指数与指数函数测试题
- 格式:doc
- 大小:248.89 KB
- 文档页数:4
高一数学测试题(指数函数)1一、选择题1.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f n n n2.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 3.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 4.方程)10(2||<<=a x a x 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 5.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R6.函数⎩⎨⎧+≥-=-222,12)( x x f x x f x ),(,则f(-3)=( )A .2B . 3C .4D .87-7.已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数8.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-9.已知a>0,且a ≠1,f(x)=x 2-a x.当x )1,1(-∈时,均有f(x)<21,则实数a 的取值范围是( ) A .⎪⎭⎫⎢⎣⎡1,21(]2,1 B.[21,1] C.(⎥⎦⎤41,0[)+∞⋃,4 D.R 10.已知偶函数f(x),且f(x+2)=f(2-x),当-2≦x ≤0时,f(x)=2x,则f(2010)=( ) A.2010 B.4 C.41D.-4 、填空题(每小题4分,共计28分)11.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 12.计算:(1)48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___100;(2)⎪⎪⎭⎫ ⎝⎛-÷++-33233233421428a b b ab a ba a =32a 13.不等式x x 283312--<⎪⎭⎫⎝⎛的解集是_____14不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a x axx 恒成立,则a 的取值范围是15.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为___16.已知f(x)=⎩⎨⎧>≤+-)1()1(1)2(x a x x a x,满足对任意的x 1,x 2,都有0)()(2121>--x x x f x f 成立,则实数a 的取值范围是____16.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;t/月⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 三、解答题:18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----;8 (2)1122a a-+;3 (3)22(1)a a a -->.21519.已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.a =3 20.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?21.(14分)已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.(4)若f(-x 2+3x)+f(m-x-x 2)>0对任意的x []1,0∈均成立,求实数m 的取值范围。
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四)(内容:指数与指数函数 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分:一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分)1. 化简[32)5(-]43的结果为 ( ) A .5 B .5 C .-5 D .-5 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成 ( ) A. 511个 B. 512个 C. 1023个 D. 1024个3.函数f(x)=x21-的定义域是 ( )A. (]0,∞-B. [0,+∞)C.(-∞,0)D.(-∞,+∞) 4. 设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<15.在同一平面直角坐标系中,函数ax x f =)(与xa x g =)(的图像可能是 ( )6.设dc b a ,,,都是不等于1的正数,xxxxd y c y by a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.7. 函数xa x f )1()(2-=在R 上是减函数,则a 的取值范围是 ( )1.>a A2.<a B 2.<a C 21.<<a D8.函数121-=x y 的值域是 ( ) )1,.(-∞A ),0()0,.(+∞-∞ B ),1.(+∞-C ),0()1,.(+∞--∞ D9.当1>a 时,函数11-+=x x a a y 是 ( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数10.函数0.