沪科版18.1勾股定理练习题
- 格式:doc
- 大小:84.00 KB
- 文档页数:4
321S 4S 3S 2S 1图2图1NH P MGDADCBA勾股定理的应用提升练习1.在Rt △ABC 中,∠C=90°, ∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a ﹕b=3﹕4,c=15.求a 、b.2.一旗杆离地面6m 处折断,旗杆顶部落在离旗杆底部8m 处,旗杆折断之前有多高?3.如图,一架长2.5m 的梯子,斜靠在一面竖直的墙上,这时梯子底端离墙0.7m ,为了安装壁灯,梯子顶端需离地面2m ,请你计算一下,此时梯子底端应再远离墙多少m ?4. 如图,将一根25cm 长的细木棒放入长、宽、高分别为8cm 、 6cm、和的长方体无盖盒子中,则细木棒露在盒外面的最短长度是 多少cm ?5.如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,若10km DA =,15km CB =,DA AB ⊥于A ,CB AB ⊥于B ,现要在AB 上建一个中转站E ,使得C 、D两村到E 站的距离相等.求E 应建在距A 多远处?6.如图,七个正方形如此排列,相邻两个正方形都有公共顶点.数字..和字母..代表各自正方形面积.则s 1十s 2十s 3十s 4的值是多少?7.把图1的矩形纸片ABCD 折叠,B 、C两点恰好重合落在1510E DC B AA CPOBxy AD 边上的点P 处(如图2),已知90MPN ∠=°,5PM =,12PN =,求矩形纸片ABCD 的面积.8. 如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,求三角形P C A 周长的最小值.9.细心观察图,认真分析各式,然后解答问题:2(1)12+=112S = 2(2)13+= 222S =2(3)14+=332S =① 用含有n (n 是正整数)的等式表示上述变化规律;② 推算出10OA 的长;③ 求出222212310S S S S ++++的值.10.如图,AD 是ABC △的中线,45ADC ∠=︒.把ADC △沿直线AD 折过来,点C 落在点C'的位置上,如果4BC =,求B C'的长.11.如图1,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.⑴ 如图2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)⑵ 如图3,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用1S 、2S 、3S 表示,请你确定1S 、2S 、3S 之间的关系并加以证明.⑶ 四边形ABCD 的对角线互相垂直,现以四边形的边长为边长向外作四个正方形,面积分别为1S 、2S 、3S 、4S .则1S 、C'D CBA2S 、3S 和4S 之间的关系是 .ABC S 1S 3S 2图3ABC S 1S 3S 2图2图1S 2S 3S 1CBA S 4S 3S 2S 1DB CA。
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、下列几组数中,是勾股数的是()A.1,,B.15,8,17C.13,14,15D. ,,12、如图,在□ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则□ABCD的周长为()A. B. C. D. 或3、若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.134、如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN 为()A. B. C. D.5、直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为()A.1.5B.2C.2.5D.56、如图,在的正方形网格图中,小正方形的边长为1,的顶点均在格点上,则下列关于的说法错误的是()A.是直角三角形B.tamC.面积为D. 边上的高为7、正方形网格中,△ABC如图放置,则sin∠BAC=()A. B. C. D.8、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.59、如图,四边形内接于,为直径,,过点作于点,连接交于点.若,,则的长为()A.8B.10C.12D.1610、矩形ABCD中,已知AB=5,AD=12,则AC长为()A.9B.13C.17D.2011、在矩形ABCD中,AB=3,AD=5,以点A为圆心,4为半径作圆,点C与⊙A 的位置关系()A.点C在⊙A内B.点C在⊙A上C.点C在⊙A外D.无法确定12、如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个13、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.1B.2C.3D.414、已知,如图,长方形ABCD中,AB=5cm,AD=25cm,将此长方形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为()A.35 cm2B.30 cm2C.60 cm2D.75 cm215、如图,正方形ABCD中,AB=1,则AC的长是()A.1B.C.D.2二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.17、如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B距离C点 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________cm.18、如图,菱形纸片ABCD,AB=4,∠B=60°,将该菱形纸片折叠,使点B恰好落在CD边的中点B′处,折痕与边BC、BA分别交于点M、N.则BM的长为________.19、矩形ABCD内一点P到顶点A、B、C的长分别是1、2、3,则PD=________.20、如图,在中,,点P在斜边上,以为直角边作等腰直角三角形,,则三者之间的数量关系是________.21、如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点O到边AB的距离OH=________.22、在平面直角坐标系中,点A、B的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m,m)(m为非负数),则CA+CB的最小值是________23、矩形两条对角线的夹角为60°,对角线长为14,则该矩形较长的边长为________.24、如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把∠C沿直线EF折叠,使点C落在点C′处.当△ADC′为等腰三角形时,FC的长为________.25、如图,一架长为4m的梯子,一端放在离墙脚3m处,另一端靠墙,则梯子顶端离墙脚________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图:有一个圆柱,底面圆的直径EF= ,高FC=12cm,P为FC的中点,求蚂蚁从E点爬到P点的最短距离是多少?(画出平面图形)28、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.29、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.30、如图,∠MON=∠PMO,OP=x-3,OM=4,ON=3,MN=5,MP=11-x.求证:四边形OPMN是平行四边形。
