x <<【例15】 (山东理16)已知函数()log a f x x x b =+-(0a >,且0a ≠),当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,n N *∈,则N =_________ .【答案】5【解析】方程()log a f x x x b =+-(0a >,且0a ≠)=0的根为0x ,即函数log a y x =()23a <<的图象与函数()34y x b b =-<<的交点横坐标为0x ,且()0,1x n n ∈+,n N ∈*,结合图象,因为当()23x a a =<≤时,1y =,此时对应直线上1y =的点的横坐标()14,5x b =+∈;当2y =时, 对数函数()log 23a y x a =<<的图象上点的横坐标()4,9x ∈,直线()34y x b b =-<<的图象上点的横坐标()5,6x ∈,故所求的5=.【例16】 (2010广东深圳)已知函数()221f x x ex m =-++-,()()20e g x x x x=+>.(1)若()g x m =有零点,求m 的取值范围;(2)确定m 的取值范围,使得()()0g x f x -=有两个相异样的实根.【解析】(1)()22e g x x e x=+≥等号成立的条件是x e =故()g x 得值域是(]2,e +∞.故此只需2m e >,则()g x m =就有零点. (2)若()()0g x f x -=有两个相异实根,而()()g x f x =中()g x 与()f x 的图像有两个不同的交点.作出()2e g x x x=+()0x >的图像,如图()21f x x ex m =-++-=()221x e m e --+-+,其对称轴为x e =,开口向下,最大值为21m e -+故当212m e e -+>,即221m e e >-++时,()g x 与()f x 有两个交点,即()()0g x f x -=有两个实数根.∴m 的取值范围是()221,e e -+++∞.函数零点的应用【例17】 (辽宁文16)已知函数()2x f x e x a =-+有零点,则a 的取值范围是___________.【答案】(],2ln 22-∞-【例18】 (2011•湖南)已知函数()1x f x e =-,()243g x x x =-+-,若有()()f a f b =,则b 的取值范围为( )A.2⎡⎣B.(2+C .[]1,3D .()1,3【例19】 已知2()log f t t =,8t ⎤∈⎦,对于()f t 值域内的所有实数m ,不等式2424x mx m x ++>+恒成立,求x 的取值范围.【解析】 ∵t ∈8],∴ ()f t ∈[12,3], ∴m ∈[12,3] . 原题转化为:2(2)(2)m x x -+->0恒成立, 当2x =时,不等式不成立.∴2x ≠,令2()(2)(2)g m m x x =-+-,m ∈[12,3], 则:2212()(2)022(3)3(2)(2)0x g x g x x -⎧=+->⎪⎨⎪=-+->⎩,解得:21x x ><-或. ∴x 的取值范围为(,1)(2,)-∞-+∞.【答案】(,1)(2,)-∞-+∞【例20】 (2009福建卷文)若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( )A .()41f x x =-B .()2(1)f x x =-C .()1xf x e =- D .()12f x In x ⎛⎫=-⎪⎝⎭【答案】 A【解析】 ()41f x x =-的零点为14x =,()2(1)f x x =-的零点为1x =, ()1xf x e =-的零点为0x =,()12f x In x ⎛⎫=- ⎪⎝⎭的零点为x=23.现在我们来估算()422x g x x =+-的零点,因 为g(0)=-1,g(21)=1,所以g(x)的零点x ∈(0, 21),又函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25,只有()41f x x =-的零点适合,故选A .【例21】 (2010西城一模文20)已知函数2()()e x f x x mx m =-+,其中m ∈R .(1)若函数()f x 存在零点,求实数m 的取值范围;(2)当0m <时,求函数()f x 的单调区间,并确定此时()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.【解析】 (1)设()f x 有零点,即函数2()g x x mx m =-+有零点,所以240m m -≥,解得4m ≥或0m ≤;(2)2()(2)e ()e (2)e x x x f x x m x mx m x x m '=-⋅+-+⋅=-+, 令()0f x '=得0x =或2x m =-, 因为0m <,所以20m -<,当(,2)x m ∈-∞-时,()0f x '>,函数()f x 单调递增; 当(2,0)x m ∈-时,()0f x '<,函数()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,函数()f x 单调递增. 此时,()f x 存在最小值.()f x 的极小值为(0)0f m =<.根据()f x 的单调性,()f x 在区间(2,)m -+∞上的最小值为m ,解()f x =0,得()f x 的零点为1x =和2x =结合2()()e x f x x mx m =-+⋅可得在区间1(,)x -∞和2(,)x +∞上,()0f x >. 因为0m <,所以120x x <<,并且1(2)2x m m --=+=4|2|4(2)1022m m m m -+---+-->===>,即12x m >-,综上,在区间1(,)x -∞和2(,)x +∞上,()0f x >,()f x 在区间(2,)m -+∞上的最小值为m ,0m <,所以,当0m <时()f x 存在最小值,最小值为m .