概率练习题及答案
- 格式:doc
- 大小:55.00 KB
- 文档页数:1
初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。
从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。
问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。
2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。
求小港接到的订单数的期望值是 ______。
3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。
第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。
两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。
根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。
2、有 10 个球,其中有 4 个黑球。
每次抽出 1 个球,观察它的颜色后再放回去。
问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。
假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。
11.1 概率 (一)[基础练习]1、有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为( )A 、507 B 、1007 C 、487 D 、203 2、袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事 件中概率是98的是( ) A 、颜色全同 B 、颜色不全同 C 、颜色全不同 D 、颜色无红色3、甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为( )A 、43B 、32C 、54D 、107 4、在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是( )A 、)1,6.0[B 、]6.0,0(C 、]4.0,0(D 、)1,4.0[ 5、5个同学任意站成一排,甲、乙两人恰好站在两端的概率是( )A 、81B 、91C 、101D 、111 6、某班有学生36人,按血型分类为:A 型12人,B 型10人,AB 型8人,O型6人,如果从这个班随机抽出2名学生,则这2名学生血型相同的概率是 7、2个篮球运动员在罚球时投球的命中率分别为0.7和0.6,每人投篮3次,则2人都恰好进2球的概率是(保留两位有效数字)8、有一道竞赛题,A 生解出它的概率为21,B 生解出它的概率为31,C 生解出它的概率为41,则A 、B 、C 三人独立解此题只有1人解出的概率为 [典型例题][例1]甲、乙两人参加普法知识问答,共有10个不同的题目,其中选择题6个、判断题4个,甲、乙两人依次各抽一题(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙两人至少有一人抽到选择题的概率是多少?解:甲、乙两人依次抽一题的结果有19110C C 个 (1)甲抽到选择题、乙抽到判断题的结果有1416C C 个, 所求概率154)(191101416==C C C C A P (2)甲、乙两人至少有一人抽到选择题的结果有131419110C C C C -个, 所求概率1513)(19110131419110=-=C C C C C C B P [例2]学校文艺队每个队员唱歌、跳舞至少会一门,已知会唱歌的有5人,会跳舞的有7人,现从中选3人,且至少要有一位既会唱歌又会跳舞的概率是2116,问该队有多少人? 解:设该队既会唱歌又会跳舞的有x 人,从而只会唱歌或只会跳舞的有)212(x -人,记“至少要有一位既会唱歌又会跳舞”的事件为A ,则事件A 的对立事件A 是“只会唱歌或只会跳舞”2116)(1)(,)(3123212=-==--A P A P C C A P xx 又 21161)10)(11)(12()210)(21)(212(-=------∴x x x x x x 解得912,3=-∴=x x ,故该队共有9人[例3]在资料室中存放着书籍和杂志,任一读者借书的概率为0.2,而借杂志的概率为0.8,设每人只借一本,现有五位读者依次借阅,计算:(1)5人中有2人借杂志的概率(2)5人中至多有2人借杂志的概率解:记“一位读者借杂志”为事件A ,则“此人借书”为A ,5位读者各借一次可看作n 次独立重复事件,因此:(1)5人中有2人借杂志的概率0512.0)2.0()8.0(3225==C P(2)5人中至多有2人借杂志,包括三种情况:5人都不借杂志,5人中恰有1人借杂志,5人中恰有2人借杂志,因此所求概率05216.0)2.0()8.0()2.0()8.0()2.0()8.0(322541155005=++=C C C P[例4]进入世界排名前8名的乒乓球女子单打选手中有4名中国人抽签平分为甲、乙两组进行比赛,求4名中国选手不都分在同一组的概率。
概率运算练习题及答案概率论是数学中的一个重要分支,它研究随机现象的规律性。
在概率论中,我们经常需要进行概率的计算。