专题18.1 勾股定理及其逆定理【九大题型】【沪科版】【题型1 勾股定理的运用】 (1)【题型2 直角三角形中的分类讨论思想】 (2)【题型3 勾股定理解勾股树问题】 (3)【题型4 勾股定理解动点问题】 (4)【题型5 勾股定理的验证】 (5)【题型6 直角三角形的判定】 (7)【题型7 勾股数问题】 (8)【题型8 格点图中求角的度数】 (9)【题型9 勾股定理及其逆定理的运用】 (10)【题型1 勾股定理的运用】【例1】(2022•和平区三模)如图,在△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,则AC的长为()A.5B.4C.3D.2【变式1-1】(2022春•上杭县期中)如图在Rt△ABC中,∠B=90°,AB=8,AC=10,AC的垂直平分线DE分别交AB、AC于D、E两点,则BD的长为()A .32B .74C .2D .52【变式1-2】(2022春•汉阳区期中)如图,在△ABC 中AB =AC =10,BC =16,若∠BAD =3∠DAC ,则CD = .【变式1-3】(2021秋•朝阳区校级期末)如图,在△ABC 中,∠C =90°,AB =30,D 是AC 上一点,AD :CD =25:7,且DB =DA ,过AB 上一点P ,作PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 长是 .【题型2 直角三角形中的分类讨论思想】【例2】(2022春•长沙月考)已知△ABC 中,AB =13,AC =15,BC 边上的高为12.则△ABC 的面积为( ) A .24或84B .84C .48或84D .48【变式2-1】(2022春•宁津县期中)△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长是( ) A .42B .32C .42或32D .42或37【变式2-2】(2022春•香河县期中)已知直角三角形两边的长为5和12,则此三角形的周长为( ) A .30B .√119+17C .√119+17或30D .36【变式2-3】(2022春•海淀区校级期中)在Rt △ABC 中,∠ACB =90°,AC =4,AB =5.点P 在直线AC 上,且BP =6,则线段AP 的长为 .【题型3 勾股定理解勾股树问题】【例3】(2021秋•南关区期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、B、D的面积依次为6、10、24,则正方形C的面积为()A.4B.6C.8D.12【变式3-1】(2021秋•高新区校级期末)如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=135,S3=49,则S2=()A.184B.86C.119D.81【变式3-2】(2022春•泗水县期中)有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,他将变得“枝繁叶茂”,请你计算出“生长”了2022次后形成的图形中所有正方形的面积之和为()A.2020B.2021C.2022D.2023【变式3-3】(2022春•张湾区期中)如图①,在△ABC中,∠ACB=90°,AC:BC=4:3,这个直角三角形三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作直角边之比为4:3的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形,图③是2次操作后的图形.如果图①中的直角三角形的周长为12,那么10次操作后的图形中所有正方形的面积和为( )A .225B .250C .275D .300【题型4 勾股定理解动点问题】【例4】(2021秋•开福区校级期末)如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12 D .62596或252或24【变式4-1】(2021秋•宛城区期末)如图,在Rt △ABC 中,∠ACB =90°,BC =40cm ,AC =30cm ,动点P 从点B 出发沿射线BA 以2cm /s 的速度运动.则当运动时间t = s 时,△BPC 为直角三角形.【变式4-2】(2022春•蚌山区校级期中)如图,在△ABC 中,∠ACB =90°,AB =10,AC =8,点P 从点A 出发,以每秒2个单位长度的速度沿折线A ﹣B ﹣C 运动.设点P 的运动时间为t 秒(t >0). (1)BC 的长是 .(2)当点P刚好在∠BAC的角平分线上时,t的值为.【变式4-3】(2022春•河东区期中)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?【题型5 勾股定理的验证】【例5】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a)∴12b2+12ab=12c2+12a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【变式5-1】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【变式5-2】(2021秋•朝阳区期末)【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×12ab,即(a+b)2=c2+4×12ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【变式5-3】(2022春•寿光市期中)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【题型6 直角三角形的判定】【例6】(2022春•绥宁县期中)若△ABC的三边长分别为a、b、c,下列条件中能判断△ABC是直角三角形的有()①∠A=∠B﹣∠C,②∠A:∠B:∠C=3:4:5,③∠A=90°﹣∠B,④∠A=∠B=12∠C,⑤a2=(b+c)(b﹣c),⑥a:b:c=5:12:13.A.3个B.4个C.5个D.6个【变式6-1】(2022春•赣州月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,若a=35c,b=45c.