-复变函数的导数
- 格式:ppt
- 大小:792.52 KB
- 文档页数:28
函数解析与可导、连续、极限的关系由解析函数定义可知,函数在区域内解析与在区域内可导是等价的. 但是,函数在一点处解析和在一点处可导是不等价的两个概念. 就是说,函数在一点处可导,不一定在该点处解析. 但函数在一点解析,则一定在该点可导(而且在该点及其邻域均可导). 函数在一点处解析比在该点处可导的要求要严格得多.区域解析区域可导(在一点)解析→可导→连续→极限存在反之均不一定成立。
7我们还可以定义其他三角函数如下:(2)根据定义有:()1212122cosh z z z z z z +--+1212z z z z eee e e e --=+=+121212121212z z z z z z z z z z z z e ee e e e e ee e e e------=+++--()1212124cosh cosh z z z z z z e e e e--=-+121211122122124cosh cosh z z z z z z z z z z z z z z e e e ee e e e ee ee ------=--+-++()124cosh cosh 4s z z =+()1212inh sinh 2cosh z z z z -+18()121212cosh cosh cosh sinh sinh z z z z z z ⇒+=+The End The End19作业(2)P385, 7, 8, 17, 18, 57817182020。
复变函数的导数
什么是复变函数?
复变函数是一种表示实现复数曲线的数学函数,复变函数将实数空间变换为复空间,这既
包括由实数 x 和实数 y 构成的笛卡尔坐标系,也包括由复数构成的复平面。
复数可以
表示为z=x+iy。
贝尔金斯定理称,每一个复变函数都能用它的实部函数和虚部函数来确定,复变函数的实部函数和虚部函数的导数就组成了复变函数的导数。
那么,什么是复变函数的导数?
复变函数的导数是指复变函数的实部函数以及虚部函数的导数的和,它可以用三个符号表示,即f″z= f′x+if′y。
如何计算复变函数的导数?
计算复变函数的导数,需要先解决实部函数和虚部函数导数的问题,并将它们相加。
1. 首先,计算实部函数的导数,也就是计算x的一阶导数。
一般情况下,可以用f′x= limΔx→0(f(x+Δx)-f(x)/Δx)来求解x的一阶导数;
2. 再计算虚部函数的导数,也就是计算y的一阶导数,可用同样的方法来求解,即
f′y= limΔy→0(f(y+Δy)-f(y)/Δy);
3. 最后,将两个导数相加,得到一个复变函数的导数:f″z= f′x+if′y。
以上就是复变函数的导数的概念及求解方法,仿佛将复数的曲线画出来,它们也可以用复
变函数的导数来表示,这种表示将复数曲线的形状和特性清晰展示出来。
这代表我们可以
利用复变函数的导数来描述复数的曲线的许多性质,比如求复数曲线的局部最大值、最小值,以及曲线的单调性等。
从以上介绍,我们可以看出复变函数的导数扮演着重要的角色,可用来描述复数曲线的特
性和性质,深刻地影响着我们进行复数分析和复变函数研究的工作。
复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。
复变函数怎么求导复变函数是指一个变量自变量和一个变量的函数。
求复变函数的导数需要使用复变函数的Cauchy-Riemann条件。
复变函数的导数定义如下:设有函数$f(z)=u(x,y)+iv(x,y)$,其中$u(x,y)$和$v(x,y)$是$x,y$的实函数,若存在复数$L$,使得对于给定的复数$\Delta z=\Delta x+i\Delta y$,有$$\lim_{\Delta z \to 0}\frac{f(z+\Delta z)-f(z)-L\Deltaz}{\Delta z}=0$$则称$L$为复变函数$f(z)$在点$z$处的导数,记为$f'(z)$。
在实数函数的情况下,导数可以通过计算函数的偏导数来求得。
在复变函数的情况下,由于复数存在实部和虚部,计算导数需要满足一定的条件。
接下来,我们将通过推导Cauchy-Riemann条件,来求复变函数的导数。
首先,假设$f(z)$在一个区域内有定义,则$f(z)$可以写为$f(z)=u(x,y)+iv(x,y)$。
我们来计算$f(z)$在点$z$处的增量:$$\Delta f(z)=f(z+\Delta z)-f(z)=\{u(x+\Delta x, y+\Delta y)+iv(x+\Delta x, y+\Delta y)\}-\{u(x, y)+iv(x, y)\}$$将上式展开,并忽略高阶无穷小的项,得到:$$\Delta f(z)=\left[\left(\frac{\partial u}{\partialx}\Delta x-\frac{\partial v}{\partial y}\Deltay\right)+i\left(\frac{\partial u}{\partial y}\Deltay+\frac{\partial v}{\partial x}\Delta x\right)\right]$$我们知道,根据导数的定义,有:$$f'(z)=\lim_{\Delta z \to 0}\frac{\Delta f(z)}{\Delta z}$$将$\Delta f(z)$代入上式,得到:$$f'(z)=\lim_{\Delta z \to0}\frac{\left[\left(\frac{\partial u}{\partial x}\Delta x-\frac{\partial v}{\partial y}\Deltay\right)+i\left(\frac{\partial u}{\partial y}\Deltay+\frac{\partial v}{\partial x}\Delta x\right)\right]}{\Delta z}$$根据复数的定义,$\Delta z=\Delta x+i\Delta y$,因此,我们可以将分子中的$\Delta x$和$\Delta y$替换成$\Delta z$:$$f'(z)=\lim_{\Delta z \to0}\frac{\left[\left(\frac{\partial u}{\partial x}\Delta z-i\frac{\partial v}{\partial y}\Deltaz\right)+i\left(\frac{\partial u}{\partial y}\Deltaz+i\frac{\partial v}{\partial x}\Delta z\right)\right]}{\Delta z}$$整理上式,得到:$$f'(z)=\lim_{\Delta z \to 0}\left\{\frac{\partialu}{\partial x}-i\frac{\partial v}{\partialx}+\left[\frac{\partial u}{\partial y}+i\frac{\partialv}{\partial y}\right]\right\}$$根据导数的定义,我们知道$\lim_{\Delta z \to 0}\Delta z=0$,因此我们可以将分母中的$\Delta z$约去,得到:$$f'(z)=\frac{\partial u}{\partial x}-i\frac{\partialv}{\partial x}+\left[\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right]$$根据复变函数的导数定义,我们知道$f'(z)$是一个复数,因此可以将其改写为:$$f'(z)=\frac{\partial u}{\partial x}-i\frac{\partialv}{\partial x}+\left[\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right]=\frac{\partialu}{\partial x}+i\frac{\partial v}{\partialx}+\left[\frac{\partial u}{\partial y}-i\frac{\partialv}{\partial y}\right]$$根据复数的加法规则,我们知道复数可以写为实部和虚部的和,因此上式可以改写为:$$f'(z)=\frac{\partial u}{\partial x}+i\left(\frac{\partial v}{\partial x}-i\frac{\partial u}{\partial y}\right)$$根据复数的乘法规则,我们知道$i^2=-1$,因此上式可以改写为:$$f'(z)=\frac{\partial u}{\partial x}+i\left(\frac{\partial v}{\partial x}+i\frac{\partial u}{\partial y}\right)$$最后,我们得到了复变函数的导数公式:$$f'(z)=\frac{\partial u}{\partial x}+i\frac{\partialv}{\partial x}+i\left(\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right)$$为了求出$f'(z)$的具体值$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$$$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$可以看出,Cauchy-Riemann条件是保证复变函数$f(z)$可导的充分必要条件。