全等中的割补法第一集
- 格式:ppt
- 大小:43.00 KB
- 文档页数:7
全等三角形-截长补短法全等三角形截长补短法在初中数学的几何学习中,全等三角形是一个重要的知识点,而解决全等三角形相关问题时,截长补短法是一种非常实用且巧妙的方法。
首先,咱们来聊聊什么是截长补短法。
简单来说,截长补短就是通过在图形中截取或者延长某条线段,使得图形中的线段关系发生变化,从而构造出全等三角形,帮助我们解决问题。
比如说,有一个三角形 ABC,其中∠B = 2∠C,要证明 AB = AC + CD。
这时候,我们就可以考虑使用截长补短法。
如果使用截长的思路,就在 AB 上截取 AE = AC,然后连接 DE。
这样一来,因为 AE =AC,再加上公共边 AD,以及已知的∠CAD =∠EAD,就可以证明△ACD 和△AED 全等。
然后通过一系列的角度推导,就能得出结论。
要是用补短的方法呢,就是延长 AC 至 E,使 CE = CD,连接 DE。
通过角度关系证明∠E =∠CDE,进而得出∠B =∠BDE,再证明△ABD 和△AED 全等。
接下来,咱们通过几个具体的例子来更深入地理解截长补短法。
例 1:在△ABC 中,AB > AC,AD 平分∠BAC,P 为 AD 上一点。
求证:AB AC > PB PC。
我们来用截长的方法解决。
在 AB 上截取 AE = AC,连接 PE。
因为 AD 平分∠BAC,所以∠BAD =∠CAD。
又因为 AE = AC,AP 是公共边,所以△APE ≌△APC。
那么 PC = PE。
在△PBE 中,根据三角形两边之差小于第三边,有 PB PE < BE。
而 BE = AB AE = AB AC,所以 AB AC > PB PC。
例 2:已知在正方形 ABCD 中,∠MAN = 45°,∠MAN 绕点 A 顺时针旋转,它的两边分别交 CB、DC 于点 M、N。
求证:BM + DN =MN。
这道题我们用补短的方法。
延长 CB 至 E,使 BE = DN,连接 AE。
全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。
第34讲 割补法与等积法一、知识与方法1 割补法割补法包括分割法和补体法,求一个几何体的体积可以将这个几何体分割成几个柱 体,锥体,分别求出雉体和柱体的体积, 从而得出几何体的体积,这种方法称为分割法. 用 于直接解题较困难,分割后化繁为简,使问题较易获得解快,但有时候,所给的几何体并不 复杂,却很难直接计算求解,这类几何体实际上是一个常规几何体的一部分. 通过添补适当 的几何体,将其扩展为新的、其特征为我们比较熟悉的几何体,以便于从整体上宏观把握,处 理局部问题的一种方法称为补体法,体现了拓展空间, 从更广阁的范围内处理局部问题的整 体思想.分割法与补体法合在一起称为割袳法.2 等积法(又称等积变换法)(1)利用三棱锥的“等积性”,即体积计算时可以任一个面作为三棱雉的底面. (1)求体 积时,可选择“容易计算”的方式来计算; (2)利用“等积法”可求“点到面的吟离”,关键是在 面中选取 3 个点,与已知点构成三棱锥.(2) 等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的等 价转换.二、典型例题【例1 】(1) 如图 384- 所示,已知多面体 ABC DEFG - 中, ,AB AC ,AD 两两互相垂直,平面 //ABC 平面 DEFG , 平面 //BEF 平面 ,2,1ADGC AB AD DG AC EF =====, 则该多面体的体积为 ( ).A. 2B. 4C. 6D. 8(2) 如图 385- 所示,在多面体 ABCDEF 中, 已知 ABCD 是边长为 1 的正方形, 且 ,ADE BCF 均为正三角形. //,2EF AB EF =, 则该多面体的体积为( ).A. B. C. 43 D. 32【分析 】本例两小题给出的都是不规则几何体,直接求体积比较困难,可以将 这个几何体分割成若干规则的几何体,从而得出几何体的体积(求规则几何体的体积再合 成),也可认运用补体法补成一个规则几何体再求解,如第(1) 问,可把题中给出的几何体 分割成两个三棱柱或补成一个正方体;第(2)问,不同的分割可以引发一题多解与发散思 维,这种解法体现了割补思想和等积变换思想.【解析】 (1) 【解法 一 】(割)如图 386- 所示,过点 C 作 CH DG ⊥ 于 H , 联结EH ,把多面体分割成一个直三棱柱 DEH ABC - 和一个斜三棱柱 BEF CHG -.于是所求几何体的体积为 112122122DEH BEF V S AD S DE ⎛⎫⎛⎫=⋅+⋅=⨯⨯⨯+⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭2 4.