则△ABC为直角三角形B.三边长的平方之比为1:2:3C.三内角之比为3:4:5D.三边长分别为a,b,c,c=1+n2,a=n2﹣1,b=2n(n>1)【变式6-2】(2022春•汉滨区期中)若△ABC的三边长a,b,c满足(a﹣c)2=b2﹣2ac,则()A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形【变式6-3】(2022春•开州区期中)下列是直角三角形的有()个①△ABC中a2=c2﹣b2②△ABC的三内角之比为3:4:7③△ABC的三边平方之比为1:2:3④三角形三边之比为3:4:5A.1B.2C.3D.4【题型7 勾股数问题】【例7】(2022春•滑县月考)在学习“勾股数”的知识时,小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.a68101214…b815243548…c1017263750…则当a=24时,b+c的值为()A.162B.200C.242D.288【变式7-1】(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【变式7-2】(2022春•白云区期末)(1)3k,4k,5k(k是正整数)是一组勾股数吗?如果是,请证明;如果不是,请说明理由;(2)如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?如果是,请证明;如果不是,请说明理由.【变式7-3】(2022•石家庄三模)已知:整式A=n2+1,B=2n,C=n2﹣1,整式C>0.(1)当n=1999时,写出整式A+B的值(用科学记数法表示结果);(2)求整式A2﹣B2;(3)嘉淇发现:当n取正整数时,整式A、B、C满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.【题型8 格点图中求角的度数】【例8】(2021秋•伊川县期末)如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是.【变式8-1】(2022•惠山区一模)如图所示的网格是由相同的小正方形组成的网格,点A,B,P是网格线的交点,则∠P AB+∠PBA=°.【变式8-2】(2022春•武侯区校级期末)如图,在正方形网格中,每个小正方形的边长均为1,点A,B,C,D,P都在格点上,连接AP,CP,CD,则∠P AB﹣∠PCD=.【变式8-3】(2022春•孝南区期中)如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BCA+∠DCE=.【题型9 勾股定理及其逆定理的运用】【例9】(2021秋•蓝田县校级期末)如图,在△ABC中,AB=AC,D是CA的延长线上一点,连接BD.(1)若AC=8,AD=17,BD=15,判断AB与BD的位置关系,并说明理由;(2)若∠D=28°,∠DBC=121°,求∠DAB的度数.【变式9-1】(2022春•陵城区期中)如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【变式9-2】(2021春•当涂县期末)如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.【变式9-3】(2022春•汉阳区校级月考)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD =10,AD=10√2.(1)求四边形ABCD的面积.(2)求对角线BD的长.。
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.42或372、如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD 上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15B.15+5C.20D.15+53、下列各组线段中,不能构成直角三角形的是()A.3,4,5B.5,12,13C.8,16,17D.7,24,254、下列各组数中能够作为直角三角形的三边长的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,65、连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A. B. C. D.6、下列各组三条线段组成的三角形是直角三角形的是( )A.1,1,B.2,3,4C.2,2,3D.6,8,117、如图,在平面直角坐标系中,正方形的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数的图象与正方形的两边、分别交于点M、N,轴,垂足为D,连接、、,下列结论错误的是①;②四边形与面积相等;③;④若,,则点C的坐标为.其中正确的结论有()A.①②B.①②④C.②③④D.①②③④8、如图,在中,,,,垂足为D,,则BD的长为()A. B.2 C. D.39、如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则AC的长为()A. B.2 C.3 D.10、下列长度的三条线段能组成钝角三角形的是( )A.3,4,4B.3,4,5C.3,4,6D.3,4,711、如图,正方形中,,E 是的中点,点 P 是对角线上一动点,则的最小值为()A.4B.C.D.12、如图使用4个全等三角形与1个小正方形镶嵌而成的正方形图案已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x−y=2;③2xy+4=49;④x+y=9. 其中正确的是()A.①②B.①②③C.①②④D.①②③④13、在Rt△ABC中,∠C=90°,AB=10,BC=6,则AC的长是()A.8B.4C.64D.1614、若等腰三角形的腰长为13,底边长为10,则底边上的高为()A.6B.7C.9D.1215、如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P 是AB上的动点,则PC+PD的最小值为()A.4B.5C.6D.7二、填空题(共10题,共计30分)16、如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是________.17、如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.18、如图,已知圆柱的底面直径,高,小虫在圆柱表面爬行,从点爬到点,然后在沿另一面爬回点,则小虫爬行的最短路程为________.19、如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=2 ,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D 交AB于点F.