以下是一些概率运算的练习题,以及相应的答案,供学习者参考和练习。
# 练习题1一个袋子里有3个红球和2个蓝球。
随机从袋子中取出一个球,然后放回,再次取出一个球。
求以下事件的概率:A) 第一次取出的是红球。
B) 第二次取出的是红球。
C) 两次取出的都是红球。
# 答案1A) 第一次取出红球的概率是3/5,因为袋子里有5个球,其中3个是红球。
B) 由于取出的球会放回,所以第二次取出红球的概率也是3/5。
C) 两次取出都是红球的概率是第一次取出红球的概率乘以第二次取出红球的概率,即 (3/5) * (3/5) = 9/25。
# 练习题2一个骰子有6个面,每个面上的数字分别是1, 2, 3, 4, 5, 6。
投掷两次骰子,求以下事件的概率:A) 第一次投掷得到的数字大于3。
B) 第二次投掷得到的数字小于4。
C) 两次投掷得到的数字之和为7。
# 答案2A) 第一次投掷得到大于3的数字的概率是3/6,因为1, 2, 3的数字小于4,而骰子有6个面。
B) 第二次投掷得到小于4的数字的概率也是3/6,因为1, 2, 3的数字小于4。
C) 两次投掷得到的数字之和为7的组合有:(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)。
每一对组合出现的概率是1/36(因为每个数字出现的概率是1/6,且投掷两次是独立的)。
所以,两次投掷和为7的概率是6 * (1/36) = 1/6。
# 练习题3一个班级有30个学生,其中15个男生和15个女生。
随机选择5个学生组成一个小组。
求以下事件的概率:A) 小组中至少有3个男生。
B) 小组中恰好有3个男生。
# 答案3A) 至少有3个男生的小组可以是3个男生和2个女生,4个男生和1个女生,或者5个男生。
我们可以使用组合数学来计算这些概率。
- 3个男生和2个女生的组合数是 C(15,3) * C(15,2)。
《概 率》练习题答案(1)概 率1.【解析】选B.由互斥事件、对立事件的概率得,此人射击1次,命中不足8环的概率为1-(0.25+0.15+0.08)=0.52,故选B.2.【解析】选A.(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以选A.3.【解析】选C.甲共得6条,乙共得6条,共有6×6=36对,其中垂直的有10对,∴P =1036=518.4.【解析】选C.由log 2x y =1得2x =y .又x ∈{1,2,3,4,5,6},y ∈{1,2,3,4,5,6},所以满足题意的有x =1,y =2或x =2,y =4或x =3,y =6,共3种情况.所以所求的概率为336=112,故选C.5.【解析】选C.由题意得⎩⎪⎨⎪⎧2b +c -8≤02b -c ≥0,则它表示的区域的面积为8,所以概率为12,故选C.6.【解析】选C.因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f =1+a -b ≤0f=8+2a -b ≥0,解得a +1≤b ≤8+2a .因此可使函数在区间[1,2]上有零点的有:a =1,2≤b ≤10,故b =2,b =4,b =8.a =2,3≤b ≤12,故b =4,b =8,b =12.a =3,4≤b ≤14,故b =4,b =8,b =12.a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为1116.7.【解析】一副扑克牌中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件, ∴P (A ∪B )=P (A )+P (B )=152+1352=726.【答案】7268.【解析】b >2a ,符合b >2a 的情况有:当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.则所求概率为636=16.【答案】169.【解析】设事件A 表示“从100件产品中任取1件是一等品”,事件B 表示“从100件产品中任取1件是二等品”,事件C 表示“从100件产品中任取1件是合格品”,则C =A ∪B ,∴P (C )=P (A )+P (B )=70100+25100=95100,P (C ∩A )=P (A )=70100. ∴P (A |C )=P C ∩A P C =7095=1419.【答案】141910.【解】(1)由题意可得,x18=236=y54,所以x =1,y =3. (2)记从高校B 抽取的2人为b 1,b 2,从高校C 抽取的3人为c 1,c 2,c 3,则从高校B ,C 抽取的5人中选2人作专题发言的基本事件有(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共10种.设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有(c 1,c 2),(c 1,c 3),(c 2,c 3),共3种,因此P (X )=310.故选中的2人都来自高校C 的概率为310.11.【解】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P =26=13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件有:(1,3),(1,4),(2,4),共3个.