(12>+=-a ay x 且)1≠a 的图像必经过点 ( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D11.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是 ( )n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(910.%12) 12.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8)D .[4,8)二、填空题(每题5分,共20分,把答案填在题中横线上)13.已知)(x f 是指数函数,且255)23(=-f ,则=)3(f . 14.设10<<a ,使不等式531222+-+->x xx x a a成立的x 的集合是 .15.函数x x y 28)13(0-+-=的定义域为 . 16.函数xx y -=22的单调递增区间为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本题满分10分) 已知函数f (x )=a -12x+1,且f (x )为定义在R 上的奇函数,试求a 的值。
指数和指数函数一、选择题1.(36a 9)4(63a 9)4等于()(C)a 4(A)a 16(B)a b 8(D)a -b 22.若a>1,b<0,且a +a =22,则a -a 的值等于()-b b (A)6(B)±2(C)-2(D)22x 3.函数f(x)=(a -1)在R 上是减函数,则a 的取值范围是()(A)a >1(B)a <2(C)a<2(D)1<a <4.下列函数式中,满足f(x+1)=(A)21f(x)的是( )211x -x(x+1) (B)x+ (C)2(D)224x 25.下列f(x)=(1+a )⋅a -x 是()(A)奇函数(B)偶函数(C)非奇非偶函数(D)既奇且偶函数1a 1b116.已知a>b,ab ≠0下列不等式(1)a >b ,(2)2>2,(3)<,(4)a 3>b 3,(5)()<()33a b22a b 11中恒成立的有()(A)1个(B)2个(C)3个(D)4个2x -17.函数y=x 是()2+1(A)奇函数(B)偶函数(C)既奇又偶函数(D)非奇非偶函数8.函数y=1的值域是()x 2-1(A)(-∞,1)(B)(-∞,0)⋃(0,+∞)(C)(-1,+∞)(D)(-∞,-1)⋃(0,+∞)+9.下列函数中,值域为R 的是()(A)y=512-x(B)y=(1x 11-xx)(C)y=()-1(D)y=1-223e x -e -x10.函数y=的反函数是()2(A)奇函数且在R 上是减函数(B)偶函数且在R 上是减函数++(C)奇函数且在R 上是增函数(D)偶函数且在R 上是增函数11.下列关系中正确的是()++111111(A)()3<()3<()3(B)()3<()3<()3252225111111(C)()3<()3<()3(D)()3<()3<()352252221222122112212.若函数y=3+2的反函数的图像经过P 点,则P 点坐标是()(A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)x -113.函数f(x)=3+5,则f (x)的定义域是()(A)(0,+∞)(B)(5,+∞)(C)(6,+∞)(D)(-∞,+∞)x 14.若方程a -x-a=0有两个根,则a 的取值范围是()(A)(1,+∞)(B)(0,1)(C)(0,+∞)(D)φ15.已知函数f(x)=a +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()x x x x (A)f(x)=2+5 (B)f(x)=5+3 (C)f(x)=3+4 (D)f(x)=4+316.已知三个实数a,b=a ,c=a a x x-1a a ,其中0.9<a<1,则这三个数之间的大小关系是()(A)a<c<b (B)a<b<c (C)b<a<c (D)c<a<bx 17.已知0<a<1,b<-1,则函数y=a +b 的图像必定不经过()(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限二、填空题1.若a <ax 322,则a 的取值范围是。
《指数与指数函数》测试题一、选择题(每小题5分,共计60分)1 )A .3 B.3- C.3± D.812.30a >)的值是( )A .1B .aC .15a D 1710a3.对于0,,a r s Q >∈以下运算正确的是( )A .r s rs a a a ⋅=B .()r s r s a a +=C .()r r raa b b -= D .()r s r s a b ab +⋅= 4.在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种细菌由一个可繁殖成( )A.8B.16C.256D.325.指数函数x y a =与x y b =的图象如图,则( )A .0,0a b <>B .01,01a b <<<<C .1,01a b ><<D .01,1a b <<>6.已知0.20.40.30.3,0.3, 1.1a b c ===,则a b c 、、的大小关系是( )A.a b c >> B. b a c >> C. c b a >> D. c a b >>7.若x 2=7,y 2=6,则y x -4等于( ) A .4936 B .67 C .1214 D .3649 8.函数2()1(0,1)x f x a a a -=+>≠必定过点( )A.(0,1) B.(1,1) C.(2,0) D.(2,2)9.