2-1复变函数的导数
- 格式:ppt
- 大小:972.50 KB
- 文档页数:32
复变函数的导数定义:复变函数是通过一块二维的空间的某个点的坐标,映射为该点的唯一的实数值,而复变函数的导数则是用来描述函数变化的快慢程度的量度。
要了解复变函数的导数,首先要理解复变函数本身。
复变函数是一种将实数和复数之间的单射映射即每一点映射只有一个实数或复数,而每一个实数或复数只被映射到一个点的映射函数,通过它可以将实数和复数,即实部和虚部之间变化联系起来,也就是用函数的方式描述复数和实数之间的变化。
复变函数的导数表示函数中任意一点变化率的大小,它可以帮助我们确定函数中任意一点的斜率。
它是一个定义在实空间上任意部分位置处的一阶导数,可以用来表示曲线变化率的大小,反映了曲线变化的快慢程度。
具体来说,复变函数的某一点的导数指的是这个点上曲线的斜率,也就是这个点的斜率的大小,或者是在这个点曲线发生变化的速度大小。
求复变函数的导数有两种方法,一种是按复数的方式,另一种是按实数的方式。
按实数来求导,首先需要把函数用实变量表示,然后用常规的微积分方法来计算复变函数的导数。
按复数的方式来求导,就是用极坐标来表示复变量,然后用光滑曲线的性质,用公式计算复变函数的导数,其公式为:复变函数的导数即:f′(z)=fz(z)cosθ+fθ(z)sinθ其中,z=x+iy其中,fz表示对z的实部求导的结果,fθ表示对z的虚部求导的结果,θ表示z的极角。
下面我们看看复变函数的导数在求解实际问题中的实际应用。
在微分方程中,复变函数的导数可以用来求解复变数方程,因为它描述了复变量中点的变化率,而微分方程则可以描述复变量的变化状态,所以在求解复变函数的微分方程的时候,复变函数的导数就显得尤为重要。
在几何函数中,复变函数的导数也有一定的作用,可以用来求解几何函数图形的斜率,斜率表明该图形在某一点的曲率,从而可以更直观地描述几何函数图形,帮助我们更清楚地判断几何函数图形的变化状态。
此外,复变函数的导数还可以被用来判断极值点。
极值点是复变函数变化的拐点,复变函数的导数可以用来判断这些拐点,从而可以更加精确的确定极值点的位置。
函数解析与可导、连续、极限的关系由解析函数定义可知,函数在区域内解析与在区域内可导是等价的. 但是,函数在一点处解析和在一点处可导是不等价的两个概念. 就是说,函数在一点处可导,不一定在该点处解析. 但函数在一点解析,则一定在该点可导(而且在该点及其邻域均可导). 函数在一点处解析比在该点处可导的要求要严格得多.区域解析区域可导(在一点)解析→可导→连续→极限存在反之均不一定成立。
7我们还可以定义其他三角函数如下:(2)根据定义有:()1212122cosh z z z z z z +--+1212z z z z eee e e e --=+=+121212121212z z z z z z z z z z z z e ee e e e e ee e e e------=+++--()1212124cosh cosh z z z z z z e e e e--=-+121211122122124cosh cosh z z z z z z z z z z z z z z e e e ee e e e ee ee ------=--+-++()124cosh cosh 4s z z =+()1212inh sinh 2cosh z z z z -+18()121212cosh cosh cosh sinh sinh z z z z z z ⇒+=+The End The End19作业(2)P385, 7, 8, 17, 18, 57817182020。
复变函数与积分变换知识点复变函数是数学中极具特色和深刻内涵的一个分支,其理论和应用不仅涉及到数学领域,也伸展至物理、工程、计算机等多个领域。
而积分变换则是复变函数中的一项重要技术,可应用于信号处理、控制系统等领域。
本文将介绍关于复变函数和积分变换的知识点。
1. 复数及其运算复数是一种拓展了实数的数学概念,其具有实部和虚部,记作z = x + yi(其中 x 和 y 均为实数,i 为虚数单位,满足 i² = -1)。
复数的加、减、乘法等运算法则与实数有所区别,例如:(1)加法:若 z = x + yi,w = u + vi,则 z + w = (x + u) + (y + v)i。
(2)减法:若 z = x + yi,w = u + vi,则 z - w = (x - u) + (y - v)i。
(3)乘法:若 z = x + yi,w = u + vi,则 z × w = (xu - yv) + (y u + x v)i。
(4)除法:若 z = x + yi,w = u + vi,则 z ÷ w = (xu + yv)/(u²+ v²) + (y u - x v)/(u² + v²)i。
2. 复变函数的概念复变函数是自变量为复数、因变量为复数的函数。
设 z = x + yi,w = u + vi,则复变函数 f(z) 的定义为: f(z) = u(x,y) + v(x,y)i (其中,u(x,y) 和 v(x,y) 均为实函数)。
复变函数的导数、积分、解析函数等概念与实函数也有所不同,例如:(1)导数:复变函数 f(z) 在点 z0 的导数定义为:f'(z0) = lim (f(z) - f(z0))/(z - z0) (其中,极限是沿着复平面中有向直线逼近 z0 时的极限)(2)积分:复变函数沿着简单曲线γ 的积分(记作∮γ f(z) dz)定义为:∮γ f(z) dz = ∫ab f(γ(t))γ'(t) dt (其中,γ(t) 为参数方程,γ'(t) 为γ(t) 的导数)(3)解析函数:对于复平面上的一个区域 D,若在 D 内的每一点都有导数,则称 f(z) 在 D 内为解析函数。
复变函数与积分变换第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。
二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。
掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。
1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。
4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数)1(1sin 2z iz Ln iz Arc w -+== 反余弦函数 )1(1cos 2-+==z z Ln iz Arc w性质与对数函数的性质相同。