所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为 1-P 1=1-316=1316.12.【解】(1)(a ,b )共有(1,-1),(1,1),(1,2),(1,3),(1,4),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4)15种情况.Δ=b 2-4a ≥0.有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种情况, 所以函数y =f (x )有零点的概率为P =615=25.(2)对称轴x =b 2a ,则b2a≤1.有(1,-1),(1,1)(1,2),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4)13种情况.所以函数y =f (x )在区间[1,+∞)上是增函数的概率为1315.(2)古典概型1.D 2.C 3.B 4.A 5.D 6.D 7.112 8.0.39.18 10.16 11.(1)16 (2)136 12.(1)7.5 (2)715(3)几何概型1.C 2.B 3.B 4.B 5.B 6.A 7.235 8.5129.12 10.π16 11.0.31 12.96625 13.13 14.12。
简单概率练习题及答案一、选择题1.如图1,将五张分别印有北京2008年奥运会吉祥物“贝贝、晶晶、欢欢、迎迎、妮妮”的卡片放入盒中,从中随机地抽取一张卡片印有“欢欢”的概率为A.1111 B.C. D.354图1 图图32.有5张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张是数字2的概率A.1221B. C.D.532111 C.D.343.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.4.在抛掷一枚硬币的实验中,某小组做了1000?次实验,?最后出现正面的频率为49.6%,此时出现正面的频数为 A.496B.500 C.51 D.不能确定5.下列说法错误的是..A.同时抛两枚普通正方体骰子,点数都是4的概率为 B.不可能事件发生机会为0C.买一张彩票会中奖是可能事件D.一件事发生机会为0.1%,这件事就有可能发生 1 6.某校九年级班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是A.150B.12C.25D.107.现有4种物质:①HCl;②NaOH;③HO;④NaCl.?任取两种混合能发生化学变化的概率为A.1111B. C.D.3648.一个均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,如图3是这个立方体的表面展开图.抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是 A.111B.C. D.3239.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是:白色,蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为A.5111 B.C. D.6353211 B. C. D.32410.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是 A.二、填空题11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是_______.12.小明与父母从广州乘火车回梅州参加叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是______.13.一个小组里有4名女同学,6名男同学,从中任选两人去参加一个晚会,选出的两人恰好是一男一女的概率是________.14.一张正方形纸片与两张正三角形纸片的边长相同,放在盒子里搅匀后,?任取两张出来能拼成菱形概率是______.15.若质量抽检时得出任抽一件西服成品为合格品的概率为0.9,?那么销售1200件西服时约需多准备______件合格品供顾客调换.16.袋中同样大小的4个小球,其中3个红色,1个白色.?从袋中任意地同时摸出两个球,这两个球颜色相同的概率是_______.17.如图4,有以下6张牌,从中任意抽取两张,点数之和是奇数的概率是______.图图518.某班准备同时在A,B两地开展数学活动,?每位同学由抽签确定去其中一个地方,则甲,乙,丙三位同学中恰好有两位同学抽到去B地的概率是______.19.如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为______.20.共有4条线段,长度分别为1cm,2cm,3cm,4cm,任取其中的3条,?恰能构成三角形的概率为________.三、解答题21.如图,某公司租下了一层写字楼,由于刚刚装修,还未来得及挂牌,此时,一客户来到该层写字楼,问他进入哪个部门的概率最大?为什么?22.如图是两个可以自由转动的转盘,甲转盘等分成3个扇形,?乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字,小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,?