=【解法 二 】(补)如图 387- 所示. 将多面体补成棱长为 2 的正方体. 显然所求的多面体的体积为该正方体体积的一半.于是所求几何体的体积 31242V =⨯=.(2) 【解法 一】 (分割法一)如图 388- 所示,分别过 ,A B 作 EF 的垂线, 垂足分别为点 ,G H , 联结 ,DG CH .则原几何体分割为两个三棱雉和一个直三棱柱,锥高12, 柱高 1. 2AG ==, 取 AD 中点 M , 则2MG =11112224434AGD S V =⨯⨯=∴=+⨯⨯123=【解法 二】 (分割法二)如图 389- 所示,取 EF 中点P , 则原几何体分割为两个三棱雉和一个四棱雉,易 知三棱雉 P AED - 和三棱雉 P BCF - 都是棱长为 1 的正四面体,四棱雉 P ABCD - 为棱长为 1 的正四 棱雉.2111233V =⨯+⨯= 【例 2】 已知直三棱柱 111ABC A B C - 中, 222A B C 是用一平面截得的截面,且 21AA h =, 2223,BB h CC h == , 若 ABC 的面积为 .S 求证:介于截面与下底面之间的几何体的体积为 ()12313V S h h h =++. 【分析】由于几何体 222A B C ABC - 是一个不规则的几何体,为求得其体积不 妨采用分割或补体的方法来求解和证明.【解析】【证法 一】 (分割)为了讨论方便, 不妨设 123h h h , 可将几何 体 222ABC A B C - 分割成一个小直三棱柱与两个三棱雉. 如图 390- 所示,过 2A 作 23//A B AB 交 2B B于 3B , 过 3B 作 33//B C BC 交 2C C 于 3.C 联结 23A C ,23B C , 则几何体 222ABC A B C - 被分割成直三棱柱 233ABC A B C - 、三棱雉 2233B A B C - 、二棱锥 2A 232B C C -设 ,BC x A = 到 BC 的距离为 d , 则 12S xd =. 由于 ()23322331211,3ABC A B C B A B C V Sh V S h h --==-, ()()223223231311111.3323A B C c B C C V S d h h x d S h h -=⋅=⋅-⋅⋅=- 故 ()2222332233223212313ABC A B C ABC A B C B A B C A B C C V V V V S h h h ----=++=++. 【证法二】(补体)将几何体 222ABC A B C - 以 ABC 为底面进行两次等几何体补形,使侧 棱的长均为 123h h h ++, 这样就将不规则的几何体补形为新的直三棱柱.而原几何体的体积等于这个新直三棱柱体积的 13, 故 ()222123 1133ABC A B C V V S h h h -==++新直三榬柱.【例 3】 如图 391- 所示,三棱锥 A BCD - 中, AB ⊥ 平面 BCD ,CD BD ⊥(1) 求证: CD ⊥ 平面 ABD ;(2) 若 1,AB BD CD M === 为 AD 中点,求三棱雉A MBC - 的体积.【分析】 利用三棱锥的“等积法”,即体积计算时,可以任一个面作为三棱锥 的底面,利用“等积法”可求“点到面的距离”,关键是在面中选取三个点,与已知,点构成 三棱锥.等积变换法充分体现了转化的数学思想,在运用过程中要充分注意距离之间的 等价转换.【解析】(1) 证明: :AB ⊥ 平面 ,,BCD CD BD CD ⊥⊂ 平面 ,ABD BD ⊂ 平面 ABD , CD ∴⊥ 平面 .ABD(2)【 解法一】 由 AB ⊥ 平面 BCD ,得 AB BD ⊥,11,.2ABD AB BD S ==∴= M 为 AD 中点, ABM 11.24ABD S S ∴== 由 ()1 知,CD ⊥ 平面 ABD ,∴ 三棱锥 C ABM - 的高 1h CD ==.因此三棱雉 A MBC - 的体积 B 13A MBC C ABM A M V V S h --==⋅1.12=【解法二 】由 AB ⊥ 平面 BCD 知,平面 ABD ⊥ 平面 BCD .又平面 ABD ⋂ 平面 BCD BD = , 过点 M 作 MN BD ⊥ 交 BD 于点 N ,如图 392-所示,则 MN ⊥ 平面 BCD , 且 1122MN AB ==. 又 1,1,2BCD CD BD BD CD S ⊥==∴=. ∴ 三棱倠 A MBC - 的体积 1133A MBC A BCD M BCD BCD V V V AB S MN ---=-=⋅-. 112BCD S =. 