若△AB′F为直角三角形,则AE的长为________或________21、平面直角坐标系中,点到原点的距离是________.22、如图,点P是y轴正半轴上一点,以P为圆心的圆与x轴、y轴分别交于点A、B、C、D,已知点A的坐标为,点C的坐标为,则点D的坐标为________.23、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,已知△ABC的三个顶点均在格点上,则cosA的值为________.25、一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,AB,AC的夹角为θ(θ=30°).要在楼梯上铺一条地毯,已知CA= cm,楼梯宽1 cm,则地毯的面积至少需要________平方米.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC 上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.28、如图,一根旗杆在离地面6米处折断,旗杆顶端落在离旗杆底部8米处,求旗杆折断之前有多高?29、如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.30、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、C6、A7、B8、C10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A. B. C. D.52、下列四组数中,是勾股数的一组是()A.3、5、7B. 、、C.5、12、13D.0.3、0.4、0.53、如图:在等腰梯形ABCD中,AD∥BC,过D作DF⊥BC于F,若AD=2,BC=4,DF=2,则DC的长为()A.1B.C.2D.4、如图所示是一个直角三角形的苗圃,由一个正方形花坛和两块直角三角形的草皮组成.如果两个直角三角形的两条斜边长分别为4米和6米,则草皮的总面积为()平方米.A.3B.9C.12D.245、如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6B.5C.4D.36、以下列各组数为三角形的三边,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,237、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. ,2,B.2,3,4C.6,7, 8D.3,4,58、三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形9、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A.(-2,2 )B.(-2,4)C.(-2,2 )D.(2,2 )10、以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )A.1,,3B. ,,5C.1.5,2,2.5D. ,,11、如图,在长方形ABCD中,AB=6,BC=8,∠ABC的平分线交AD于点E,连接CE,过B点作BF⊥CE于点F,则BF的长为()A. B. C. D.12、下列命题,假命题是()A.有一个内角等于60°的等腰三角形是等边三角形B.有一个角是40°,腰相等的两个等腰三角形全等C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等13、已知直角三角形的两条边长分别是方程x2-14x+48=0的两个根,则此三角形的斜边长是()A.10B.2C.10或2D.10或814、如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.1215、下列三角形中,不是直角三角形的是()A.三个角的度数之比是1:2:3B.三条边长之比是1:2: C.三条边长之比是1:2:4 D.三条边长之比是3:4:5二、填空题(共10题,共计30分)16、如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD 上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③= ;④GH的长为5,其中正确的结论有________.(写出所有正确结论的序号)17、南浔区某校在开展特色阳光大课间活动中融入了单脚跳跳球运动,如图1,当人单脚跳的过程中,小球会随着球杆绕着脚开始不停的旋转.大课间活动中,五位同学分别站在点处,处同学跳的时候,小球开始在地面上不停旋转形成,如图2为活动过程的俯视示意图,交于点G,,连结,当小球转到点时,,则球杆________ .18、如图,AB//CD,,E为BC上一点,且.若,,,则DE的长为________.19、如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D,DE⊥AB,垂足为E.若AC=3,AB=5,则DE的长为________。
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图:某港口P位于东西方向的海中线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“选航”寻每小时航行15海里,“海天”号每小时流行12海里。
它们离开港口一个半小时后分别位于A,B处,至程距30海里。
如来知道“远航”号沿东北方向航行,那么∠BPN=()度。
A.60B.45C.30D.无法确定2、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.6C.7D.3、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.4、如图,在正方OABC中,点B的坐标是(4,4),点E、F分别在边BC,BA 上,.若,则点F的纵坐标是()A.1B.C.2D.5、如图,矩形中,,,在数轴上,若以点A为圆心,对角线的长为半径作弧交数轴于点M,则点M表示的数为()A. B. C. D.6、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.4C.D.5或7、如图,在正方形中,,点在边上,且,将沿折叠得到,延长交边于点,则的长为()A.2B.C.3D.8、下列四组线段中,可以构成直角三角形的是A.2,3,4B.3,4,5C.4,5,6D.7,8,99、下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,1510、三个正方形按图示位置摆放,S表示面积,则S的大小为 ( )A.10B.500C.300D.3011、如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.D.12、三角形的三边分别为a、b、c,由下列条件不能判断它是直角三角形的是()A. ,,B.C.D.13、在直角三角形中,两边长分别为3和4,则最长边的长度为()A.5B.4C.5或D.5或414、以下列各组数据为三角形的三边,能构成直角三角形的是()A.1cm,2cm,3cmB.2cm,2cm,2cmC.4cm,2cm,2cmD.cm,cm,1cm15、如图,PO是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24 