已知01,1a b <<<-,则函数xy a b =+的图像不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10. 函数x y a =与y ax a =-的图象大致是下图中的( )11.当x ∈[-2,2)时,31x y -=-的值域是( )A .[-98,8]B .(-98,8]C .(91,9)D .[91,9] 12.下列说法中,正确的是( )①任取x ∈R 都有3x >2x ;② y =x -是增函数;③ y =2|x |的最小值为1 ;④在同一坐标系中,y =2x 与2x y -=的图象对称于y 轴.A .①②B .③④C .①③D .②④二、填空题(每小题4分,共计16分)13.求值:3481()16-= ;= . 14.方程11216x -=的解是 .15.函数()f x =_____________.16.函数x a y =在]1,0[上的最大值与最小值的和为3,则=a .三、解答题17.(12分)(1)计算:210319)41()2(4)21(----+-⋅- ⑵化简:215658)·(b a18. (12分)已知函数()(0,1)x f x a a a =>≠的图象过(3,8)-,求(0),(1),(2)f f f -的值.19. (12分)解关于x 的不等式3223x x a a -+->.20. (12分)指数函数()xb y a =的图象如图所示:⑴在已知图象的基础上画出函数()xa yb =的图象;⑵求函数2y ax bx =+的顶点的横坐标的取值范围.21. (12分)画出函数1()2x y =的图象,并根据图象写出其单调区间及值域.22. (14分)某电脑公司生产A型电脑,2019年这种电脑每台平均生产成本为5000元,并以纯利润0020确定出厂价.从2019年开始,公司通过更新设备和加强管理,使成本逐年降低,到2019年,尽管A型电脑出厂价仅是2019年出厂价的0080,但却实现了0050的纯利润的高效益.⑴求2019年每台型电脑的生产成本;⑵以2006年的生产成本为基数,求2006~2010年生产成本平均每年降低的百分数(精确到0.01 2.449==)。
指数问题测试题及答案一、选择题1. 下列哪个表达式表示2的3次方?A. 2^3B. 2×3C. 3^2D. 2+3答案:A2. 计算2的5次方的结果是多少?A. 32B. 25C. 16D. 10答案:A3. 如果3的x次方等于27,那么x的值是多少?A. 3B. 4C. 6D. 9答案:A二、填空题4. 指数法则中,任何数的0次方等于______。
答案:15. 如果a^m = a^n,那么m等于______。
答案:n6. 指数运算中,底数相同,指数相加的法则是a^(m+n) = ______。
答案:a^m × a^n三、简答题7. 解释什么是指数函数,并给出一个例子。
答案:指数函数是一种数学函数,其中一个变量的幂等于另一个变量。
例如,y = 2^x,这是一个指数函数,其中2是底数,x是指数。
8. 描述如何计算5的4次方,并给出结果。
答案:5的4次方是将5自身乘以4次,即5 × 5 × 5 × 5 = 625。
四、计算题9. 计算下列表达式的值:(a) 4^3(b) (2^2)^3答案:(a) 4^3 = 4 × 4 × 4 = 64(b) (2^2)^3 = 4^3 = 4 × 4 × 4 = 6410. 如果8^x = 2^12,求x的值。
答案:由于8 = 2^3,我们可以将8^x写成(2^3)^x = 2^(3x)。
因此,2^(3x) = 2^12,所以3x = 12,解得x = 4。
五、证明题11. 证明对于任何正数a和b,a^b × b^a总是大于或等于a^a × b^b。
答案:由于a和b都是正数,我们可以应用AM-GM不等式(算术平均值-几何平均值不等式),即对于任意的正数x和y,有(x + y)/2 ≥ √(xy)。
将x设为a^b,y设为b^a,我们得到:(a^b + b^a)/2 ≥ √(a^b × b^a)两边同时平方,得到:(a^b + b^a)^2/4 ≥ a^b × b^a展开左边,得到:a^(2b) + 2a^b × b^a + b^(2a) ≥ 4a^b × b^a简化得到:a^(2b) - 2a^b × b^a+ b^(2a) ≥ 0这可以重写为:(a^b - b^a)^2 ≥ 0由于平方总是非负的,所以上述不等式成立。
指数与指数函数练习题一、选择题1. 指数函数\( y = a^x \)中,当\( a > 1 \)时,函数的图像是:A. 在第一象限单调递增B. 在第二象限单调递增C. 在第三象限单调递增D. 在第四象限单调递增2. 已知\( 2^x = 4 \),则\( x \)的值为:A. 1B. 2C. 3D. 43. 对于\( y = 3^x \),当\( x \)增加1时,\( y \)增加的倍数是:A. 1B. 2C. 3D. 44. 函数\( y = a^x \)的图像关于y轴对称的条件是:A. \( a > 1 \)B. \( a < 1 \)C. \( a = 1 \)D. \( a = -1 \)5. 如果\( a \)是正数,\( b \)是负数,那么\( a^b \)的值是:A. 正数B. 负数C. 零D. 无法确定二、填空题6. 根据指数函数的性质,\( 2^3 \)等于______。
7. 如果\( 5^x = 125 \),那么\( x \)等于______。
8. 函数\( y = 2^{-x} \)的图像在第一象限的斜率是______。
9. 指数函数\( y = a^x \)的图像在\( x = 0 \)处的值为______。
10. 函数\( y = (1/2)^x \)的图像在\( y = 1 \)时,\( x \)的值为______。