【例22】 设函数()32f x x ax bx a =+++,()232g x x x =-+,其中x R ∈,a ,b 为常数,已知曲线()y f x =与()y g x =在点()2,0处有相同的切线1. (I) 求a ,b 的值,并写出切线1的方程;(II)若方程()()f x g x mx +=有三个互不相同的实根0,1x ,2x ,其中12x x <,且对任意的1,2x x x ⎡⎤∈⎣⎦,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围.判断函数()y f x =在某区间上是否有零点,有几个零点,常用以下方法: 解方程:方程根的个数即为零点的个数 定理法:利用函数零点存在性定理直接判断图像法:转化为求两个函数图像的交点个数问题进行判断课后总结【习题1】 (天津文4)函数()e 2xf x x =+-的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,2 【答案】C【解析】因为()11e 120f --=--<,()00e 0210f =+-=-<,()11e 12e 10f =+-=->,所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C.【习题2】 偶函数()f x 在区间[]0,a ()0a >是单调函数,且满足()()00f f a <,则函数()f x 在区间[],a a -内零点的个数是( ) A .1B .2C .3D .4A .0B .1C .2D .3【答案】C .【习题4】 (2009安徽卷理)设a <b,函数2()()y x a x b =--的图像可能是( )【答案】 C【解析】/()(32)y x a x a b =---,由/0y =得2,3a bx a x +==,∴当x a =时,y 取极大值0,当课堂检测23a bx +=时y 取极小值且极小值为负.故选C .【习题5】 方程2210(0ax x a --=>,且1)a ≠在区间[]1,1-上有且仅有一个实根,求函数23xxy a -+=的单调区间.【解析】 令2()21f x ax x =--,(1)由(1)20f a -==,得0a =,舍去; (2)由(1)220f a =-=,得1a =,舍去; (3)(1)(1)0f f -⋅<⇔20a a -<⇔01a << 综上:01a << 对于函数23xxy a -+=,令t y a =,221133()612t x x x =-+=--+则t y a =在R 上为减函数,t 在1(,]6-∞上为增函数,在1[,)6+∞上为减函数. ∴当1(,]6x ∈-∞时,23x x y a -+=是减函数;当1[,)6x ∈+∞时,23x x y a -+=是增函数.【答案】单调减区间1(,]6-∞单调增区间1[,)6+∞【习题6】 若函数()()01xf x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 _________.【答案】}1|{>a a【解析】 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数()()01x f x a x a a a =-->≠且有两个零点, 就是函数(0,xy a a =>且1}a ≠与函数y x a=+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是}1|{>a a .。
高中一年级数学函数零点1、一次函数的零点一次函数的零点即为函数的根,也可以称之为x的零点,可以直接由函数的一次单调性性质判断。
函数y=f(x)在区间(a,b)上单调递增时,可以推断出其在[a,b]上无根;函数f(x)在区间[a,b]上单调递减时,可以推断出其在[a,b]上无根;此时若f(a)、f(b)有符号相反,表示在[a,b]区间有一个零点,即根。
2、二次函数的零点二次函数y=f(x),其零点可以直接由函数的二次单调性性质解决。
函数y=f(x)在区间[a,b]上单调递增时,可推断出其在该区间内有两个零点。
若f(a)、f(b)均为正数即表示区间[a,b]内无根;若f(a)和f(b)均为负数即表示区间[a,b]内有两个零点;若f(a)和f(b)有符号相反,表示区间[a,b]内有一个零点。
3、多项式的零点多项式的零点可以用牛顿法和求根公式求解,如牛顿法:牛顿法是基于牛顿迭代公式的一种求根法,只要给定初值和函数值连续可导,能利用牛顿法求解方程的根,多项式的零点就是多项式的根的求解。
如果一个多项式的次数未知,则可采用数值求根方法,如牛顿法,。
4、一元二次不等式的零点一元二次不等式的零点可由不等式的根的求解来求得。
一元二次不等式的零点可以分为以下三种情况:1)当不等式转化为一元二次函数后,没有实数根;2)当不等式转化为一元二次函数后,只有一个实数根;3)当不等式转化为一元二次函数后,有两个实数根。
5、三次函数的零点三次函数y=f(x)的零点可以由三次单调性来求得。
函数y=f(x)在区间[a,b]上单调递增或者递减时,可以判断出函数在[a,b]上无根;函数y=f(x)在区间[a,b]上单调性改变一次时,可以判断出函数在[a,b]上有一个根;函数y=f(x)在区间[a,b]上单调性改变两次时,可以判断出函数在[a,b]上有两个根。
6、可导函数的零点可导函数的零点可由可导性的性质求得。
可导函数的零点可以这样想:在一个函数上,它的任一点,当其处于可导区域,即点斜率存在且连续时,可知此点应该是函数的驻点,即此点处函数图像的斜率均为0,便可以确定此点为函数的零点。