三、易错警示【例 】 正方体容器 1AC 中盛满水, ,,E F G 分别是 1111,,A B BB B C 的中点,若 3 个小孔 分别位于 ,,E F G 三点处,则正方体中的水最多会剩下原体积的( ). A. 78 B. 1112 C. 56 D. 2324【错解】剩下的水的最大容积是截面 EFG 以下几何体的体积,如图 393- 所示,设 1CC 的中点为 11,M C D 的中点为 N ,则截面 EFG 在正方体 1AC 的截面是 EFMN , 设正方体 1AC 的棱长为 1, 则三棱柱 11B EF C MN - 的体积 1111111.2228B EFC MN V =⨯⨯⨯= 于是, 正方体的水最多会剩下原体积的 17188-=, 故 选 A.【评析及正解】上迌解法是否正确,我们可认考查另一种情形.考虑由 1,,B E C 确定的截面,如图 394- 所示.此时,另一个小孔在截面 1BEC的上方, 此 时 三 棱 锥 11B BEC - 的体积为 1113B BEC V -=⨯ 111111.22128⎛⎫⨯⨯⨯=< ⎪⎝⎭ 于是, 正方体中的水最多会剩下原体积的 11111212-=, 故应选 B . 1. 从选项看,还有 2324, 那么,会不会是这个结果呢? 我们可以 考虑一般的情形.【正确的解法】如下:【解析】:我们注意到, 当正方体中剩下的水最多时,这时的水平面必定经过其中的两个小孔, 不妨设经过小孔 ,E G , 如图 395- 所示,另一个小孔 F 在该平面的上方. 设过 ,E G 的平面与棱 1111,,BB CC C D 的交点分别为 ,,H P Q , 则流出的水的最小体 积是台体 11B EH C QP - 的体积.设正方体 1AC 的棱长为 2 , 则 11B E =, 设 ()112B H x x =, 则 12C P x =-. 由 11B EH C QP , 得 12x C Q x-=. 于是, 台体 11B EH C QP - 的体积为112231(2) 31(2)14 2233121222,3312B EHC QP x V x x x x x x x ⎡⎤-=+⎢⎥⎢⎥⎣⎦⎡⎤-⎛⎫=+=+-⎢⎥ ⎪⎝⎭⎣⎦⎛⎫⋅==⨯ ⎪ ⎪⎝⎭当且仅当 4x x =, 即 2x = 时,台体 11B EH C QP - 的体积最小, 为正方体体积的 112. 此 时,点 H 与点 B 重合, 即截面为 1BEC , 故选 B.四,难题攻略【例】 在三棱台 111ABC A B C - 中, 111,2A B G AB = 为 1CC 的中点,截面 1A BG 将棱台分 成上、下两部分,求这两部分体积之比.【分析】 由于合成的两部分都是不规则的几何体,故需将其分割成几个锥体 (特别是三棱锥)的组合体才便于计算体积之比,需要提醒的是这里有等面积、等高,等体 积的运用,使问题的解答别开生面.【解析】 如图 396- 所示, 联结 11,BC A C , 则棱台被分割成 4 个三棱 锥的组合体, 注意到 3 个三棱锥 11111,A BC G A BC B --,1A BCG - 都等高, 因而其体积之比为底面面积之比.又在梯形 11BCC B 中, 由 111112B C A B BC AB ==, 且 G 为 1C C 的 中点, 有 11.BCC BOG BC B S S S ==即 111111ΛBCC A BCC A BC B V V V V ---===,从而 111112A BCC A BC B V V V V --=+=上,在三棱雉 111B A B C - 与三棱雉 1A ABC - 中, 它们的高相等, 且 1114ABCA B C S S=,则 1111111444A ABC B A B c A BC B V V V V ---===.从而 1155A ABC A BCC V V V V --=+=下, 故 t :2:5V V =下 为所求.五、强化训练1.如图397-所示,在直三棱柱111ABC A B C -中,12,,2AB BC AA ABC M π∠===是BC中点.(1)求证:1//A B 平面1AMC ;(2)求直线1CC 与平面AMC 所成角的正弦值;(3)试问在棱11A B 上是否存在点N ,使得AN 与1MC 所成角为?3π若存在,确定点N 位置;若不存在,请说明理由.【解析】(1)如图①所示,联结,设与相交于点,则为中点,联结,则为的中位线,依据线面平行判定定理可得.(2)将图①补体为图②,设直线与平面所成角为,则 .由题意,不妨设,依据等体积法可得1A C 1AC O O 1A C OM OM 1A BC 11111AB OM A B AMC A B AMC OM AMC //⎫⎪⊄⇒//⎬⎪⊂⎭平面平面平面1CC 1AMC α11sin C AMC h CC α-=122AB BC AA ===. (3)假设在棱上存在点,使得与成角,不妨设在棱上取点,使得,易得,如图③所示,故与成角.在中,由余弦定理可得.故在棱上存在点,且为棱的中点,使得与成角.111111133C AMC C AMC AMC C AMC AMCC AMC V V Sh Sh ----=⇒=11122sin 33C AMC C AMC h h CC α--⇒=⇒==11A B N AN 1MC 3π1(02)A N t t =≤≤CD Q CQ t =1AN C Q//1C Q 1MC 3π1MQC 22222211112cos3MQ MC QC MC QC π=+-⇒=+1[0,2]t -=∈11A B N N 11A B AN 1MC 3π。