三、简答题11. 解释指数函数\( y = a^x \)在\( x \)轴上的截距是什么,并说明为什么。
12. 描述指数函数\( y = a^x \)在\( a \)的值大于1时的增长速度。
13. 说明为什么指数函数\( y = a^x \)的图像在\( a \)小于1但大于0时,随着\( x \)的增加而递减。
14. 给定一个指数函数\( y = 2^x \),如果\( x \)增加1,\( y \)的值会如何变化?15. 讨论指数函数在\( a \)的值小于0时的性质,并给出一个具体的例子。
指数函数测试卷姓名: 得分:1.化简[32)5(-]4的结果为( )A .5B .5C .-5D .-5 2.化简46394369)()(a a ⋅的结果为( )A .a16B .a8C .a4D .a 23.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 25.当x ∈[-2,2)时,y =3-x-1的值域是( )A .[-98,8] B .[-98,8] C .(91,9) D .[91,9] 6.在下列图象中,二次函数y =ax 2+bx +c 与函数y =(ab )x 的图象可能是 ( )7.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .(21,1) C .(-∞,0) D .(0,+∞) 8.若122-=xa ,则xx x x aa a a --++33等于( )A .22-1B .2-22C .22+1D . 2+19.设f (x )满足f (x )=f (4-x ),且当x >2 时f (x )是增函数,则a =f (1.10.9),b = f (0.91.1),c =)4(log 21f 的大小关系是 ( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a10. 函数121x y =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞C 、()1,-+∞D 、()(,1)0,-∞-+∞11. 一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 12. 下列说法中,正确的是 ( )①任取x ∈R 都有3x >2x②当a >1时,任取x ∈R 都有a x >a -x③y =(3)-x是增函数④y =2|x |的最小值为1⑤在同一坐标系中,y =2x 与y =2-x的图象对称于y 轴 A .①②④ B .④⑤ C .②③④ D .①⑤ 二、填空题(每小题4分,计4×4=16分) 13. 已知215-=a ,函数()xf x a =,若实数,m n 满足()()f m f n >,则,m n 的大小关系为_________.14. 若关于x 的方程4x +a ·2x+4=0有实数解,则实数a 的取值范围是___________.15. 若函数()()1,0≠>-=a a b a x f x 的图象不经过第二象限,则b a ,满足的条件是 16. 若函数12)(22-=-+aax x x f 的定义域为R ,则a 的取值范围为__________.三、解答题(共计74分) 17. 已知函数332+-=x x a y 在[0,2]上有最小值8,求正数a 的值.18. 若函数4323xxy =-⋅+的值域为[]1,7,试确定x 的取值范围。
指数函数对数函数幂函数单元测试题层层飞跃,挑战巅峰——指数函数、对数函数、幂函数测试题一、选择题1.设指数函数C1:y=ax,C2:y=bx,C3:y=cx的图象如图,则()A。
0<c<1<b<aB。
0<a<1<b<cC。
c<b<aD。
0<c<1<a<b2.函数y=a(a>0,a≠1)过定点,则这个定点是()A。
(,1)B。
(1,2)C。
(-1,0.5)D。
(1,1)3.若函数y=f(x)的图象与y=2的图象关于y轴对称,则f(3)=()A。
8B。
4C。
-4D。
-84.若指数函数y=ax经过点(-1,3),则a等于()A。
3B。
2C。
1/3D。
1/25.函数y=f(x)的图象与y=2的图象关于直线x=1对称,则f(x)为()A。
y=2x-1B。
y=2x+1C。
y=2x-2D。
y=2^(2-x)6.对于任意x1,x2∈R,恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A。
22B。
4C。
2D。
87.若函数f(x)=loga x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=A。
1/4B。
1/2C。
2/2D。
2/48.在同一坐标系中,函数y=2-x与y=log2 x的图象是()A。
y=log2(2-x)B。
y=log2(2+x)C。
y=log2(2-x)+1D。
y=log2(2+x)-19.设函数f(x)={2-x-1 (x≤2)。
x(x>2)},若f(x)>1,则x 的取值范围是()A。
(-1,1)B。
(-∞,-2)∪(2,+∞)C。
(-1,+∞)D。
(-∞,-1)∪(1,+∞)10.已知0<m<n<1,则a=logm(m+1)与b=logn(n+1)的大小关系是()A。
a>bB。
a=bC。
a<bD。