复变函数怎么求导复变函数是指一个变量自变量和一个变量的函数。
求复变函数的导数需要使用复变函数的Cauchy-Riemann条件。
复变函数的导数定义如下:设有函数$f(z)=u(x,y)+iv(x,y)$,其中$u(x,y)$和$v(x,y)$是$x,y$的实函数,若存在复数$L$,使得对于给定的复数$\Delta z=\Delta x+i\Delta y$,有$$\lim_{\Delta z \to 0}\frac{f(z+\Delta z)-f(z)-L\Deltaz}{\Delta z}=0$$则称$L$为复变函数$f(z)$在点$z$处的导数,记为$f'(z)$。
在实数函数的情况下,导数可以通过计算函数的偏导数来求得。
在复变函数的情况下,由于复数存在实部和虚部,计算导数需要满足一定的条件。
接下来,我们将通过推导Cauchy-Riemann条件,来求复变函数的导数。
首先,假设$f(z)$在一个区域内有定义,则$f(z)$可以写为$f(z)=u(x,y)+iv(x,y)$。
我们来计算$f(z)$在点$z$处的增量:$$\Delta f(z)=f(z+\Delta z)-f(z)=\{u(x+\Delta x, y+\Delta y)+iv(x+\Delta x, y+\Delta y)\}-\{u(x, y)+iv(x, y)\}$$将上式展开,并忽略高阶无穷小的项,得到:$$\Delta f(z)=\left[\left(\frac{\partial u}{\partialx}\Delta x-\frac{\partial v}{\partial y}\Deltay\right)+i\left(\frac{\partial u}{\partial y}\Deltay+\frac{\partial v}{\partial x}\Delta x\right)\right]$$我们知道,根据导数的定义,有:$$f'(z)=\lim_{\Delta z \to 0}\frac{\Delta f(z)}{\Delta z}$$将$\Delta f(z)$代入上式,得到:$$f'(z)=\lim_{\Delta z \to0}\frac{\left[\left(\frac{\partial u}{\partial x}\Delta x-\frac{\partial v}{\partial y}\Deltay\right)+i\left(\frac{\partial u}{\partial y}\Deltay+\frac{\partial v}{\partial x}\Delta x\right)\right]}{\Delta z}$$根据复数的定义,$\Delta z=\Delta x+i\Delta y$,因此,我们可以将分子中的$\Delta x$和$\Delta y$替换成$\Delta z$:$$f'(z)=\lim_{\Delta z \to0}\frac{\left[\left(\frac{\partial u}{\partial x}\Delta z-i\frac{\partial v}{\partial y}\Deltaz\right)+i\left(\frac{\partial u}{\partial y}\Deltaz+i\frac{\partial v}{\partial x}\Delta z\right)\right]}{\Delta z}$$整理上式,得到:$$f'(z)=\lim_{\Delta z \to 0}\left\{\frac{\partialu}{\partial x}-i\frac{\partial v}{\partialx}+\left[\frac{\partial u}{\partial y}+i\frac{\partialv}{\partial y}\right]\right\}$$根据导数的定义,我们知道$\lim_{\Delta z \to 0}\Delta z=0$,因此我们可以将分母中的$\Delta z$约去,得到:$$f'(z)=\frac{\partial u}{\partial x}-i\frac{\partialv}{\partial x}+\left[\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right]$$根据复变函数的导数定义,我们知道$f'(z)$是一个复数,因此可以将其改写为:$$f'(z)=\frac{\partial u}{\partial x}-i\frac{\partialv}{\partial x}+\left[\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right]=\frac{\partialu}{\partial x}+i\frac{\partial v}{\partialx}+\left[\frac{\partial u}{\partial y}-i\frac{\partialv}{\partial y}\right]$$根据复数的加法规则,我们知道复数可以写为实部和虚部的和,因此上式可以改写为:$$f'(z)=\frac{\partial u}{\partial x}+i\left(\frac{\partial v}{\partial x}-i\frac{\partial u}{\partial y}\right)$$根据复数的乘法规则,我们知道$i^2=-1$,因此上式可以改写为:$$f'(z)=\frac{\partial u}{\partial x}+i\left(\frac{\partial v}{\partial x}+i\frac{\partial u}{\partial y}\right)$$最后,我们得到了复变函数的导数公式:$$f'(z)=\frac{\partial u}{\partial x}+i\frac{\partialv}{\partial x}+i\left(\frac{\partial u}{\partialy}+i\frac{\partial v}{\partial y}\right)$$为了求出$f'(z)$的具体值$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$$$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$可以看出,Cauchy-Riemann条件是保证复变函数$f(z)$可导的充分必要条件。