小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.请你通过画树状图的方法求小颖获胜的概率;你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.23.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.从箱子中任意摸出一个球是白球的概率是多少?从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.24.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,?就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色,黄色,绿色区域,那么顾客就可以分别获得50元,30元,20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.求每转动一次转盘所获购物券金额的平均数;如果你在该商场消费125元,你会选择转转盘还是直接获得购物奖?说明理由.25.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定:?顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:计算并完成表格;请估计,当n很大时,频率将会接近多少?假如你去转动该转盘一次,你获得铅笔的概率约是多少?在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少度?简单事件的概率一、选择题1.如图1,将五张分别印有北京2008年奥运会吉祥物“贝贝、晶晶、欢欢、迎迎、妮妮”的卡片放入盒中,从中随机地抽取一张卡片印有“欢欢”的概率为A.1111 B.C. D.354图1 图图32.有5张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张是数字2的概率A.1221B. C.D.532111 C.D.343.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.4.在抛掷一枚硬币的实验中,某小组做了1000?次实验,?最后出现正面的频率为49.6%,此时出现正面的频数为 A.496B.500 C.51 D.不能确定5.下列说法错误的是..A.同时抛两枚普通正方体骰子,点数都是4的概率为 B.不可能事件发生机会为0C.买一张彩票会中奖是可能事件D.一件事发生机会为0.1%,这件事就有可能发生 1 6.某校九年级班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是A.150B.12C.25D.107.现有4种物质:①HCl;②NaOH;③HO;④NaCl.?任取两种混合能发生化学变化的概率为A.1111B. C.D.3648.一个均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,如图3是这个立方体的表面展开图.抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是 A.111B.C. D.3239.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是:白色,蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为A.5111 B.C. D.6353211 B. C. D.32410.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是 A.二、填空题11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是_______. 12.小明与父母从广州乘火车回梅州参加叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是______.13.一个小组里有4名女同学,6名男同学,从中任选两人去参加一个晚会,选出的两人恰好是一男一女的概率是________.14.一张正方形纸片与两张正三角形纸片的边长相同,放在盒子里搅匀后,?任取两张出来能拼成菱形概率是______.15.若质量抽检时得出任抽一件西服成品为合格品的概率为0.9,?那么销售1200件西服时约需多准备______件合格品供顾客调换.16.袋中同样大小的4个小球,其中3个红色,1个白色.?从袋中任意地同时摸出两个球,这两个球颜色相同的概率是_______.17.如图4,有以下6张牌,从中任意抽取两张,点数之和是奇数的概率是______.图图518.某班准备同时在A,B两地开展数学活动,?每位同学由抽签确定去其中一个地方,则甲,乙,丙三位同学中恰好有两位同学抽到去B地的概率是______.19.如图5,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②,③或同时闭合开关④⑤⑥都可使一个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为______.20.共有4条线段,长度分别为1cm,2cm,3cm,4cm,任取其中的3条,?恰能构成三角形的概率为________.三、解答题21.