cm,则⊙O的周长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是________.17、若抛物线y=x2﹣6x+c的顶点与原点的距离为5,则c的值为________.18、如图,x=________.19、一架长的梯子斜靠在一竖直的墙上,这时梯足距离墙底,如果梯子的顶端沿墙下滑,那么梯足将滑________ :20、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,点B、C的对应点分别为点B'、C′,AB′与BC相交于点D,当B′C′∥AB时,则CD=________.21、如图,长方体中, , , ,一只蚂蚁从点A出发,以4m/秒的速度沿长方体表面爬行到点C',至少需要________ 分钟.22、如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD =2,BD=3,则AC的长为________.23、四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为2的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM =4 EF,则正方形ABCD的面积为________24、在Rt△ABC中,AC=9,BC=12,则AB=________.25、如图,先有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:① ;②四边形是菱形;③ ,重合时,;④ 的面积的取值范围是.其中正确的________;(把正确结论的序号都填上).三、解答题(共5题,共计25分)26、在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路:作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,列出方程求出x→再求出AD的长,从而计算三角形的面积.请你按照他们的解题思路完成解答过程.28、如图,在△ABC中,∠B 90°,AB 4,BC 2,以AC为边作△ACE,∠ACE 90°,AC=CE,延长BC至点D,使CD 5,连接DE.求证:△ABC∽△CED.29、在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B (﹣1,3),C(﹣4,3),求sinB的值.30、如图,将长AB=5cm,宽AD=3cm的长方形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长是多少?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、C6、D7、C8、B9、B10、D11、D13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图所示,在数轴上点A所表示的数为a,则a的值为()A.-1-B.1-C.-D.-1+2、如图,将矩形纸片沿直线折叠,使点C落在边的中点处,点B落在点处,其中,则的长为()A. B.4 C.4.5 D.53、已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.20B.16C.12D.104、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?()A.4B.8C.9D.75、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD于点F,连结BD交CE于点G,连结BE.下列结论:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S=BD·CE;⑤BC2+DE2=BE2四边形BCDE+CD2.其中正确的结论有()A.1个B.2个C.3个D.4个6、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是().A.7B.9C.10D.117、下面各组数中不能构成直角三角形三边长的一组数是()A.3、4、5B.6、8、10C.5、12、13D.11、12、158、如图,有两棵树,一棵高5米,另一棵高2米,两树相距5米,一只小鸟从一棵树飞到另一棵树的树梢,至少飞了( )米。
A. 米B.5 米C.4米D. 米9、由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17 D.a=13,b=14,c=1510、下列说法中正确的是()A.已知a,b,c是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a 2+b 2=c 2D.在Rt△ABC中,∠B=90°,所以a 2+b 2=c 211、如图,数轴上的点表示的数是-1,点表示的数是1,于点,且,以点为圆心,为半径画弧交数轴于点,则点表示的数为()A. B. C.2.8 D.与AB切于点M,设12、.如图,半圆D的直径AB=4,与半圆O内切的动圆O1⊙O的半径为y,AM=x,则y关于x的函数关系式是( ) 1A.y=- x 2+xB.y=-x 2+xC.y=- x 2-xD.y= x 2-x13、如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF= ,则AE2+BE2的值为()A.8B.12C.16D.2014、将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1B.2C.D.15、如图,在矩形片中,边,,将矩形片沿折叠,使点A与点C重合,折叠后得到的图形是图中阴影部分.给出下列结论:①四边形是菱形;② 的长是1.5;③ 的长为;④图中阴影部分的面积为5.5,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、三角形两边长分别是8和6,第三边长是一元二次方程的一个实数根,则该三角形的面积是________.17、如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D 分别在OA,OB,上,过点A作AF⊥ED,交ED的延长线于点F,则图中阴影部分的面积等于________.18、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.19、已知两条线段的长为3cm和4cm,当第三条线段的长为________时,这三条线段能组成一个直角三角形。
勾股定理练习
一.填空题:
1. 已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为_______.