函数零点一、函数的零点1.零点的定义:对于函数()y f x ,使()0f x 的实数x 叫做函数()yf x 的零点.2.函数零点的等价关系函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.3.零点存在性判定定理定理:如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,且()()0f a f b ⋅<,则函()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根.4.对函数零点存在的判断中,必须强调:1)()f x 在[]a b ,上连续; 2)()()0f a f b <; 3)在()a b ,内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()yf x 的零点就是方程()0f x 的实数根,也就是函数()yf x 的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5. 二次函数零点的判定0)的图像2ax bx c 0a )的根2a2ax bxc0)的零点2ba2ax bxc0)的解集2ax bxc0)的解集1x 或2xx }2a6.一元二次方程20axbx c根的分布(下面对0a 进行讨论)20bk a △20bk a △1212()x x k k ,,1122k x k x )k ,内有且只有一根yyyky y1220b k a△23()0()0f k f k △且(2b k a一.选择题(共12小题)1.(2018•重庆模拟)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.32.(2018•商洛模拟)函数f(x)=ln(x+1)﹣2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)3.(2017秋•镇原县校级期末)函数f(x)=2x+7的零点为()A.7B.7 2C.﹣7D.−7 24.(2017秋•平罗县校级期末)方程2x=2﹣x的根所在区间是()A.(﹣1,0)B.(2,3)C.(1,2)D.(0,1)5.(2018春•番禺区校级月考)方程x3﹣3x﹣m=0在[0,1]上有实数根,则m的最大值是()A.0B.﹣2C.﹣118D.16.(2017•奉贤区二模)若f(x)为奇函数,且x0是y=f(x)﹣e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(x)e x+1B.y=f(﹣x)e﹣x﹣1C.y=f(x)e x﹣1D.y=f(﹣x)e x+17.(2016秋•仙桃期末)函数f(x)=2x2﹣3x+1的零点个数是()A.0B.1C.2D.38.(2016秋•库尔勒市校级期末)下列函数中,既是奇函数又存在零点的函数是()A.y=sinx B.y=cosxC.y=lnx D.y=x3+19.(2016秋•黄山期末)函数f(x)=log2(x﹣1)的零点是()A.(1,0)B.(2,0)C.1D.210.(2016秋•东莞市校级期末)函数f(x)=x2﹣4x+4的零点是()A.(0,2)B.(2,0)C.2D.411.(2017秋•青冈县校级期中)函数f(x)=2x2﹣3x+1的零点是()A.﹣12,﹣1B.﹣12,1C.12,﹣1D.12,112.(2017春•江津区期中)设f(x)=ax+4,若f(1)=2,则a的值()A.2B.﹣2C.3D.﹣3二.填空题(共5小题)13.(2014秋•新沂市校级月考)已知集合A={x|ax2﹣3x+2=0,x∈R,a∈R}只有一个元素,则a=.14.(2014秋•涟水县校级期中)方程4x2﹣12x+k﹣3=0没有实根,则k的取值范围是.15.(2012秋•浦东新区校级月考)2﹣x+x2=5的实根个数为.16.(2012秋•金山区校级月考)函数y=x3﹣2x的零点是.17.已知x 38=234,则x=.三.解答题(共1小题)18.解方程:x3+x2=1.。
《函数的零点》讲义一、函数零点的定义在数学中,函数的零点是一个非常重要的概念。
那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在 x = a 处的函数值 f(a) = 0,那么x = a 就叫做函数 y = f(x) 的零点。
比如说,对于函数 f(x) = x 1,当 f(x) = 0 时,也就是 x 1 = 0,解得 x = 1。
所以 1 就是函数 f(x) = x 1 的零点。
再比如函数 f(x) = x² 4,令 f(x) = 0,即 x² 4 = 0,通过求解可得x = 2 或 x =-2,所以 2 和-2 都是函数 f(x) = x² 4 的零点。
二、函数零点存在性定理有了函数零点的定义,我们来看看函数零点存在性定理。
如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的一条曲线,并且有 f(a)·f(b) < 0,那么函数 y = f(x) 在区间(a, b) 内至少有一个零点。
这个定理非常有用,它为我们判断函数在某个区间内是否存在零点提供了依据。
比如说,函数 f(x) = x² 2x 3 在区间 1, 4 上,f(1) =-4,f(4) = 5,因为 f(1)·f(4) < 0,所以函数在区间(1, 4) 内至少有一个零点。
但要注意,函数在区间内有零点,不一定只有一个零点。
三、函数零点与方程根的关系函数的零点与方程的根有着密切的关系。
方程 f(x) = 0 的根就是函数 y = f(x) 的零点。
例如,方程 x² 5x + 6 = 0 的根为 x = 2 和 x = 3,这两个值就是函数 f(x) = x² 5x + 6 的零点。
反过来,如果知道函数的零点,也就得到了相应方程的根。
通过求函数的零点来解方程,是一种重要的数学方法。
四、求函数零点的方法接下来,我们看看怎么求函数的零点。
必备知识:1、函数的零点:一般地,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调。
若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数 ③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。