如图,某公司租下了一层写字楼,由于刚刚装修,还未来得及挂牌,此时,一客户来到该层写字楼,问他进入哪个部门的概率最大?为什么?22.如图是两个可以自由转动的转盘,甲转盘等分成3个扇形,?乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字,小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,?小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.请你通过画树状图的方法求小颖获胜的概率;你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.23.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.从箱子中任意摸出一个球是白球的概率是多少?从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.24.在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,?就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色,黄色,绿色区域,那么顾客就可以分别获得50元,30元,20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.求每转动一次转盘所获购物券金额的平均数;如果你在该商场消费125元,你会选择转转盘还是直接获得购物奖?说明理由.25.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定:?顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:计算并完成表格;请估计,当n很大时,频率将会接近多少?假如你去转动该转盘一次,你获得铅笔的概率约是多少?在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少度?第五章数理统计的基础知识5.1 数理统计的基本概念习题一已知总体X服从[0,λ]上的均匀分布, X1,X2,?,Xn为X的样本,则.1n∑i=1nXi-λ2是一个统计量;1n∑i=1nXi-E是一个统计量;X1+X2是一个统计量;1n∑i=1nXi2-D是一个统计量.解答:应选.由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位, 得到如下表中所列的数据. 按区间[70,80),[80,90),?,[150,160), 将100个数据分成9个组,列出分组数据计表, 并画出频率累积的直方图.解答:分组数据统计表分别表示样本均值和样本二阶中心矩,试求E,E.解答:由X~B, 得E=10×3100=310,D=10×3100×97100=2911000,所以E=E=310,E=n-1nD=2911000n.习题6设某商店100天销售电视机的情况有如下统计资料f=2Ff={2λe-λx,x>00,其它,又X的概率密度为f=2[1-F]f={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:没有元件在800h之前失效的概率;没有元件最后超过3000h的概率.解答:总体X的概率密度f={e-0.0015x,x>00,其它,分布函数F={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X>800},有P{X>800}=[P{X>800}]6=[1-F]6=ex p=exp≈0.000747.{没有元件最后超过3000h}={最大顺序统计量X P{X =[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2, 若至少要以95%的概率保证∣Xˉ-μ∣ 解答:因当n很大时,Xˉ-N, 于是P{∣Xˉ-μ∣ ≈Φ-Φ=2Φ-1≥0.95,则Φ≥0.975, 查表得Φ=0.975, 因Φ非减,故0.1n≥1.96,n≥384.16, 故样本容量至少取385才能满足要求.5.常用统计分布习题1对于给定的正数a, 设za,χa2,ta,Fa分别是标准正态分布,χ2,t, F分布的上a分位点,则下面的结论中不正确的是.z1-a=-za;χ1-a2=-χa2;t1-a=-ta;F1-a=1Fa.解答:应选.因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以和是对的.是错的. 对于F分布,若F~F, 则1-a=P{F>F1-a}=P{1F1F1-a由于1F~F, 所以P{1F>1F1-a=P{1F>Fa=a,即F1-a=1Fa. 故也是对的.习题22.设总体X~N,X1,X2,?,Xn为简单随机样本,问下列各统计量服从什么分布?X1-X2X32+X42;解答:因为Xi~N,i=1,2,?,n, 所以:X1-X2~N, X1-X22~N, X32+X42~χ2,故X1-X2X32+X42=/2X32+X422~t.习题22.设总体X~N,X1,X2,?,Xn为简单随机样本,问下列各统计量服从什么分布?n-1X1X22+X32+?+Xn2;解答:因为Xi~N,∑i=2nXi2~χ2, 所以n-1X1X22+X32+?+Xn2=X1∑i=2nXi2/~t.习题22.设总体X~N,X1,X2,?,Xn为简单随机样本,问下列各统计量服从什么分布?∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2~χ2,∑i=4nXi2~χ2, 所以:∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/~F.习题3。