2.在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC=___________.
3.已知:如图,在Rt △ABC 中,∠B=90°,D 、E 分别是边AB 、AC 的中点,DE=4,
AC=10,则AB=_____________.
4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,
花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
5.已知两条线段的长为9cm 和12cm,当第三条线段的长为 cm 时,这三条
6.如图,在△ABC 中,则DE 的长为_______.
7的正方形的边和长为7cm 。
(第3题) 8.在一棵树的10的A 处。
另一只爬到树顶9.有两棵树,一棵高6的树梢飞到另一棵树的树梢,至少飞了 米
,AD=8,DC=6,CB=24,AB=26.则四边形ABCD 的面积
20dm 、3dm 、2dm ,A 和
A 点有一只蚂蚁,想到
B 点去吃可口的食物,则
_____________.
(第9题) (第10题) (第11题)
二.选择题:
1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( )
A 、a=1.5,b=2,c=3
B 、a=7,b=24,c=25
C 、a=6,b=8,c=10
D 、a=3,b=4,c=5
C A B C
D 20
32A B
3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )
A 、60∶13
B 、5∶12
C 、12∶13
D 、60∶169
4.如果Rt △的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( )
A 、2n
B 、n+1
C 、n 2-1
D 、n 2+1
5.已知Rt △ABC 中,∠C=90°,a+b=14,c=10,则Rt △ABC 的面积是( )
A 、24
B 、36
C 、48
D 、60
6.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )
A 、56
B 、48
C 、40
D 、32
7.三角形的三边长满足(a+b )2=c 2+2ab,则这个三角形是( )
A. 等边三角形;
B. 钝角三角形;
C. 直角三角形;
D. 锐角三角形.
8
9D A 、m 2 B 、m 3 C 、m 4 D 、m 5
12.在△ABC 中,AB=AC ,BC=5,作AB 的垂直平分线,交另一腰
AC 于D ,连结BD ,若△BCD 的周长为17,则AB 的长为( )
A 、12
B 、 6
C 、7
D 、5
13.△ABC 的三边a 、b 、c 满足a 3+b 3+a 2b+ab 2-ac 2-bc 2=0,则△ABC 的形状是( )
A 、直角三角形;
B 、等边三角形;
C 、等腰三角形;
D 、等腰直角三角形。
14.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三
角形,其中正确的是( )
715
242520
71520242515
7
2520
2425720
2415(A)(B)(C)(D)
15.在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )
(A )42 (B)32 (C)42或32 (D)37或33.
B E
16.直角三角形一直角边长为11,另两边均为自然数,则其周长为( )
(A )121 (B)120 (C)132 (D)以上答案都不对
17.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
18.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( )
A.338
B.24
C.26
D.30
三.解答题:
1.如图,折叠长方形一边AD ,点D 落在BC 边的点F 处,
BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.
2.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
3.已知,如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,CD =1.5,BD =2.5, 求AC 的长.
A D E
B C
C
D A B
4.如图A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域。
(1).A 城是否受到这次台风的影响?为什么?
(2).若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
5、海中有一小岛A ,如图,在该岛周围10
行,开始在A 岛南偏西45º的B 处,往东航行
20的C 说明理由。
6、如图,点A 是一个半径为300米的圆形森林公园的中心,在森林公园附近有
B 、
C 两个村庄,现要在B 、C 两村庄之间修一条长为1000米的笔直公路将两村连通.经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园?请通过计算进行说明.
北。