割补法求面积阴影面积的计算是本章的一个中考热点,计算不规则图形的面积,首先应观察图形的特点,通过分割、接补将其化为可计算的规则图形进行计算.一、补:把所求不规则图形,通过已知的分割线把原图形分割成的图形进行适当的组合,转化为可求面积的图形.例题1 如图1,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是_____cm 2(结果用π表示).解析:如图1,根据对称性可知:S 1=S 2,S 3=S 4,S 5=S 6,S 7=S 8,因此阴影部分的面积占整个圆面积的21,应为:ππ22212=⨯(cm 2).练习:如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______.答案:2π.二、割:把不规则的图形的面积分割成几块可求的图形的面积和或差.例题2 如图3,在Rt△ABC 中,已知∠BCA=90°,∠BAC=30°,AB=6cm ,把△ABC 以点B 为中心旋转,使点C 旋转到AB 边的延长线上的点C′处,那么AC 边扫过的图形(图中阴影部分)的面积是_______cm 2(不取近似值).解析:把所求阴影部分的面积分割转化,则 S 阴影=(S 扇形BAA′+S △A′C′B )-(S △ACB +S 扇形BCC′)=S 扇形BAA′-S 扇形BCC′ 3603120360612022⨯-⨯=ππ=π9.练习:如图4,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点,∠MEN=60°.则图中阴影部分的面积是_________. 答案:4361--π.三、先割后补:先把所求图形分割,然后重新组合成一个规则图形.例题3 如图5,ABCD 是边长为8的一个正方形,EF 、HG 、EH 、FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=______.解析:连接EG 、FH ,由已知可得S 1=S 2,S 3=S 4,所以可把S 1补至S 2,S 3补至S 4.这样阴影部分的面积就转化为正方形面积的21,因此阴影部分的面积为328212=⨯.练习:如图6,AB 是⊙O 的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴影部分的面积为( )A .3πB .6πC .2πD .32π时间:2021.03.11创作:欧阳音。
三角形全等之截长补短(整理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角形全等之截长补短(整理))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角形全等之截长补短(整理)的全部内容。
12三角形全等之截长补短(讲义)一、知识点睛截长补短:题目中出现__________________________时,考虑截长补短;截长补短的作用是____________________________________ ___________________________________________________.二、精讲精练1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 如图,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 边上一点,且DE 平分21D CB A 21D CB A 21D B A3∠ADC ,CE 平分∠BCD . 求证:CD =AD +BC .3. 已知:如图,在正方形ABCD 中,AD =AB ,∠B =∠D =∠BAD =90°,E ,F 分别为CD ,BC 边上的点,且∠EAF =45°,连接EF .E DCA F EDCB A4求证:EF =BF +DE .4. 已知:如图,在△ABC 中,∠ABC =60°,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .OED CBA F EDCB A55. 已知:如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =BD .21OED BEDCB A。