概率加减法专项练习200题(有答案)
以下是一系列概率加减法的练题,共计200道题目。
每道题都
附带了答案,供您核对。
希望这些题目能够帮助您提高对概率加减
法的理解和应用能力。
题目
1. 在一个筐中有8个红球和6个蓝球,从中随机抽出一个球。
求抽出的是红球的概率。
2. 一副扑克牌中有52张牌,包括4种花色的A、2、3、4、5、6、7、8、9、10、J、Q、K。
从中抽出一张牌,求抽出的是红心的
概率。
3. 在一个班级中,有20个男生和15个女生。
随机抽取一个学生,求抽取的是女生的概率。
4. 一家餐馆中午提供三种菜品供选择:红烧鸡、糖醋鱼和番茄
炒蛋。
如果一个顾客随机选择一道菜品,求他选择红烧鸡的概率。
5. 一家超市中有300个苹果,其中有20个有瑕疵。
从中随机
抽取一个苹果,求抽取的是有瑕疵的概率。
(更多题目略)
答案
1. 红球的概率为 8/14 或 4/7。
2. 红心的概率为 13/52 或 1/4。
3. 女生的概率为 15/35 或 3/7。
4. 选择红烧鸡的概率为 1/3。
5. 有瑕疵的概率为 20/300 或 1/15。
(更多答案略)
希望以上练习题和答案对您有所帮助。
如果您对概率加减法还有其他问题,我将尽力为您解答。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
概率练习题(含答案)1 解答题有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.答案(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4)2 单选题“概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是1. A.2. B.3. C.4. D.1答案C解析分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率.解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种,故其概率是;故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3 解答题一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:(1)取出的两只球都是白球的概率是多少?(2)取出的两只球至少有一个白球的概率是多少?答案(1)取出的两只球都是白球的概率为3/10;(2)以取出的两只球中至少有一个白球的概率为9/10。
1.掷一枚骰子观察其出现的点数,B A ,为两个随机事件,且}4,3,2{=A ,}5,4,3{=B ;则=⋂B A }5,4,3,2{.2.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,若连取两次,则第一次取得红球且第二次取得白球的概率等于256. 3.已知随机变量X 服从参数为λ的泊松分布,且eX P 1)0(==, 则λ= 1 . 4.已知随机变量)21,4(~B X ,则=<)2(X P 165 .5.设随机变量X 在()6,1上服从均匀分布,求方程012=++Xt t 有实根的概率 54. 二、选择题1.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为 ( A ) A .10150 B .10151 C .10050D .100512.已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P ( C ) A .0.7 B .0.54 C .0.62 D .0.83.已知连续型X 的密度函数⎩⎨⎧≥<=-0,0,0)(x e x x f x λλ,其中0>λ为常数,则=>)0(X P ( A )A .1B .31C .λ--e 1D .41 4.设每次试验成功的概率为10,<<p p ,则在3次独立重复试验中至少成功一次的概率为( A ) A .3)1(1p --B .2)1(p p -C .213)1(p p C - D .32p p p ++ 5.设随机变量X 的概率密度为)(x f ,则一定满足( B ) A .1)(0≤≤x fB .()()dt f x F x ⎰∞-=t C .()()dx x f x F x⎰=0 D .()1lim =∞→x f x三.发报台分别以概率0.6,0.4发出信号""∙ 和""-,由于通信受到干扰,当发出""∙时,分别以概率0.8和0.2收到""∙和""-,同样,当发出信号""-时,分别以0.9和0.1的概率收到""-和""∙.求:(1) 收到信号""∙的概率;(2) 当收到""∙时,发出""∙的概率. 解:记 =B {收到信号""∙},=A {发出信号""∙}(1) )|()()|()()(A B P A P A B P A P B P += 52.004.048.01.04.08.06.0=+=⨯+⨯= (2) 131252.08.06.0)()|()()|(=⨯==B P A B P A P B A P .