桃江四中高一数学?指数与指数函数?测试题时间是:60分钟 满分是:100分一、选择题(每一小题5分,一共30分),1n N n *∈>,根据n次方根的意义,以下各式:①;n a =a ;③na =; ④na ,其中正确的有 〔 〕A.①②③④B.①③④C.①②③D.①②④ 2.1132102,1032a b -==,那么32410a b += 〔 〕3.设01a <<,那么函数x y a =的图像是 〔 〕A B C D4.,0)a b >的结果是 〔 〕 A.b a B.ab C.a bD.2a b 5.()22,()3,x x f x f a -=+=若那么(2)f a = 〔 〕 A.5 B.7 C0.90.44 1.512314,8,()2y y y -===,那么123,,y y y 的大小关系是 〔 〕 A.312y y y >> B.213y y y >> C.123y y y >> D.132y y y >>二、填空题(每一小题5分,一共30分)y =的定义域是8.函数3()1x f x a +=+的图像一定经过的定点的坐标为xxxx12x y =的值域是10.()x a f x a ==,假设实数,m n 满足()()f m f n >,那么,m n 的大小关系是 11.函数(23)y f x =-的图像可以由(2)y f x =经过怎样的平移而来?答: ()(0,1)x f x a a a =>≠在[]2,2-上的函数值总小于2,那么实数a 的取值范围是三、解答题(13分+13分+14分=40分)1,0()1,03x x x f x x ⎧<⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩,求不等式11()33f x -≤≤的解集。
14.当[]0,2x ∈时,求函数1()425x x f x +=-+的值域.15.11()221x f x x ⎛⎫=+ ⎪-⎝⎭〔1〕判断()f x 的奇偶性并证明;〔2〕求证:()0f x >励志赠言经典语录精选句;挥动**,放飞梦想。
指数与指数函数测试卷
一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分)
1. 化简[32
)5(-]4
3
的结果为 ( ) A .5 B .5 C .-5 D .-5 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成 ( ) A. 511个 B. 512个 C. 1023个 D. 1024个 3.函数f(x)=x 21-的定义域是 ( ) A. (]0,∞- B. [0,+∞) C.(-∞,0) D.(-∞,+∞) 4. 设.)
3
2(,)32(2
.15.1-==b a 那么实数a 、
b 与1的大小关系正确的是 ( ) A. 1<<a b B. 1<<b a C. a b <<1 D. b a <<1
5.在同一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( )
6.设d
c b a ,,,都是不等于1的正数,
x
x
x
x
d y c y b
y a y ====,,,
在同一坐标系中的图像
如图所示,则d c b a ,,,的大小顺序是)
d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.
7. 函数x
a x f )1()(2
-=在R 上是减函数,则a 的取值范围是 ( )
1.>a A
2.<a B 2.<a C 21.<<a D
8.函数1
21
-=
x y 的值域是 ( ) )1,.(-∞A ),0()0,.(+∞-∞ B ),1.(+∞-C ),0()1,.(+∞--∞ D
9.当1>a 时,函数11
-+=x x a a y 是 ( )
.A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数
10.函数0.(12>+=-a a y x 且)1≠a 的图像必经过点 ( )
)1,0.(A )1,1.(B )0,2.(C )2,2.(D
11.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单
位:万元)是 ( )
n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(9
10
.
%12) 12.若函数f (x )=⎩⎪⎨⎪
⎧
a x
,x >1(4-a
2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8)
D .[4,8)
二、填空题(每题5分,共20分,把答案填在题中横线上)
13.已知)(x f 是指数函数,且25
5
)23(=
-f ,则=)3(f . 14.设10<<a ,使不等式5
31
22
2
+-+->x x
x x
a a
成立的x 的集合是 .
15.函数x
x y 28)13(0-+-=的定义域为 .
16.函数x
x y -=2
2的单调递增区间为 .
三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本题满分10分) 已知函数f (x )=a -
1
2x
+1
,且f (x )为定义在R 上的奇函数,试求a 的值。
18. (本题满分12分)
已知函数225
13x x y ++⎛⎫
= ⎪
⎝⎭
,求其单调区间及值域。
19.(本题满分12分)
函数0()(>=a a x f x 且)1≠a 在区间]2,1[上的最大值比最小值大2
a
,求a 的值。
20. (本题满分12分)
若函数0322
≤--x x ,求函数x x y 4222
⋅-=+的最大值和最小值。
21. (本题满分12分)
已知f (x )=(12x -1+1
2
)x .
(1)求函数的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.
22. (本题满分12分)
已知函数
1
()(1)
1
x
x
a
f x a
a
-
=>
+
,
(1)判断函数的奇偶性;
(2)求该函数的值域;
(3)证明()
f x是R上的增函数。