第一讲:全等三角形1、如图,BD、CE是△ABC的高,点P在BD的延长线上.BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.2、如图,△ABC的角平分线AD、BE相交于点P.(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD之间的数量关系,并说明理由.3、如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD和CE交于点O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.4、如图,△ABC中,AD是∠A外角平分线,P是AD上异于A的任意一点,试比较PB+PC 与AB+AC的大小.5、如图,△ABC,△DCE均是等边三角形,B、C、E在一条直线上.(1)求证:BD=AE;(2)求∠DOE的度数;(3)求CF=CG;(4)求证:OC平分∠BOE.6、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD 的右侧作△ADE,使AE=AD,∠DAE=∠BAC.设∠BCE=m°,∠BAC=n°.(1)如图,当点D在线段BC上时,①、如果∠BAC=90°,∠BCE= 度;②、图中与BD始终相等的线段是;③、你认为m、n之间有怎样的数量关系?并说明理由.(2)当点D在直线BC上(除线段BC外)移动时,m、n之间又有怎样的数量关系?请在备用图上画出图形,并证明你的结论.7、如图1,正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.(1)证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.(请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…”,请你作出猜想:当∠AMN= °时,结论AM=MN仍成立.(直接写出答案)第二讲:截长补短1、如图,△ABC 中,AD 平分∠BAC ,若AB+BD=AC ,求∠B :∠C 的值.2、如图,在△ABC 中,∠BAC=60∘,∠ACB=40∘,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线.求证:BQ+AQ=AB+BP.3、如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC ,试比较AB-AD 与CB-CD 的大小.4、如图,在△ABC 中,∠BAC=120°,AD ⊥BC 于D ,且AB+BD=DC ,求∠C 的度数.5、如图,△ABC 中,AD ⊥BC 于D ,∠B=2∠C .求证:DC=BD+AB.6、如图,四边形ABCD 中,AC 平分∠BAD ,DC=BC ,求∠ADC+∠ABC 的度数.7、如图,四边形ABCD 中,AC 平分∠BAD,过C 作CE⊥AB 于E ,且2AE=AB+AD ,求∠ABC+∠ADC 的度数.8、如图,已知在△ABC 中,∠A=90°,AB=AC ,D 为AC 中点,DB ⊥AE 于点E ,延长AE 交BC 于点F.求证:∠ADB=∠CDF.9、如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由.10、如图,在四边形ABCD 中,AB ⊥BC ,DC ⊥BC ,BC=AB+DC ,取AD 的中点P ,连接PB 、PC.判断三角形PBC 的形状.。
全等三角形-截长补短法全等三角形的截长补短法,这可是初中数学里的一个重要“法宝”。
咱先来说说啥是截长补短法。
简单来讲,就是遇到证明线段之间关系的问题时,如果直接证明有困难,那就通过截取或者延长某条线段,让它们凑成新的相等线段,从而达到证明全等三角形的目的。
给大家举个例子啊。
就说有这么一道题,在三角形 ABC 中,AB >AC ,AD 是角平分线。
让咱们证明 AB AC > BD DC 。
这时候,咱们就可以用截长补短法。
咱们先截长。
在 AB 上截取 AE = AC ,连接 DE 。
因为 AD 是角平分线,所以角 BAD =角 CAD 。
又因为 AD 是公共边,AE = AC ,根据边角边定理,三角形 AED 就全等于三角形 ACD 啦。
这样一来,DC = DE 。
那在三角形 BDE 中,因为 BE = AB AE ,AE = AC ,所以 BE =AB AC 。
又因为 BD DE < BE ,而 DE = DC ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