四.若()()4,3,2,1,0,2===i ci X P i 成为某个随机变量X 的分布律,求:(1) 常数c 的值; (2)X 的分布函数.解 (1) 要使i c 2成为某个随机变量的分布律,必须有1240=∑=i i c ,由此解得3116=c ;0, 0<x3116, 10<≤x3124, 21<≤x(2)()=≤=)(x X P x F 3128, 32<≤x3130, 43<≤x1, 4≥x五.连续型设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+<≤<=3,131),1(2110,0,0)(2x x x B x Ax x x F ,求(1) 常数B A ,;(2)密度函数.解:(1)由于()x F 连续,必须满足()A F x F x ===→21)1(lim 1,()4)13(211)3(lim 3=⇒-+===→B B F x F x(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<==3,031,4110,0,0)(')(x x x x x x F x f六.设随机变量X 的密度函数为()+∞<<-∞=-x e A x f x,22,求:(1)系数A ;(2)()10<<X P ;(3)的分布函数.解 (1)系数A 必须满足⎰+∞∞--=122dx e A x,由于x e 2-为偶函数,所以⎰⎰⎰+∞∞-+∞+∞---===122200222dx Ae dx e dx e x x x,解得2=A ;(2)()2102102212110----===<<⎰⎰e dx e dx e X P x x ;(3)()()⎰∞-=xdx x f x F= ⎰⎰⎰-∞--∞--+xxxxxdx edx edx e02022 00≥<x x =⎰⎰⎰-∞-∞-+xtxxx dt e dx edxe 02022 0≥<x x= ()xxe e221212121--+ 00≥<x x = x x e e 2221121-- 00≥<x x七.某人上班所需的时间()100,30~N X (单位:min )已知上班时间为8:30,他每天7:50出门,求:(1)()4020<<X P ;(2)某天迟到的概率;(3)一周(以5天计)最多迟到一次的概率.()8413.01=Φ解 (1)()6826.01)1(2)1()1()1030401030103020(4020=-Φ=-Φ-Φ=-<-<-=<<X P X P (2)由题意知某人路上所花时间超过40分钟,他就迟到了,因此所求概率为()()1587.08413.0111103040140=-=Φ-=⎪⎭⎫⎝⎛-Φ-=>X P ;(3)记Y 为5天中某人迟到的次数,则Y 服从1587.0,5==p n 的二项分布,5天中最多迟到一次的概率为()()()()8192.08413.01587.0158413.01587.0151450=⨯⎪⎪⎭⎫⎝⎛+⨯⎪⎪⎭⎫ ⎝⎛=≤Y P 。
- -
1 专题三:概率
一、选择题:
1.口袋里有10个除颜色外完全相同的球,其中5个红球、3个黑球、2个白球。
下列事件中,必然事件是( C )
A 拿出1个球是红球 B 拿出2个球是白球 C 拿出6个球至少有1个是红球 D拿出5个球是2白3红 2.一个事件发生的概率不可能等于( A ) A 0 B
2
1 C 1 D 2
3
3.抛两枚均匀的硬币,当抛次数很多以后,出现两个反面的频率值大约稳定在( C ) A 1 B 75% C50% D25%
4.一些卡片上有1,2,3,4,它们的背面都一样,现将它们背面朝上,从中任意摸摸一纸纸卡片,则摸到奇数卡片的概率是( C )A
6
1 B
3
1 C
2
1 D
3
2
5.某人忘记电话号码的最后一位数字,他随意拨号,第一次接通电话的概率是( B ) A 9
1 B
10
1 C
10
3 D
9
2
6.某商店举办有奖销售活动,办法如下:凡购买货物满10元者得奖券一张,多购多得,每1000张奖券为一个开奖单元,设特等奖1个,一等奖40个,二等奖60个,那么10元商品所得奖券的中概率奖概率是( D )A
1000
1 B
1000
40 C
1000
60 D
1000
101
7.两位女同学,一位男同学共三人站队,两名女同学站在左右的可能性是( A ) A
3
1 B
3
2 C 1 D 0
8.口袋里有50个球,其中白球20个,红球20个,蓝球10个,摸不到白球的概率是( C )A
5
1 B
5
2 C
5
3 D
5
4
二、填空题:
1.鞋柜里有3双鞋,任取一只恰为左脚穿的概率是 0.5
2.一班共有女生32名,男生28名,要选一名同学当班长,则P (选一名女生)= 8/15
P (选一名男生)= 7/15 。
3.从40本已编号的书(1号到40号)中任取1本,取得书号是10的概率是 1/40 ,取得书号是偶数的概率是 1/2 。
4.从1~10这9个自然数中任取一个数,这个是3的倍数的概率是 0.3 三、解答题:
1.随意掷出一个骰子,计算下列事件发生的概率并标在下图中:
①掷出的数字能被3整除:0.5 ②掷出的数字是质数 2/3 ③掷出的数字大于6, 0 ④掷出的数字小于7 1 2.全班同学分成6组,各组男女生人数如下表:
全班选出一名劳动标兵,求下列事件发生的概率:
1) 标兵是第一组的女生: 5/64 2) 标兵是第6组的学生: 11/64 3) 标兵是男生: 31/64。