再说说补短。
延长 AC 到 F ,使 AF = AB ,连接 DF 。
同样因为AD 是角平分线,所以角 BAD =角 CAD 。
还有公共边 AD ,根据边角边定理,三角形 ABD 就全等于三角形 AFD 。
这样 BD = DF 。
在三角形 CDF 中,CF = AF AC ,AF = AB ,所以 CF = AB AC 。
又因为 DF DC < CF ,DF = BD ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
还记得我上学那会,刚开始学这截长补短法,那真是一头雾水。
老师在讲台上讲得眉飞色舞,我在下面听得云里雾里。
后来,老师布置了一道作业题,我愣是想了半天也没做出来。
晚上回到家,我坐在台灯下,把教材翻了又翻,笔记看了又看,还是没啥头绪。
我心里那个急啊,感觉自己像个迷路的小羊羔,怎么也找不到走出这片知识迷雾的路。
巩固.在直角三角形ABC中,四边形DECF为正方形,若AD=7,DB=8,则ΔADE与ΔBDF的面积之和是多少?AD EB CF巩固、如图所示,用一张斜边长为29厘米的红色直角三角形纸片、一张斜边长为50厘米的蓝色直角三角形纸片、一张黄色的正方形纸片,拼成一个直角三角形.红、蓝两张三角形纸片面积之和是多少?例2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少?巩固.求下图(单位:厘米)中四边形ABCD的面积。
例3、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。
求这个梯形的面积。
巩固.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。
已知梯形的面积为24平方厘米,上底为4厘米,求下底和高。
例4、在一个等边三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几?巩固、如图,三个正方形的边长分别为8厘米、10厘米、6厘米拼在一起,求阴影部分的面积?巩固、下图是两块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)分别有多大?等差法解题关键:找出组合图形的公共部分解题技巧:利用差不变原理进行等量代换:例1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。
那么,三角形BCM的面积与三角形DEM面积之差是多少?巩固、如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。
那么,三角形BCM的面积与三角形DEM面积之差是多少?例2、如图所示,平行四边形ABCD的边长BC长为8,直角三角形BCE的直角边CE长为6。
已知两块阴影部分的面积和比三角形EFG的面积大8,求CF的长度?巩固、如图,四边形BCEF是平行四边形,三角形ACB是直角三角形,BC的长是8厘米,AC长是7厘米。
勾股定理三种证明方法割补法嘿,朋友们!今天咱来聊聊勾股定理的三种证明方法之割补法。
你说这勾股定理啊,那可真是数学里的大宝贝呀!就好像是一把神奇的钥匙,能打开好多难题的大门呢。
咱先来说说第一种割补法。
想象一下,有一个直角三角形,就像一个稳固的小凳子。
我们把它这儿切一刀,那儿补一块,嘿,神奇的事情发生了!通过巧妙的切割和填补,就能发现那些边与边之间隐藏的关系。
这就好比是在玩拼图游戏,把那些碎片拼到一起,答案就呼之欲出啦!你说这妙不妙?再看看第二种割补法。
就像是在给这个直角三角形变魔术一样,通过不同的割补方式,又能得出同样神奇的结论。
这不是一般人能想到的呀,得是那些聪明的脑袋瓜子才能琢磨出来的呢!你难道不想试试自己能不能像那些数学家一样聪明?还有第三种割补法呢!哇哦,这一种更是让人惊叹不已。
就好像是给这个直角三角形穿上了一件特别的衣服,一下子就让它的秘密都暴露出来了。
你不觉得这很神奇吗?其实啊,勾股定理的割补法证明就像是一场奇妙的冒险。
每一次尝试都是一次探索,每一个新的发现都让人兴奋不已。
这可不仅仅是数学知识,更是一种智慧的体现呀!我们在这个过程中,可以尽情地发挥自己的想象力和创造力,就像在自己的小天地里自由翱翔一样。
想想看,几百年前的数学家们是怎么发现这些方法的呢?他们是不是也像我们现在这样,充满好奇地去尝试、去探索?他们的智慧真的让人佩服得五体投地呀!而我们现在有这么好的条件,更应该好好去研究、去体会这些神奇的证明方法呀。
所以啊,朋友们,不要小看了这勾股定理的割补法。
它就像是隐藏在数学世界里的宝藏,等待着我们去挖掘、去发现。
让我们一起投入到这个奇妙的数学之旅中吧,去感受那无尽的乐趣和惊喜!我相信,只要我们用心去体会,一定能领略到勾股定理割补法的独特魅力!这就是我想说的,你们觉得呢?。